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Indicator Pattern Combination for Mineral Resource
Potential Mapping With the General C-F Model1

Yong-Liang Chen2,3

As an uncertain reasoning model, the general C-F model was originally developed for processing the
uncertainties of rule-based knowledge in the field of artificial intelligence. In this model, certainty
factors and combined certainty factors are defined and used for expressing the strengths of knowledge
rules and knowledge rule combinations, respectively. The certainty factor can reflect the believable
degree of inferring hypothesis on the basis of a proof. Similarly, the combined certainty factor can reflect
the believable degree of inferring hypothesis on the basis of the proof combination. It is a function of
the related certainty factors and can be determined through combining the certainty factors via the
combining rule of the general C-F model. In this paper, the general C-F model has been successfully
applied to mineral resource potential mapping. We call this model as the applied form of the general
C-F model. In this applied form, the certainty factor is applied to expressing the believable degree of
inferring mineral occurrence on the basis of one of the map pattern states associated with the mineral
occurrence. Correspondingly, the combined certainty factor is applied to expressing the believable
degree of inferring the mineral occurrence on the basis of the map pattern state association. And it is
also applied to expressing mineral resource potentials in the mineral resource potential mapping. In
the current form, the first step in implementing the general C-F model is to estimate a pair of certainty
factors for each map pattern under combination. The next step is to determine the combined certainty
factor for the map pattern states coexisting in each locality of the mapping area. The last step is to
generate the combined-certainty-factor raster map or the combined-certainty-factor contour map in
order to select mineral resource targets. The applied form of the general C-F model is demonstrated
on a case study to select mineral resource targets. The experimental results manifest that the model
can be compared with the weights-of-evidence model in the effectiveness of mineral resource target
selection.
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INTRODUCTION

GISs, served as a kind of high new technological tools, have been widely ap-
plied to geo-data management, digital geological mapping, mineral exploration,
and mineral resource assessment. During the last decade, many researchers have
been developing applied GIS-technologies and polygenetic geo-data digital mod-
els for geological applications of GISs. For example, the researchers from the
BGS have developed a standard digitized model of geo-map for supporting digital
geo-map production in the UK; some Australian researchers have been carry-
ing on the study of digitized geo-data standards since 1991 and have been sup-
ported by many mining organizations in Australia; and some Chinese researchers
have been developing GIS-based mineral prediction systems since 1995. To date,
the majority of geo-data, used for mineral resource assessment, have been dig-
itized. With the help of GIS-technologies, current mineral resource assessment
has become faster, timelier, and more accurate than ever before. But some prob-
lems, such as polygenetic geo-data representation, geo-feature extraction, and
geo-information synthesis, still need further investigation. In the author’s opin-
ion, developing statistical models, which can be easily implemented in practice
and conveniently realized in GISs, is much more significant to GIS-based min-
eral resource assessment. In the last three decades, many statistical models have
been introduced to quantify the relations between explanatory map patterns and
target feature(s) in order to implement mineral resource assessment, such as lo-
gistic regression model (Agterberg, 1974; Agterberg, 1989), weights-of-evidence
model (Agterberg, 1990; Agterberg, 1992; Agterberg, Bonham-Carter, and Wright,
1990), canonical favorability model (Pan, 1993a), indicator favorability model
(Pan, 1993b), and extended weights-of-evidence model (Pan, 1996). A common
characteristic of these models is to estimate a function, which best represents the
relations between explanatory variables and target variable(s). Some of the above-
mentioned models have been widely used in GIS-based mineral resource potential
mapping.

In this paper, a new model for mineral resource potential mapping is in-
troduced. The model is derived from the general C-F model (Liu, 2000; Wang,
2000; Wu and Liu, 1995) used in artificial intelligence. Different from the above-
mentioned statistical models, it estimates not a statistical function but the certainties
of associations between explanatory variables and target variable(s). The model is
based on the following fundamental thought.

