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Complementary Entropy and Wavelet Analysis
of Drilling-Ability Data 1

G. Frantziskonis2 and A. Denis3

The paper combines wavelet and entropy analysis of nonstationary drilling-ability data in order to ob-
tain optimum information on the mechanical behavior of different geological formations. Both methods
are multiscale in nature, and while entropy analysis provides information on stationary subdomains,
wavelet analysis identifies dominant scales or range of scales at which the entropy analysis is most
useful. The combination of the techniques yields relatively simple results that can aid the drilling
process by providing information on delays to be expected.
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INTRODUCTION

Geostatistical analysis based on random field theory of stationary signals has
found many applications, to the point that it is regarded by many as the “stan-
dard” one. However, it is difficult to apply such analysis to geologic formations of
which nonstationarity is an inherent property. Thus, research on the development
of tools for the analysis of geological signals, such as those resulting from boring
data, is presently very active. It is not intended herein to provide a review of this
field; yet, direct reference is given to those works directly relevant to the present
study.

Tunnel boring machines record several parameters and thus provide a spatial
series of data recorded over a drilling depth of often several hundreds of meters.
A combined parameter, i.e., drilling resistance, is directly affected by the properties
of the geologic formation, thus detailed knowledge of its variation with depth is
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important for the drilling process. However, drilling resistance spatial series appear
to be nonstationary, and this makes their characterization difficult. A method that
identifies stationary subregions of the series is desirable, since these regions can
then be characterized using “standard” analysis tools. Along these lines, entropy
tools are promising, and first attempts in this direction have appeared recently in
the literature (Denis and Cremoux, 1999, 2002a; Denis, Cremoux, and Lapeyre,
1998). These tools are multiscale in nature, and can provide information at all
scales ranging from the sample support scale (discretization) to the domain scale.
Identification of dominant scales or range of scales is thus desirable since that
would provide data concentrated on what is useful for the drilling process. This is
the central theme of the paper, i.e., using wavelet analysis as a complementary tool
capable of identifying dominant scales. Experience along these lines relevant to
material problems (Frantziskoniset al., 2000; Frantziskonis and Deymier, 2000;
Frantziskonis and Hansen, 2000) proved important for the problems studied herein.

Wavelet analysis is also multiscale, and can be used effectively for the analysis
of nonstationary spatial (or time) series. However, the combination of entropy and
wavelet analysis can provide relatively simple information on the behavior of
different geological formations, which can be used effectively during a tunneling
process. None of the two techniques can yield such simple information when used
individually.

The remainder of the paper contains the following. A brief introduction to
wavelet analysis is followed by the analysis of sample signals and then of actual
drilling-ability data. The entropy analysis tool is then presented, and is followed
by a section that identifies its relation to wavelet analysis. The complementarily
of the two techniques is addressed and how it can be used to yield simple data on
the geologic formations is emphasized throughout the paper.

INTRODUCTION TO WAVELET ANALYSIS

Wavelet analysis describes graphs (signals) as superposition of elementary
functions. The corresponding description is then used for different purposes, i.e.,
data compression, feature extraction, pattern recognition, etc. There are several
publications on this rather new subject and applications can be found in a wide
variety of scientific/engineering fields. Over the past few years, dozens of mono-
graphs have appeared in the literature. In one-dimension (extendable to higher
ones) a waveletψ(x) transforms a fluctuating functionf (x) (Daubechies, 1992)
according to

Wf (a, b) =
∫ ∞
−∞

f (x)ψa,b(x) dx (1)
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The two-parameter family of functions,ψa,b(x) = (1/
√

a)ψ( x−b
a ) is obtained from

a single one,ψ , called the mother wavelet, through dilatations by the scaling factor
a and translations by the factorb. The factor 1/

√
a is included for normalization

purposes. The parametera can take any positive real value, and the fluctuations
of f (x) at positionb are measured at the scalea. A wavelet analysis can either be
continuous or discrete. The second one, based on an orthogonal decomposition of
a signal can be performed with fast algorithms.

