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Abstract

Numerous hydrologic designs require seasonal discharge estimates. Given the seasonal variation in the distribution of

rainfall, significant differences can exist between the annual maximum and seasonal maximum T-yr return period discharges.

Recommendations for making seasonal flood frequency analyses for gauged and ungauged locations are presented. When

performing a seasonal frequency analysis of gauged data, missing discharge data will generally be a problem. Two potential

solutions to the problem of incomplete records are introduced. First, a maximum likelihood approximation that replaces missing

discharges below a threshold is developed and tested. Results of simulations indicate that it is more accurate than the method

demonstrated in Bulletin 17B. Second, the ratio of the measured instantaneous to mean daily discharge is regionalized. This

provides a method of replacing missing, below threshold, discharges. The ratio of measured instantaneous discharges above a

threshold and the corresponding mean daily discharges can be used for predicting missing instantaneous discharges in seasonal

records. Once regionalized, the method can be used for developing seasonal frequency curves at ungauged locations with either

the USGS regression equations or a rainfall-runoff model. The Eastern Coastal Plain data are used to demonstrate the

development of regional index ratios.
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1. Introduction

Many hydrologic design problems are based on the

analysis of annual maximum flood (AMF) series; for

example, they are used for establishing the boundaries

of the T-yr floodplain and evaluating the effects of

instream encroachments. It may not be appropriate to

use an AMF analysis for other types of hydrologic

design problems, such as cases where the instream

activity is of short duration or the event occurs at

a specific time of year. For example, the design of a

small coffer dam that will be in place for only a couple

of months may be over-designed if the design flood is

based on the AMF analysis, especially if the period in

which the coffer dam is in place is during a drier season

of the year. If T-yr flood discharges are needed for the

growing season or a period of fish spawning, they

should be estimated from a seasonal flow frequency

analysis rather than an annual maximum flow fre-

quency analysis. For cases where a seasonal frequency

analysis is appropriate, the use of an AMF analysis may

cause a design bias, reduce the accuracy of the design,

and unnecessarily increase the cost of the project.
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The issue of seasonal flood frequency analysis was

identified as early as 1951 (Creager et al., 1951).

Most gauged records include all instantaneous

maximum discharges above a threshold. Unfor-

tunately, seasonal flood records are often incomplete

in that for many years of the gauged record the largest

seasonal flow was below the threshold. If a seasonal

flow record includes values for every year of the

duration of gauging, then the data could be analyzed

using a standard log-Pearson III analysis (IACWD,

1982). A complete seasonal record is unlikely to be the

norm unless the season represents a major portion of

the year and includes the wet season. Where the

seasonal instantaneous maximum flood record is

incomplete, estimation of seasonal T-yr discharges

requires either filling in the missing values or a method

of analysis other than a univariate frequency analysis.

Bulletin 17B (B17B) (IACWD, 1982), which is

still the standard procedure for frequency analysis in

the US, presents a method for handling incomplete

flood records, which is referred to as the conditional

probability adjustment. This is based on a procedure

by Jennings and Benson (1969). The analysis involves

graphing the fitted population curve not with the

probabilities based on the LP3 deviate table but with

probabilities adjusted by the ratio of the number of

measured flows available to the length of gauging

record. The 2-, 10-, and 100-yr flows estimated from

the adjusted graph are then used to compute synthetic

estimates of the population moments from which the

final frequency curve is computed.

In addition to the B17B method, other methods

have been proposed. Aron and Rachford (1974)

provide methods for replacing the missing values

including adjusting the ranks of the measured series,

generating missing values using regression with

another gauging station, and a rank-matching method

with another series. Hershfield and Wilson (1960)

discussed the problem for rainfall depths, and Waylan

and Woo (1982) examined the problem of floods of

mixed-process origin. These proposals do not address

the issue of estimates at ungauged locations.

Seasonal flow frequency curves are more frequently

needed at ungaged locations. Existing procedures, both

T-yr peak discharge regression equations and design

storm rainfall-runoff models, are intended to yield T-yr

annual maximum peak discharges or hydrographs, not

seasonal estimates. Regression equations are generally

calibrated from annual maximum peak discharges

and the intensity–duration–frequency curves used to

obtain the rainfall depth for the hydrograph methods

are based on annual maximum rainfalls. Therefore,

neither can be used directly to obtain seasonal flow

frequency discharges.