In an area under study, there exist a series of binary map patterns associated
with binary mineral occurrence. The common way of mineral resource assessment
is to regard map patterns and mineral occurrence as explanatory variables and
target variable(s), respectively, and then estimate a statistical function to represent
associations between the two types of variables. We might express associations
between explanatory variables and target variable(s) by knowledge rules. In this
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consideration, we lay out a scheme for mineral resource potential mapping like
this: for each map pattern, we may regard its one state and the mineral occur-
rence as the evidence and hypothesis of a production rule, respectively, and the
certainty of association between them then can be measured by a certainty fac-
tor. Similarly, the certainty of association between the other state and the mineral
occurrence can be measured by another certainty factor. These two certainty fac-
tors can reflect the believable degrees of the inferring mineral occurrence on the
basis of each state of the map pattern, respectively. The association between a
map pattern group and the mineral occurrence may be regarded as the organic
combination of associations between each map pattern state constituting the map
pattern group and the mineral occurrence. And the certainty of the association can
be measured by a combined certainty factor, which is a function of all the cer-
tainty factors for the map pattern states constituting the map pattern group. This
combined certainty factor reflects the believable degree of inferring the mineral
occurrence on the basis of the map pattern group. So it can be served as a kind
of mineral resource potential indicators. If only the all certainty factors for the
all map pattern states constituting a map pattern group are known, the combining
rule used in the general C-F model can be applied to determining the combined
certainty factor for the map pattern group on the basis of the known certainty
factors.

In mineral resource assessment, the mineral resource potential indicator for
each locality in the mapping area needs to be estimated. Applying the general
C-F model to mineral resource potential mapping, we may, first, determine two
certainty factors for each map pattern under combination. The combined certainty
factor for the map pattern group existing in each locality in the mapping area then
can be determined on the basis of these certainty factors. Finally, a combined-
certainty-factor raster map or a combined-certainty-factor contour map can be
generated in GISs.

For each locality in the mapping area, we can determine the map pattern
group existing in the locality through overlapping all map layers associated with
the mineral occurrence in GISs. According to this map pattern group, we can choose
all of the certainty factors for the map pattern states constituting the map pattern
group, and then combine all these certainty factors into the combined certainty
factor for the map pattern group existing in the locality.

REVIEW ON THE GENERAL C-F MODEL

The general C-F model is the extended form of the C-F model. These two
models are derived from the theory of certainty factors, in which the uncertainties
of rule-based knowledge are measured by certainty factors. Both models have been
successfully applied to quantitative blood disease diagnosis.
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Representation of Uncertain Knowledge

In the theory of certainty factors, an uncertain knowledge can be expressed
by the following production rule:

If E then H with CF(H, E)

here,E and H are the evidence and hypothesis of the knowledge rule, respec-
tively. CF(H , E), called certainty factor or rule strength of the knowledge rule,
is the believable degree of inferring hypothesisH on the basis of evidenceE.
The evidenceE may be either simple evidence or a combination of some ev-
idences. The hypothesisH may be either a single hypothesis or a series of
hypotheses.

Definition of Certainty Factor

In the C-F model, the strength of a knowledge rule is defined as

CF(H, E) = MB(H, E)−MD(H, E)

here, CF(H , E) is the certainty factor expressing the rule strength of the above
production rule, MB(H , E) and MD(H , E) are called measure belief and measure
disbelief, respectively. MB(H , E) represents the belief increase of hypothesisH
when evidenceE is true; MD(H , E) represents the disbelief increase of hypothesis
H when evidenceE is true.

Let p(H ) andp(H | E) denote the prior probability and conditional probabil-
ity of hypothesisH , respectively. Then MB(H , E) and MD(H , E) can be defined
as follows:

MB(H, E) =
1, if p(H ) = 1

max{p(H |E), p(H )} − p(H )
1− p(H ) , otherwise

MD(H, E) =
1, if p(H ) = 0

min{p(H | E), p(H )} − p(H )
−p(H ) , otherwise

According to the above-mentioned definitions to the certainty factor, measure
belief, and measure disbelief, CF(H , E) can be expressed by
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CF(H, E) =


p(H | E)− p(H )

1− p(H ) if p(H, E) ≥ p(H )

p(H | E)− p(H )
p(H ) if p(H, E) < p(H )

(1)

This form of the certainty factor is used in the C-F model. The form used
in the general C-F model is an extended form of this certainty factor. It can be
expressed by

CF′(H, E) =


p(H | E)− p(H )

[1− p(H )] p(H | E) if p(H, E) ≥ p(H )

p(H | E)− p(H )
p(H )[1− p(H | E)] if p(H, E) < p(H )

(2)

The certainty factor CF′(H , E) can reflect the strength of association between
hypothesisH and evidenceE. Its range is [−1,+1]. When the certainty factor CF′

(H , E)>0, it indicates the evidenceE supporting the hypothesisH to a certain
believable degree; when the certainty factor CF′(H , E)<0, it indicates the evidence
E opposing the hypothesisH to a certain believable degree; when the certainty
factor CF′ (H , E) = 0, it indicates the evidenceE neither supporting nor opposing
the hypothesisH . For simplicity, CF′ (H , E) is still expressed as CF(H , E) in the
following paragraphs.