Given the wavelet coefficientsWf (a, b) associated with a functionf , it is
possible to reconstructf at a range of scales betweens1 ands2 (s1 ≤ s2) through
the inversion formula

fs1,s2(x) = 1

cψ

∫ s2

s1

∫ ∞
−∞

Wf (a, b)ψa,b(x) db
da

a2
(2)

and settings1→ 0 ands2→∞.
Wavelet functions used as analyzing wavelets must have zero mean, and in

most applications it is imperative that they are orthogonal to some lower order
polynomials, i.e. ∫

xmψ(x) dx = 0, 0≤ m≤ n (3)

and the maximum vanishing moment, integern, is directly related to the so-called
order of the wavelet. The vanishing moments are important, especially for problems
with a “trend” as will be addressed later. In the numerical results presented in this
paper, the so-called biorthogonal spline wavelets (Daubechies, 1992) with four
vanishing moments were used.

Wavelet Analysis of Example Signals

The first example involves a signal sampled at 1024 discrete and equally
spaced points (Fig. 1(a)). It consists of two parts, 512 points each. Both parts are
random and stationary, with the same mean and variance; the second part is pure
white noise (pure nugget effect) while the first part is spatially correlated as shown
in Figure 1(b), with a correlation distance of about 5 spaces. There are 10 scales
available, since 210 = 1024.

Figure 2 shows the plot of the wavelet coefficients obtained from the signal
of Figure 1 as well as the energy of the wavelet coefficients as a function of
scale, the latter being the dot product of the coefficients with itself. The following
are applicable here: the energy of the wavelet coefficients is concentrated towards
the fine scales (9 and 10). Part two of the signal (white noise) depicts higher
magnitude wavelet coefficients at scale 10 than the first, correlated part. However,
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Figure 1. (a) Signal over a space of 1024 points consisting of two parts,
512 points each. (b) The variogram of each of the two parts of (a).

part one shows higher values of the wavelet coefficient at scale 9. Since part two
is white noise, naturally the wavelet coefficients increase continuously with finer
scales, and their magnitude becomes maximum at the finest scale, i.e., scale 10. Yet,
the correlated part of the signal shows maximum value of the wavelet coefficients
at scale 9; considering that the correlation distance of part one is approximately
5 space units, and that scale 9 corresponds to 4 spaces (and scale 8 to 8 spaces),
it is natural that the wavelet coefficients for this part are of high magnitude at
scale 9. As is evident from Figure 2(c), the entire signal has most of its energy at
scales 9 and 10. The high value of the energy at scale 10 indicates the presence of
white noise (nugget effect) and that at scale 9 shows correlations at that scale (or
between scales 9 and 8). In short, study of Figures 2(a–c) provide a clear picture
of the nature of the signal, which is overall nonstationary but piece-wise stationary.
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Figure 2. (a) Plot of the wavelet coefficients, value of the coefficients on the vertical axis,
versus the spatial variablex, horizontal axis, at each of the 10 scales of decomposition; scale
decreases from left to right and from top to bottom, i.e., scale 1 is the coarsest and scale 10
the most detailed one. Scaling of the vertical axes is the same for each plot. (b) Same as (a),
but the square of the coefficients (while retaining the sign) is plotted on the vertical axes.
(c) Total energy of the wavelet coefficients, vertical axis, as a function of scale (1–10), scale
10 being the finest.

The second example is a 512-point discrete signal with the same properties as
the first part of the (spatially correlated) signal of Figure 1(a). Then, a nugget effect
(white noise) of 20% is added to that signal. We perform the wavelet transform of
these two signals and then evaluate the energy of the wavelet transform for each
scale; there are nine scales since 29 = 512. The plot of the wavelet coefficients
at each scale is similar to that of Figure 2, for the first part. Figure 3 shows, for
each scale, the percent difference between the energy of the wavelet transform of
the signal with and without the nugget effect. Clearly, the nugget effect increases
the energy of the wavelet transform rather dramatically for the finest scale of
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Figure 3. Percent difference between the energy of the wavelet transform
of the second example signal with and without the nugget effect.

decomposition (scale 9) while the change in the other scales is rather insignificant.
Thus a nugget effect influences the finest scale of decomposition of the signal by
increasing the energy of the wavelet transform at that scale significantly, and this
provides means for identifying a nugget effect, i.e., by examining the relative value
of such energy at the finest and coarser scales of decomposition.