Two problems have been identified. First, in order

to develop seasonal flow frequency estimates at

gauged sites, a method for analyzing incomplete

flow records must be adopted. Second, since seasonal

flow frequency discharges are often needed at

ungauged sites, a method is necessary for adjusting

annual maximum discharge estimates into seasonal

estimates. These two issues are addressed by this work.

2. Moment estimation from incomplete records

Records of measured maximum discharges often

include only those values above a threshold, where the

threshold is low enough to include every annual

maximum; however, the threshold is not usually low

enough to enable a complete maximum discharge

record to be compiled for each season. This would be

the case especially where the rainfall distribution

across seasons is characterized by high variation, with

some seasons being much below average and some

much above average. If seasonal maximum discharge

records are incomplete, it is not possible to use sample

moments computed from the available data as estimates

of the population moments. Thus, a method of obtaining

estimates of the population moments from incomplete

records is needed. A procedure will be developed using

maximum likelihood estimation (Benjamin and

Cornell, 1970; McCuen and Snyder, 1986).

The objective is to derive expressions for estimat-

ing the population parameters of a normal distribution

given an incomplete record. The record length H

consists of N measured values above the threshold and

M unmeasured values below the threshold discharge

X0; i.e. H ¼ N þ M: The assumption of normality is

made to make the calculations tractable; however, the

results can be applied to the logarithms of the data to

reflect a log-normal analysis.

The aim of the analysis is to provide estimates of

the location m and scale s parameters of the normal

distribution from an incomplete record. Similar

analyses, but with respect to historic and paleoflood
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information, were made by Stedinger and Cohn

(1986) and Cohn et al. (1997). If we denote the

discharges above the threshold as X and below the

threshold as W ; the following likelihood function can

be formulated for the stated conditions:

Lðm;slX1;X2;…;XN ;W1;W2;…;WMÞ

¼
YN
i¼2

f ½ðXilX .X0Þlm;s�
YM
j¼1

f ½ðWjlW ,X0Þlm;s�

ð1Þ

Eq. (1) gives the likelihood of parameters m and s

given that sampling has yielded N systematic values

Xi above the threshold and M unmeasured values Wj

below the threshold. The first product gives the

likelihood of getting the sample values Xi given

population parameters m and s: The second product

gives the likelihood of experiencing M flows Wj that

are below the threshold.

The conditional probabilities of Eq. (1) can be

reformulated by explicitly defining the sample spaces.

Simplifying the likelihood function on the left-hand

side of Eq. (1) to L; Eq. (1) becomes:

L ¼
YN
i¼1

f ðXilm;sÞð1

X0

f ðX . X0lm;sÞdx

�
YM
j¼1

f ðWjlm;sÞðX0

21
f ðW , X0lm;sÞdw

ð2Þ

Inserting the normal density function into Eq. (2)

gives:

L ¼

1

s
ffiffiffiffi
2p

p exp 2
1

2

Xi 2 m

s

� �2
" #

ð1

X0

f ðX . X0lm;sÞdx

8>>><
>>>:

9>>>=
>>>;

N

�

1

s
ffiffiffiffi
2p

p exp 2
1

2

Wj 2 m

s

� �2
" #

ðX0

21
f ðW , X0lm;sÞdw

8>>><
>>>:

9>>>=
>>>;

M

ð3Þ

The integrals in the denominator of Eq. (3) can be

expressed in terms of the cumulative normal distri-

bution Fð Þ :

The maximum of a likelihood function occurs for

the same population parameters as the maximum of

the logarithm of the likelihood function. The natural

logarithm of Eq. (4) is:

ln L ¼ 2H ln s2 H ln
ffiffiffiffi
2p

p
2

1

2s2

�
XN

ðXi 2 mÞ2 þ
XM

ðWj 2 mÞ2

" #

2 N ln½1 2 FðX0Þ�2 M ln½FðX0Þ� ð5Þ

Taking the derivatives of Eq. (5) with respect to

the unknowns m and s and setting them to zero

yields:

›ðln LÞ

›m
¼ 0 ¼

1

s2

XN
ðXi 2 mÞ þ

XM
ðWj 2 mÞ

" #

þ
›FðX0Þ

›m

N

1 2 FðX0Þ
2

M

FðX0Þ

� �
ð6aÞ

›ðln LÞ

›s
¼ 0

¼
2H

s
þ

1

s3

XN
ðXi 2mÞ2 þ

XM
ðWj 2mÞ2

" #

þ
›FðX0Þ

›s

N

12FðX0Þ
2

M

FðX0Þ

� �
ð6bÞ

Assuming that the threshold X0 is small relative to

the mean, i.e. X0 is in the tail of the distribution, the

derivatives of Eqs. (6a) and (6b) should be small. This

was confirmed by calculation. Thus, the last terms of

Eqs. (6a) and (6b) are small relative to the first terms of

Eqs. (6a) and (6b), with calculations suggesting that

the values of the derivative terms being less than 3% of

the sum of the other terms.

Under the assumption that it is reasonable to drop

the terms of Eqs. (6a) and (6b) that include

L ¼

1

s
ffiffiffiffi
2p

p

� �H

exp 2
1

2

XN

i¼1

Xi 2 m

s

� �2
" #

exp 2
1

2

XM

j¼1

Wj 2 m

s

� �2
" #( )

½1 2 FðX0Þ�
N½FðX0Þ�

M
ð4Þ
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the derivatives, the equations reduce to:

0¼
XN

ðX2mÞþ
XM

ðW2mÞ¼
XN

Xþ
XM

W2Hm ð7aÞ

and

0¼2Hþ
1

s2

XN
ðX2mÞ2þ

XM
ðW2mÞ2

" #
ð7bÞ

Solving Eq. (7a) for m and Eq. (7b) for the variance s2

yields

m¼
1

H

XN
Xþ

X
W

 !
ð8aÞ

and

s2¼
1

H

XN
ðX2mÞþ

XM
ðW2mÞ2

" #
ð8bÞ

The obvious problem with Eqs. (8a) and (8b) is that

they depend on the unmeasured values below the

threshold X0; which are not part of the flood record.

To obtain the best estimators of the parameters m

and s; Eqs. (8a) and (8b) suggest several options, as

follows: (1) ignore the summations that include W and

use H for computing m and H 2 1 for computing s2;

(2) ignore the summations that include W ; but use N in

place of H since the summations with X involve N

values; and (3) replace the values of W with

the threshold value X0 and use Eqs. (8a) and (8b). A

fourth option is to use the B17B method (IACWD,

1982) for incomplete records, which is referred to as

the conditional probability adjustment.

A second problem with the maximum likelihood

analysis (MLA) presented is that it is based on the

normal distribution, which has zero skew. Since the

non-zero skew Pearson III distribution is commonly

used for flood frequency analyses, the above analysis

would not provide an estimate of the standardized

skew coefficient. The concepts suggested by Eqs. (8a)

and (8b) would suggest that the following could be

used to estimate the population skew coefficient g :

g ¼

H
XN

ðX 2 mÞ3 þ
XM

ðW 2 mÞ3

 !

ðH 2 1ÞðH 2 2ÞS3
ð9Þ

The three options expressed above for estimating m

and s2 can be applied to the estimator of Eq. (9).

2.1. Simulation of seasonal flow records

To evaluate the three options for estimating the

three moments for incomplete seasonal flood records,

a Monte Carlo simulation experiment was used to

evaluate the bias and accuracy of the estimators. Both

estimators are expressed in relative terms, with the

bias expressed as a fraction of the mean and the

standard error expressed as a fraction of the standard

deviation.

A Monte Carlo evaluation was made in which

50,000 log-Pearson III samples were generated and

average values of the evaluation criteria computed.