Combination of Certainty Factors

If there exist several evidences associated with one hypothesis, we may infer
the hypothesis on the basis of each of the evidences and determine the certainty
factor corresponding to each inference. When all the related certainty factors have
been estimated, the knowledge–uncertainty combining rule given in the general
C-F model will be applied to combining these certainty factors into a combined
certainty factor, which expresses the believable degree of inferring the hypothesis
on the basis of all the evidences associated with the hypothesis. The combining
rule used in the general C-F model is derived from the counterpart of the C-F
model. The following paragraphs will illustrate it:

Suppose that there existm evidences,E1,E2, . . . , Em, associated with the
same hypothesisH . Let us consider the case ofm= 2. If inferring hypothesisH
on the basis ofE1 andE2, we may establish the following production rule:

If E1 ∧ E2 then H with CF(H, E1 ∧ E2)

This production rule is a combination of the following two production rules:

If E1 then H with CF(H, E1)

If E2 then H with CF(H, E2)
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here, CF(H ,E1) and CF(H ,E2) can be calculated using Eq. (2). CF(H ,E1 ∧ E2)
is a combined certainty factor, which is a function of CF(H ,E1) and CF(H ,E2).
According to the knowledge uncertainty combining rule used in the general C-F
model, it can be expressed by

CF(H, E1 ∧ E2) =



CF(H, E1)+ CF(H, E2)− CF(H, E1)CF(H, E2),

if CF(H, E1) ≥ 0 and CF(H, E2) ≥ 0
CF(H, E1)+ CF(H, E2)

1−min(| CF(H, E1) |, | CF(H, E2) |) ,
if CF(H, E1) · CF(H, E2) < 0

CF(H, E1)+ CF(H, E2)+ CF(H, E1)CF(H, E2)

if CF(H, E1) < 0 and CF(H, E2) < 0

(3)

Similarly, we can establish a production rule as follows:

If E1 ∧ E2 ∧ . . . ∧ Em thenH with CF(H, E1 ∧ E2 ∧ . . . ∧ Em)

here, the combined certainty factor CF(H , E1 ∧ E2 ∧ . . . ∧ Em) is a function of
the following m certainty factors: CF(H ,E1), CF(H ,E2), . . . , and CF(H ,Em).
To determine it, we need to make similarm− 1 combinations. In each com-
bination, two (combined) certainty factors are combined into a combined cer-
tainty factor using Eq. (3). The whole combining procedure is like this: first,
CF(H , E1) and CF(H , E2) are combined into CF(H , E1 ∧ E2); and then CF(H ,
E1 ∧ E2) and CF(H , E3) are combined into CF(H , E1 ∧ E2 ∧ E3); . . . . . .; fi-
nally, CF(H , E1 ∧ E2 ∧ . . . ∧ Em−1) and CF(H , Em) are combined into CF(H ,
E1 ∧ E2 ∧ . . . ∧ Em).

APPLIED FORM OF THE GENERAL C-F MODEL

Suppose that we havemexplanatory binary map patterns to be integrated:Z j ,
j = 1, 2,. . ., m. Let Y be the binary target variable to be assessed in the mapping
area.Yusually is a mineral descriptor, e.g., mineral occurrence. The following
forms are common:

Z j (x) =
{

Z+j , if feature j is present at locationx

Z−j , otherwise

Y(x) =
{

Y+, if the target variable exists at locationx

Y−, if the target variable does not exist at locationx
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Obviously, map patternZ j has two states:Z+j andZ−j . So them binary map
patterns under combination have 2m map pattern states in all. In the mapping
area, all of these 2m map pattern states are associated with mineral occurrence
Y+. BecauseZ+j and Z−j cannot coexist in the same locality, there must coexist
m map pattern states in each locality in the mapping area. For one locality, we
need to infer mineral occurrenceY+ on the basis of them map pattern states
coexisting in the locality. The believable degree of this inference is measured by
a combined certainty factor, which can be determined through combining them
certainty factors to themmap pattern states coexisting in the locality. In this applied
form of the general C-F model, the combined certainty factor with respect to each
locality in the mapping area is defined as the mineral resource potential indicator
of the corresponding locality.