We perform the wavelet transform of the above example signal with the
nugget effect, then set all the wavelet coefficients at the finest scale equal to zero
and perform the inverse wavelet transform. This is then an application of (2) where
the cutoff scale includes only the finest scale available. From the signal obtained
this way, we plot the relevant variogram shown in Figure 4. Clearly, this is similar
to the variogram shown in Figure 1(b), for the first part. In other words, by filtering
the wavelet coefficients at the finest scale, we remove the nugget effect from the
signal.

As the last example we consider the 1024-point signal plotted in Figure 5(a),
which has the same statistical properties as the first part of Figure 1, yet a linear
trend has been added at the first 400 points and a quadratic term for the remaining
points. Figure 5(b) shows the plot of the wavelet coefficients for each scale, and
Figure 5(c) shows the energy of the wavelet coefficients as a function of scale.
Clearly, the trend can be seen at coarse scales, i.e., scales 2 and 3. Furthermore,
the energy of the wavelet coefficients increased at scale 2 and 3, when compared
to that of Figure 2(c).

DRILLING DATA AND ENTROPY ANALYSIS

The available experimental data set is from a Tunnel Boring Machine of large
diameter (7.23 m) used to build a pipeline in Morocco. The object of this practical
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Figure 4. Variogram of the signal with nugget effect after its wavelet
transform, filtering of (setting equal to zero) the wavelet coefficients
at the finest scale and performing the inverse wavelet transform.

application was to take into account tunnel boring parameters to identify and quan-
tify spatially homogeneous zones. Therefore, it is assumed that the homogeneity is
achieved if the drilling data exhibits a spatially correlated stationary random pro-
cess. The underlying idea is that the more the drilling variable shows a structure

Figure 5. (a) Signal with spatially correlated structure and a trend. (b) Plot of the wavelet
coefficients for each scale; scale decreases from left to right and from top to bottom, i.e., scale 1
corresponds to the coarsest scale and scale 10 to the most detailed one. (c) Energy of the wavelet
coefficients for each of the 10 scales.
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Figure 6. (a) Drilling-ability signal (Rf) over 1000 m studied, L function and segmenting results.
(b) Drilling-ability signal (Rf) from 480 to 660 m, L function and segmenting results.

the fewer problems would occur because it is easier to drill a geotechnical homo-
geneous medium than a heterogeneous one. Thus, knowledge on expected drilling
difficulties would be gained.

Several parameters were recording during drilling and three of those are used
herein, i.e., thrust, penetration rate, and rotary speed. Using these three parameters
in conjunction with a relevant theory (Detournay and Defourny, 1992; Gnirk and
Cheatman, 1968) the so-called drilling-strength or drilling-ability can be obtained.
The drilling-ability,Rf, depends on the type and shape of the disk cutters and can
be evaluate from analytical expressions (Denis and Cremoux, 2002a). Typically
Rf is expressed in MPa.

Figure 6 shows the drilling-ability data. Two major geological variations
appear over the studied 1000 m. The first part (50–570 m) is described as a zone of
tight sandstone and arkosic sandstone with some intercalation of quartzy sandstone.
The second part (570–1000 m) shows pelite of lower compressive strength with
some hardened schist beds. Figure 6(b) shows the plot of theRf variable between
480 and 660 m. Clearly, the interface between sandstone and pelite is at about
570 m.

The concept of entropy used in this paper is based on the thermodynamics of
plane curves (Dupain, Kamae, and Mend`es France, 1986; Mend`es France, 1983;
Moore and Van Der Potten, 1989), used for analysis of signals, in Denis and
Cremoux (1998, 1999, 2002b). Within the thermodynamics formalism, the entropy
of a plane curve is defined in terms of the number of intersection points with a
random line. The entropy of a signal is expressed as

H (x) = d(L(x))

dx
(4)
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whereL(x) is the length of the signal (along its tortuous path) as a function of the
spatial variablex, expressed as

L(x) =
∫ x

0
|X′(u)| du (5)

where a prime denotes derivative with respect to the argument, and

〈L(x)〉 =
∫ x

0
L[|X′(u)|] du=

∫ x

0
m|X′| du= x m|X′| (6)

wherem|X′| denotes the mean of the absolute value of the spatial derivative of the
processX, and〈·〉 denotes mean value. Thus,L(x) is linear over a region where
m|X′| is constant.