The experiments were repeated for different sample

sizes (10, 25, and 50), different coefficients of

variation (0.1, 0.2, 0.3), different threshold prob-

abilities (5, 10, and 20%), and different skews

(20.5, 0.0, 0.5). The skew of the population did not

influence the results. Table 1 provides some typical

results for selected combinations. Of the three

options, method 3 consistently had the smallest

relative biases and relative standard errors. The

coefficient of variation had very little effect on the

accuracy, possibly because of the log transformation.

The statistics did not change significantly as the

record length was changed, although the standard

error decreased, as expected, as the record length

increased. As the threshold probability increased,

which would reflect the condition of a greater

number of missing discharges, both the bias and

standard error tended to increase, as would be

expected because the estimates would be based on

fewer measured discharge values (i.e. the N values

of X). The standard errors for the skew coefficient

suggest that Eq. (9) provides a good approximation

even through it is extrapolated from the results of a

zero-skew, normal distribution maximum likelihood

approximation (MLA).

2.2. Incomplete record adjustment: Bulletin 17B

The method developed using a maximum like-

lihood analysis yields estimates of the population

moments without the necessity of graphing the data

or assigning probability plotting positions to the

data. B17B provides an alternative procedure for

incomplete record analysis. It differs from the

maximum likelihood approximation presented herein
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in that it is a graphical method and that it uses an

adjustment of the probability scale. The specific

steps in making the B17B incomplete record

analysis (note: the notation used here differs from

the B17B notation) are:

1. Given N measured flows Xi above the threshold

X0 from a period of record of H years, compute

values for the log-Pearson III frequency curve

using the standard equation:

log Q ¼ Q þ KiSq ð10Þ

in which Q and Sq are mean and standard

deviation of the logarithms of the Xi values,

respectively; and Ki is the LP3 deviate value for

exceedence probability pi and station skew g:

2. Compute the adjustment ratio R ¼ N=H:

3. Multiply the probabilities pi of step 1 by the ratio

R of step 2; denote the adjusted probabilities as

Pi: (Note: this adjustment is made to the

probabilities associated with the LP3 deviates,

not the plotting position probabilities.)

4. Plot the discharges of Eq. (10) versus the

adjusted probabilities Pi of step 3 and draw the

frequency curve to fit the Pi vs. log Xi values.

5. Using the curve of step 4, obtain estimates of the

2-yr ðQ2Þ; 10-yr ðQ10Þ; and 100-yr ðQ100Þ

discharges.

6. Compute the synthetic statistics:

Gs ¼ 22:5 þ 3:12
logðQ100=Q10Þ

logðQ10=Q2Þ
ð11aÞ

Ss ¼
logðQ100=Q2Þ

K100 2 K2

ð11bÞ

Xs ¼ logðQ2Þ2 K2ðSsÞ ð11cÞ

B17B indicates that the procedure is acceptable

as long as the ratio R is 75% or greater and that

Table 1

Relative bias ðBrÞ and relative standard error ðSrÞ of the estimated statistic (m; mean; s; standard deviation; and g; skew) as a function of the

coefficient of variation ðCvÞ; threshold probability ðPtÞ; and record length ðHÞ for three estimation methods