Certainty Factor Calculation

Consider map patternZ j ( j = 1, 2, . . .,m). According to the spatial distri-
bution of map patternZ j , the two types of subareas constitute the mapping area:
the first denotes those subareas where map patternZ j exists; the second indi-
cates those subareas where map patternZ j is absent or unvalued. As the two
states of map patternZ j ,Z

+
j and Z−j , appear in the above two types of sub-

areas, respectively. In the first type of subareas, we can infer mineral occur-
renceY+ on the basis of map pattern stateZ+j ; similarly, in the second type
of subareas, we can infer mineral occurrenceY+ on the basis of map pattern
stateZ−j . The believable degrees of these two inferences can be measured by two
certainty factors, which can be calculated using Eq. (2). ReplacingE and H in
Eq. (2) with Z j andY+, respectively, we can obtain the following applied form
of Eq. (2):

CF(Y+, Z j ) =


p(Y+ | Z j )− p(Y+)

[1− p(Y+)] p(Y+ | Z j )
if p(Y+ | Z j ) ≥ p(Y+)

p(Y+ | Z j )− p(Y+)
p(Y+)[1− p(Y+ | Z j )]

if p(Y+ | Z j ) < p(Y+)
(4)

( j = 1, 2, . . . ,m)

here, CF(Y+, Z j ) is a certainty factor;p(Y+) andp(Y+ | Z j ) are the prior probabil-
ity and conditional probability of mineral occurrenceY+, respectively. In Eq. (4),
Z j may be equal toZ+j with respect to the first type of subareas orZ−j with respect to
the second type of subareas. Therefore, conditional probabilityp(Y+ | Z j ) can be
written more explicitly asp(Y+ | Z+j ) for the first type of subareas orp(Y+ | Z−j )
for the second type of subareas, and the corresponding certainty factor CF(Y+,
Z j ) can be written more explicitly as CF(Y+, Z+j ) or CF(Y+, Z−j ).
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In practice,p(Y+), p(Y+ | Z+j ), andp(Y+ | Z−j ) can be estimated from the
samples of the studied area. Substituting expressionsp(Y+) and p(Y+ | Z+j )
into Eq. (4), we can obtain one certainty factor CF(Y+, Z+j ); and substituting
expressionsp(Y+) and p(Y+ | Z−j ) into Eq. (4), we can obtain another certainty
factor CF(Y+, Z−j ). Likewise, each pair of certainty factors for each of them map
patterns under combination can be obtained.

Generation of the Combined Certainty Factor Raster Map

Consider the case form= 2. Not losing generality, we might consider two
map patternsZ j and Zk ( j 6= k, j , k = 1, 2,. . ., m). In this case, four types of
subareas constitute the studied area. These four types of subareas sequentially
correspond to the four types of map pattern state combinations:Z+j ∧ Z+k , Z+j ∧
Z−k , Z−j ∧ Z+k , and Z−j ∧ Z−k . In each of these four types of subareas, we can
infer mineral occurrenceY+ on the basis of the corresponding map pattern state
combination. The believable degrees of these four inferences can be measured
respectively by the four combined certainty factors, CF(Y+, Z+j ∧ Z+k ), CF(Y+,
Z+j ∧ Z−k ), CF(Y+, Z−j ∧ Z+k ), and CF(Y+, Z−j ∧ Z−k ).

The combined certainty factor to a two-map-pattern-state combination can
be determined by combining the two certainty factors to the two combined map
pattern states via the combining rule expressed in Eq. (3). ReplacingE1,E2, and
H in Eq. (3) with Z j ,Zk, andY+, respectively, we can transform Eq. (3) into the
following applied form:

CF(Y+, Z∧j Zk) =



CF(Y+, Z j )+ CF(Y+, Zk)− CF(Y+, Z j )CF(Y+, Zk),
if CF(Y+, Z j ) ≥ 0 and CF(Y+, Zk) ≥ 0

CF(Y+, Z j )+ CF(Y+, Zk)
1−min(| CF(Y+, Z j ) |, | CF(Y+, Zk) |) ,

if CF(Y+, Z j ) • CF(Y+, Zk) < 0

CF(Y+, Z j )+ CF(Y+, Zk)+ CF(Y+, Z j )CF(Y+, Zk)
if CF(Y+, Z j ) < 0 and CF(Y+, Zk) < 0

(5)