A complete analysis of entropy is multiscale, i.e., the regions of constant
entropy are identified for continuously decreasing scales, from coarse to fine.
Details on this can be found in Denis and Cremoux (1999). The example signals
presented above and analyzed with wavelets have also been analyzed with entropy
concepts (Denis and Cremoux, 2002 b).

Figure 6 shows the drilling-ability data and results from the analysis of the
entropy of the signal, performed to evaluate regions of statistical stationarity, i.e.,
region of constant entropy. It appears that the entropy analysis of theRf variable
identifies the same main lithologic units at coarse scales as those identified by the
geotechnical investigation (Fig. 6(a)) and offers a better resolution at finer scales
(Fig. 6(b)) than those that can be obtained from the examination of cuttings.

WAVELET ANALYSIS OF DRILLING-ABILITY DATA
COMPLEMENTARY TO ENTROPY ANALYSIS

The entropy study and the wavelet analysis complement each other. In the
following, we elaborate on the complementarities. Figure 7 shows part of the
drilling-ability signal and its wavelet transform. Roughly speaking, the regions
of black or white identified at each scale in Figure 7(b) correspond to regions of
constant entropy; theoretical investigation of this point appears in a subsequent
section. Importantly, as shown in Figure 7(d), a rather dominant scale can be
identified, i.e., scale 6. This, then, implies that the most useful representation of
the entropy would be at that scale. This reduces the need to have representation of
the entropy at several scales, which may be hard to implement in practice. Note
that the energy of the wavelet coefficients is rather insignificant at fine scales,
especially for the finest scale, i.e., scale 10. This implies the absence of white noise
(nugget effect) in the signal, i.e., there are spatial correlations on all subregions of
stationarity.
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Figure 7. (a) Drilling-ability signal (Rf) from 138 to 240 m, i.e., 1024 discrete points. (b) Gray-
scale density plot of the wavelet coefficients. (c) Plot of the wavelet coefficients for each of the
10 scales, from left to right and top to bottom; scale 1 is the coarsest and scale 10 the finest.
(d) Energy of the wavelet transform (vertical axis) as a function of scale (horizontal axis).

In more detail, from Figure 7(d), it appears there are two significant scales
(2 and 6). It is natural to address the geologic significance assigned to these.
Scale 6 corresponds to 32 discretization spaces and scale 2 to 512 spaces. As each
space is about 0.1 m, the high values of energy at scales 2 and 6 correspond to 3.2
and 51.2 m, respectively. With these values, one can obtain from entropy analysis
information on “segmenting,” as well as the value of entropy in each subregion.
The segmenting from the coarse significant scale, i.e., scale 2 identifies the main
lithologic units, i.e., those obtained from examination of the cuttings. Scale 6
offers a better resolution and makes possible to obtain a measure of homogeneity
within the previously detected subregions, information which cannot be obtained
by observing cuttings.
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Figure 8. (a) Drilling-ability signal (Rf) from 480 to 660 m, i.e., 2048 discrete points. (b) Energy
of the wavelet transform (vertical axis) as a function of scale (horizontal axis). (c) Plot of the
wavelet coefficients for each of the 11 scales (scale 1 is not shown for simplicity), from left to
right and top to bottom; scale 1 is the coarsest and scale 11 the finest.

Figure 8 is similar to Figure 7, yet for theRfdata from 480 to 660 m, discretized
in 2048 points. There are 11 scales available for this signal. As shown in Figure 7(b),
at fine scales, i.e., scales 8–11, the wavelet coefficients show overall values of higher
magnitude for the part of the signal from 480 to 660 m. Note that at that depth
rests the interface between a layer of sandstone and Pelites (Denis and Cremoux,
2002b). Also note the absence of nugget effect from the signal, i.e., low energy of
the wavelet coefficients at fine, and especially at the finest scale 11, Figure 8(b).
Furthermore, for this part of the drilling process (depth), as seen from Figure 8(b),
there is not a single dominant scale, as is the case shown in Figure 7(d), but rather
the range of scales from 3 to 6 is dominant. This, then, implies that a 4-scale
description of the entropy would be necessary for a complete description of the
regions of constant entropy.