( j 6= k; j, k = 1, 2, . . . ,m)

here, CF(Y+, Z j ∧ Zk) is a combined certainty factor; CF(Y+, Z j ) and CF(Y+,Zk)
are the two certainty factors to the two map pattern states under combination.
In Eq. (5), Z j may be equal toZ+j or Z+j , and Zk may be equal toZ+k or Z+k .
Therefore, CF(Y+, Z j ) can be written more explicitly as CF(Y+, Z+j ) or CF(Y+,
Z−j ); CF(Y+, Zk) can be written more explicitly as CF(Y+, Z+k ) or CF(Y+, Z+k );
and the corresponding combined certainty factor CF(Y+, Z j ∧ Zk) can be written
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more explicitly as CF(Y+, Z+j ∧ Z+k ), CF(Y+, Z+j ∧ Z−k ), CF(Y+, Z−j ∧ Z+k ), or
CF(Y+, Z−j ∧ Z−k ). These four combined certainty factors correspond to the four
types of map pattern state combinations, respectively.

When there existm map patterns under combination, theoretically, 2m possi-
ble types of subareas may constitute the studied area. Our task is to determine the
combined certainty factor for each type of subareas on the basis of them certainty
factors to them map pattern states coexisting in each type of subaresas. In most
cases, this is not easy because it is difficult to determine the boundaries and areas of
each type of subareas. However, the following two-step procedure for calculating
all combined certainty factors is practical and effective:

a. Divide the map area into small regular-grid cells, whose size is sufficiently
small so that one cell usually contains only one mineral deposit. The prior
probability andm pairs of conditional probabilities of mineral occurrence
Y+ can be estimated from this cell set and thenm pairs of certainty factors
can be calculated using Eq. (4).

b. Determine the map pattern states coexisting in the first grid cell, and then
combine them certainty factors for thesem map pattern states into a
combined certainty factor using Eq. (5). Do the same with all the other
grid cells; finally the combined certainty factor for each grid cell can be
obtained.

The above two-step procedure can effectively avoid determining the bound-
aries and areas of polygons, which are generated by combining all map patterns
associated with the mineral occurrence. What’s more, it can generate the grid cells,
which constitute the sample set used for the estimation of the prior probability and
conditional probabilities of the mineral occurrence.

Estimation of the Prior Probability and Conditional Probabilities

Suppose that there aren small-grid cells in the mapping area, and that among
themn(Y+) cells contain mineral deposits. Then the prior probability of mineral
occurrenceY+ can be estimated by

p(Y+) = n(Y+)

n
(6)

Form a two-way contingency table forZ j ( j = 1, 2,. . ., m) andY. The ele-
ments in the table are the frequencies of joint occurrence for different state com-
binations ofZ j ( j = 1, 2,. . ., m) andY (Zhou and Xia, 1993). The conditional
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probabilities of mineral occurrenceY+ can then be estimated:

p(Y+ | Z+j ) = n(Z+j Y+)

n(Z+j )
j = 1, 2, . . . ,m (7a)

p(Y+ | Z−j ) = n(Z−j Y+)

n(Z−j )
j = 1, 2, . . . ,m (7b)

here,n(Z+j Y+) is the frequencies thatZ+j andY+ occur concurrently;n(Z−j Y+) is
the frequencies thatZ−j andY+ occur concurrently;n(Z+j ) is the frequencies that
Z+j occurs; andn(Z−j ) is the frequencies thatZ−j occurs.

CASE STUDY

A case study is given in this section to demonstrate the use of the applied
form of the general C-F model described above. The method was applied to a
Pb–Zn polymetallographic province in northern Xinjiang Uygur Autonomous Re-
gion, China. In this metallographic province, several dozens of Pb–Zn polymetallic
deposits have been found. In order to delineate Pb–Zn polymetallic potential tar-
gets for the further mineral exploration in this metallographic province, both the
weights-of-evidence model and the applied form of the general C-F model are ap-
plied to the Pb–Zn polymetallic potential target selection. The two mineral resource
potential maps generated by the two models are compared with each other.

The Regional Ore-Controlling Factors

In the studied area, regional ore-controlling factors mainly include basement
complexes, intrusive rocks, the Devonian system, the Carboniferous system, re-
gional structures, geochemical anomalies, and regional mineralized rocks.

The basement complexes, inferred on the basis of the magnetic and grav-
itational data, are widely distributed in the studied area. In the depth, they are
continuously distributed; but on the surface, they are locally distributed here and
there because other geological bodies cover on them. They control the distri-
butions of both those geological bodies and most Pb–Zn polymetallic deposit
clusters. They provide good metallogenetic surroundings for the regional Pb–Zn
poly-metallization in the studied area.

Intrusive rocks are widely distributed in the studied area. They control the dis-
tribution of the most known Pb–Zn polymetallic deposits. Some of them constitute
the ore-forming host rocks and provide much mineral substance for the Pb–Zn poly-
metallization. The others are not obviously related to the Pb–Zn poly-metallization,
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but they may provide thermal energy that can accelerate the migration of mineral-
izing elements because most geochemical anomalies are distributed around them.
According to the statistical data, intersections between intrusive rocks and regional
structures are usually the most favorable localities for the Pb–Zn poly-metallization
in the studied area.

The Devonian system is distributed in the Paleozoic volcanic–sedimentary
basins. The rocks of the Devonian period can be classified into two types: one is
sedimentary rock and the other is volcanic sedimentary rock. The former is little
related to Pb–Zn poly-metallization, but the latter is closely related to the Pb–Zn
poly-metallization. Some of the volcanic sedimentary rocks are the adjacent rocks
of Pb–Zn polymetallic deposits. They can be served as the indicative stratum for
the Pb–Zn polymetallic deposit prospecting in the studied area.

Compared to the Devonian system, the distribution of the Carboniferous sys-
tem is more limited. The rocks of the Carboniferous period are mainly sedimentary
rocks, which are somewhat related to regional Pb–Zn poly-metallization. They con-
trol the distribution of some small Pb–Zn polymetallic deposits in the studied area.

Regional structures are widely distributed in the studied area. They control the
distribution of most geological bodies, especially intrusive bodies. Some of them
directly control the distribution of Pb–Zn polymetallic deposits. They provide good
tectonic surroundings for regional Pb–Zn poly-metallization.

Geochemical anomalies are widely distributed in the studied area. Anomalous
elements mainly include Au, Ag, Cu, Pb, and Zn. The geochemical anomalies
of these elements usually constitute the anomalous ring surrounding some large
intrusive bodies. They can directly reflect the regional Pb–Zn poly-metallization
around the intrusive bodies. Nearly all the known Pb–Zn polymetallic deposits are
located in the geochemical anomalies in the studied area.

Besides the above-mentioned ore-controlling factors, mineralized rock is also
an important regional ore-controlling factor in the studied area. They are widely
distributed along the margins of large intrusive bodies in the studied area. It reflects
that Pb–Zn poly-metallization is closely related to regional magmatism.

Map Pattern Preparation

On the basis of the above-mentioned regional ore-controlling factors, the
following map patterns for Pb–Zn polymetallic target selection are predrawn in
MapInfo platform:

a. The distributive map of the minimum river basins with gold anomalies
(Fig. 1);

b. The distributive map of the minimum river basins with silver anomalies
(Fig. 2);

c. The distributive map of the minimum river basins with copper anomalies
(Fig. 3);
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Figure 1. The distributive map of the minimum river
basins with gold anomalies.

d. The distributive map of the minimum river basins with lead anomalies
(Fig. 4);

e. The distributive map of the minimum river basins with zinc anomalies
(Fig. 5);

f. The distributive map of regional Pb–Zn poly-metallization (Fig. 6);
g. The distributive map of regional linear structures (Fig. 7);
h. The distributive map of regional granites (Fig. 8);
i. The distributive map of regional diorites (Fig. 9);
j. The distributive map of the early Devonian system (Fig. 10);
k. The distributive map of the middle Devonian system (Fig. 11);
l. The distributive map of the early Carboniferous system (Fig. 12);

m. The distributive map of the known Pb–Zn polymetallic deposits (Fig. 13).

Besides the above map patterns (layers), a special map layer called statis-
tical unit map layer should be generated in the GIS. It can be formed through

Figure 2. The distributive map of the minimum river
basins with silver anomalies.
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Figure 3. The distributive map of the minimum river
basins with copper anomalies.

Figure 4. The distributive map of the minimum river
basins with lead anomalies.

Figure 5. The distributive map of the minimum river
basins with zinc anomalies.
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Figure 6. The distributive map of regional Pb–Zn
poly-metallization.

Figure 7. The distributive map of regional linear
structures.

Figure 8. The distributive map of regional granites.
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Figure 9. The distributive map of regional diorites.

Figure 10. The distributive map of the early Devonian
system.