Relation Between the Wavelet Transform and Entropy of a Function

Consider a functionf (x) that is random and spatially correlated in spacex.
The variance of the wavelet transform,〈[Wf (a, b)]2〉, provides means for evaluat-
ing the energy of the wavelet transform as a function of scalea, and positionb. It
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can be evaluated in the Fourier space as

σ 2
W(a) = 〈[Wf (a, b)]2〉 = a

2π

∫
R

Pf (k)[ψ̂(ak)]2 dk (7)

where Pf (k) denotes the power spectrum off and (·̂) indicates Fourier trans-
form. Let us first consider a processf that is stationary and spatially correlated
(this corresponds to regions of stationarity of a nonstationary process). Let the
autocorrelation function be of the exponential form

ρ(r ) = exp[−r/d] (8)

wherer denotes the separation distance between two points inx, andd denotes the
correlation distance; Let the variance beσ 2

f . The Fourier transform of this auto-
correlation function together withσ 2

f provide the power spectrum of the process
(Wiener–Khinchin theorem), i.e.,

Pf (k) = 1

π

σ 2
f d

1+ d2k2
(9)

Let us consider the so-called “Mexican hat” wavelet or the second derivative
of the Gaussian function, and address the generality of the process in the sequence,
i.e.,

ψ(x) = (x2− 1) exp[−x2/2] (10)

Its Fourier transform is

ψ̂(k) = k2 exp[−k] (11)

Integral (7), for functions (9) and (11), yields

σ 2
W(a) = 〈[Wf (a, b)]2〉 = a1

2π

∫
R1

Pf (k)[ψ̂(ak)]2 dk

(12)

= aσ 2
f

2
√
πd5

(ad2 (d2− 2a2)+ 2a4 d
√
π exp[a2/d2](1− erf [a/d]))

whereerf [·] denotes the error function. The derivations and some of those in the
sequence were performed using the programMathematica. Clearly, for a fixed
scalea, the energy of the wavelet transform is proportional to the variance of the
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process. If a different autocorrelation function is used, e.g., of Gaussian type

ρ(r ) = exp[−πr 2/4d2] (13)

with varianceσ 2
f and power spectrum

Pf (k) = 1

π
σ 2

f d exp[−k2d2/π ], (14)

using the wavelet expressed through (2) and (3), it follows that

σ 2
W(a) = 〈[Wf (a, b)]2〉 = a1

2π

∫
RD

Pf (k) [ψ̂(ak)]2 dk

= 3π2σ 2
f

4

a5 d

(πa2+ d2)5/2
(15)

Again, for a fixed scalea, the energy of the wavelet transform is proportional
to the variance of the process. Even though this scaling was analytically shown
to hold for specific form of wavelets, straightforward numerical simulations show
the generality of the process, for fixed scalea.

Now, for the cases thatRf is locally stationary with spatial correlations, the
variance of the spatial derivative of the process is expressed as

σ 2
R f ′ = −

∂2
(
σ 2

R fσ (r )
)

∂r 2
(16)

Clearly, for locally stationary processRf the variance of its spatial derivative
R f ′ is proportional to the variance ofRf, and thus (m|R f ′|)2 is proportional to the
energy of the wavelet transform for each fixed scalea. This can be seen precisely
for Rf being Gaussian, where now its derivative is also Gaussian (with zero mean)
and the following holds (Vanmarcke, 1983, p. 156).

m|R f ′| =
√

2

π
σR f ′ (17)

Finally, note that, in general,

σ 2
f = σ 2

W g(a, d) (18)
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holds, where, for the case of (15)

g(a, d) ≈ (πa2+ d2)5/2

a5d
(19)

which is a function continuously decreasing witha. This implies that information
increases towards small scales. Thus, in a sense, the dominant scale or scales
identified by the wavelet analysis are the minimum scales for which information
from the entropy analysis is most useful. This point is presently being investigated
further and will be presented elsewhere.

CONCLUSIONS

Entropy analysis of boring data is capable of identifying subregions of sta-
tionarity, which can be treated with standard geostatistical methods. Its multiscale
nature provides rich data, yet a full—at all scales, from support to domain—entropy
may be overwhelming for use in drilling practice. Using wavelet analysis scales
containing the most useful information can be identified, thus the wavelet analysis
complements the entropy one nicely. This is demonstrated in the paper through
the interaction of the wavelet with the entropy analysis. The interaction at this
stage is not dynamic, since both analyses are performed independently and the
wavelet analysis sort of feeds information to the entropy one. The present study
is amenable to a dynamical interaction, the theoretical basis of which need to be
established.
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