Figure 11. The distributive map of the middle
Devonian system.
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Figure 12. The distributive map of the early
Carboniferous system.

automatically generating a certain number of small grid cells in the GIS. In this
case study, 3800 small grid cells are generated. They are distributed in 50 scan-
ning lines, and 76 small grid cells are located in each scanning line. The grid-cell
(statistical unit) distributive map of the studied area is shown in Figure 14.

Attributive Table Construction and Certainty Factor Calculation

The attributive table of the statistical unit map layer can be generated as
follows. First, we may define an attributive table with one column, in which grid
cell numbers are saved. Then, one column is added into the table and the statistical
unit map layer is overlapped with the mineral deposit map layer; the result for this
overlapping is saved in the increased column. Next, 12 columns are added into
the table and the statistical unit map layer is overlapped with each explanatory
map layer sequentially; the result for each overlapping is saved in each of the

Figure 13. The distributive map of the known Pb–Zn
polymetallic deposits.
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Figure 14. The distributive map of the grid cells
generated in MapInfo.

12 increased columns. In this case study, the number of grid cells is 3800, so an
attributive table with 3800 records and 14 columns is generated in the GIS.

In order to express the spatial distributive information of the map patterns
under combination in the attributive table, value 1 or 0 needs to designate the cor-
responding column of the attributive table. The method for this value designation
is as follows. The statistical unit map layer is overlapped with the mineral deposit
map layer. For each grid cell, if there exists any known Pb–Zn polymetallic de-
posit in it, the second column of the corresponding record of the attributive table is
valued by 1, otherwise by 0. Similarly, the statistical unit map layer is overlapped
with each explanatory map layer. For each grid cell, if its center is located in one
entity of the overlapped map layer, the corresponding column of the corresponding
record of the attributive table is valued by 1, otherwise by 0.

According to the data in the attributive table, we can calculate both the prior
probability of mineral occurrenceY+ using Eq. (6) and the conditional probabilities
of mineral occurrenceY+ using Eqs. (7a) or (7b). Then the certainty factor for
each map pattern state can be calculated via Eq. (4). Similarly, the two weights,
W+j andW−j , can be calculated on the basis of the prior probability and conditional
probabilities of mineral occurrencesY+ andY−. Both the two weights and two
certainty factors for each map pattern are listed in Table 1.

Certainty Factor Combination and Mineral Target Selection

One grid cell in the statistical unit map layer corresponds to one record of the
attributive table. According to the values of each record of the attributive table, we
can determine the map pattern states coexisting in the corresponding grid cell, and
then using Eq. (5) we can combine all of the certainty factors for these map pattern
states into a combined certainty factor, which is served as the mineral resource
potential indicator of the grid cell. Such being the case, the combined certainty
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Table 1. Estimated Two Certainty Factors and Two Weights for Each Map Pattern

Regional ore-controlling factors CF+ CF− W+ W−

Gold anomaly river basin 0.736747 −0.489215 1.334639 −0.671806
Silver anomaly river basin 0.902568 −0.283089 2.328602 −0.332804
Copper anomaly river basin 0.761901 −0.369514 1.435069 −0.461264
Lead anomaly river basin 0.749863 −0.493625 1.385745 −0.680478
Zinc anomaly river basin 0.813662 −0.384954 1.680191 −0.486058
Regional poly-metallization 0.707705 −0.129671 1.229990 −0.138884
Regional linear structure 0.657635 −0.297144 1.071879 −0.352603
Regional granite −0.219870 2.684166E-02−0.248295 2.720848E-02
Regional diorite −0.646844 8.325511E-02−1.040846 8.692604E-02
The early Devonian system −1.000000 7.678051E-03 0.000000 0.000000
The middle Devonian system 0.713794 −0.772237 1.251044 −1.479448
The middle Carbonic System 0.354514−1.585873E-02 0.437752−1.598582E-02

factor for every grid cell in the statistical unit map layer can be determined. When
the combined certainty factors for all the grid cells in the statistical unit map layer
have been determined, a combined-certainty-factor raster map can be generated,
and the corresponding combined-certainty-factor contour map can be drawn. For
this case study, the combined-certainty-factor contour map of the studied area
is shown in Figure 15, and the ore-forming posterior probability contour map is
shown in Figure 16. In these two contour maps, the corridors between each pair
of adjacent contour lines are filed with different black colors from gray–white to
absolutely black. The corridors with bigger combined certainty factors are filled
with relatively black colors, so those subareas with the absolutely black color in
the two contour maps are the most favorite target areas for Pb–Zn polymetallic

Figure 15. Combined-certainty-factor contour map. (The
small lighty shaded circles within the dark areas are not de-
posits but the grid cells with comparitively lower combined
certainty factor values)
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Figure 16. Ore-forming posterior probability contour
map. (The small lighty shaded circles within the dark ar-
eas are not deposits but the grid cells with comparitively
lower posterior values).

deposit prospecting. From these two contour maps, we can obtain the following
results:

• The contour lines in these two maps have similar shapes. And the sub-
areas with the absolutely black color in one contour map correspond to the
counterparts in the other map.
• Both of the two contour maps can show that there exist several subareas

with relatively black colors in the northeastern corner of the studied area. To
date, Pb–Zn polymetallic deposits have not been found in these subareas,
so these subareas are selected as Pb–Zn polymetallic potential targets. In
future mineral prospecting, we should pay more attention to these subareas.
• Imposing the known mineral deposit map layer onto the two contour maps,

we can see that nearly all of the known Pb–Zn polymetallic deposits in
the studied area are located in the subareas with relatively black colors.
Therefore, the two statistical models established in the studied area are
reasonable and the Pb–Zn polymetallic potential targets selected by the
two models are believable.

CONCLUSION

In GIS-based mineral resource potential mapping, the common practice is
to estimate a statistical function for representing the relation between explana-
tory map patterns and target feature(s). Before applying this function, it is usually
needed to test the believable degree of the function in order to determine whether
the function is significant or not. For example, a statistical test must be done
before applying a regression equation to prediction. Besides this, some statisti-
cal models require explanatory variables satisfying certain statistical distribution.
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For example, the majority of multivariate analysis methods, such as the cluster
analysis, the discriminant analysis, and the factor analysis, require explanatory
variables satisfying normal distribution, and both the weights-of-evidence model
and the extended weights-of-evidence model require explanatory map patterns
satisfying conditional independence. Therefore, before applying statistical mod-
els to mineral resource potential mapping, we must carry on some preprocessing
work, such as statistical tests, considering application limitations of the method.
But the new method described in this paper requires no restriction to explana-
tory map patterns and needs no statistical test before application. Applying this
new model, we directly estimate the certainties of associations between explana-
tory map patterns and the mineral occurrence instead of estimating a statistical
function. Compared with other statistical models, this new model can effectively
decrease the preprocessing workload.

Compared with the weights-of-evidence model, this new model has the fol-
lowing similar characteristics:

The two certainty factors, CF+j and CF−j , defined in the new model are much
similar to the two weights,W+j andW−j , defined in the weights-of-evidence model.
From Table 1, we can see that the two certainty factors, CF+

j and CF−j , can be
compared with the two weights,W+j andW−j , respectively. If the positive weight
W+j is not equal to zero, CF+j andW+j always have the same sign; similarly, if the
negative weightW−j is not equal to zero, CF−j andW−j always have the same sign.

The strength of association between an explanatory map pattern and the target
variable can be measured by the contrast:

CCj = CF+j − CF−j (8)

Large contrast values imply strong associations betweenZ j andY; small con-
trast values indicate the opposite. CCj can be positive or negative, which in-
dicates positive or negative associations betweenZ j and Y, respectively. CF+j
and CF−j always take opposite signs. If CF+j is positive, the association between
Z j and Y is positive, andvice versa. The contrast CCj defined here is sim-
ilar to the contrast Cj defined by Agertberg, Bonham-Carter, and Wright
(1990).

Estimating the two certainty factors for each map pattern is much similar to
calculating the two weights defined in the weights-of-evidence model. Like the two
weights,W+j andW−j , the two certainty factors, CF+j and CF−j , are the functions
of the prior probability and conditional probabilities of the mineral occurrence.
Therefore, physical significances of CF+j and CF−j can be compared with the
counterparts ofW+j andW−j , respectively.

Determining the combined certainty factors is a key step in implementing
the new model described here. However, it is totally different from calculating the
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log posterior odds defined in the weights-of-evidence model. It is a step-by-step
procedure, during which we need repeatedly use the combining rule given in the
general C-F model to combine two (combined) certainty factors until all certainty
factors under combination have been combined.

From the case study, we can see that the general C-F model and the weights-
of-evidence model can be compared with each other in the effectiveness of mineral
resource target selection.
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