Stat. Cv Pt H Br for method Sr for method

1 2 3 1 2 3

m 0.1 0.9 25 0.020 20.084 0.005 0.080 0.316 0.057

0.2 0.9 25 0.040 20.066 0.010 0.160 0.288 0.114

0.3 0.9 25 0.059 20.048 0.014 0.238 0.280 0.170

s 0.1 0.9 25 20.213 20.297 20.122 0.029 0.033 0.023

0.2 0.9 25 20.210 20.293 20.120 0.116 0.133 0.092

0.3 0.9 25 20.212 20.295 20.122 0.262 0.300 0.208

m 0.2 0.95 25 0.012 20.013 0.002 0.119 0.150 0.117

0.2 0.90 25 0.040 20.066 0.010 0.160 0.288 0.114

0.2 0.80 25 0.070 20.146 0.022 0.236 0.516 0.120

s 0.2 0.95 25 20.074 20.098 0.000 0.093 0.094 0.093

0.2 0.90 25 20.210 20.293 20.120 0.116 0.133 0.092

0.2 0.80 25 20.256 20.413 20.263 0.136 0.169 0.123

m 0.2 0.9 10 0.039 20.066 0.009 0.206 0.388 0.176

0.2 0.9 25 0.040 20.066 0.010 0.160 0.288 0.114

0.2 0.9 50 0.039 20.066 0.010 0.140 0.247 0.083

s 0.2 0.9 10 20.155 20.251 20.067 0.161 0.163 0.139

0.2 0.9 25 20.210 20.293 20.120 0.116 0.132 0.092

0.2 0.9 50 20.231 20.310 20.140 0.103 0.125 0.076

g 0.1 0.95 25 20.181 20.210 20.110 0.184 0.211 0.146

0.1 0.85 25 20.174 20.201 0.038 0.189 0.216 0.154

0.1 0.75 25 20.153 20.186 0.028 0.197 0.242 0.202
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the skew is between 22.0 and þ2.5. B17B does

not discuss the accuracy of the method.

To evaluate the accuracy of the B17B procedure

and compare it with the maximum likelihood

approximation presented above, a Monte Carlo

experiment was developed. The relative bias and

relative standard errors were computed for a range of

each of the following variables: record length

H ¼ {10; 25; 50}; coefficient of variation Cv ¼

{0:1; 0:2; 0:3}; standardized skew coefficient g ¼

{0:5; 0;20:5}; and the truncation probability,

P0 ¼ {0:95; 0:85; 0:75; 0:7; 0:6; and0:5}: From the

results of the simulations, the effects of the skew,

the sample size, the coefficient of variation, and the

threshold are analyzed separately.

2.3. Effect of population skew

The maximum likelihood analysis was based on

the assumption of a normal distribution for the

underlying population. Since a major use of the

resulting method for analyzing incomplete records

will be for use with the log Pearson type III

distribution, the application of the rule of replacing

missing values with the threshold to skewed data was

investigated by simulations with the values of H; Cv;

g; and P0 previously given. Table 2 shows the results

for a record length H of 50, a coefficient of variation

of 0.3, and a threshold probability of 95%, and

population skews of 20.5, 0.0, 0.5. In all cases, the

maximum likelihood approximation showed less bias

and better standard errors.

All simulations, including the case shown in

Table 2, indicate that the accuracy of the method is

insensitive to the population skew. This is also true for

the B17B method. All variation of the statistics with

the population skew was well within the sampling

variation of the simulation. Therefore, other compari-

sons will only present results for the zero skew case.

2.4. Effect of sample size

Simulations were made for sample sizes of 10, 25,

50 and 75, with the bias and standard errors computed

for both the maximum likelihood approximation and

the B17B method. Again, simulations were made for

the previously stated values of H; Cv; g and P0: The

results for one set of conditions are shown in Table 3

for the case of an 85% threshold probability, a

coefficient of variation of 0.3, and a population skew

of zero. As should be expected, the biases and

standard errors decreased with increases in sample

size. In general, and as evident in Table 3, the

maximum likelihood approximation provided better

results than the B17B method.

2.5. Effect of coefficient of variation

The coefficient of variation of the logarithms was

varied from 0.1 to 0.3, and the biases and standard

errors computed for both methods. The results in

Table 4, which are typical of the results for all

simulations, are for a sample size of 25, a threshold

probability of 85%, and a skew of zero. The results for

both the maximum likelihood analysis and B17B

Table 2

Variation of bias and accuracy of the mean and standard deviation with the population skew for the maximum likelihood approximation (MLA)

and the Bulletin 17B method (B17B)

Method Skew Mean Standard deviation

Bias Relative bias Std. error Rel. std. error Bias Relative bias Std. error Rel. std. error

MLA 20.5 0.015 0.005 0.013 0.002 20.040 20.047 0.0064 0.009

0.0 0.014 0.005 0.013 0.002 20.040 20.047 0.0065 0.009

0.5 0.016 0.006 0.013 0.002 20.040 20.047 0.0065 0.009

B17B 20.5 0.042 0.015 0.014 0.002 20.081 20.097 0.0112 0.016

0.0 0.041 0.015 0.014 0.002 20.082 20.097 0.0113 0.016

0.5 0.043 0.015 0.014 0.002 20.082 20.097 0.0113 0.016
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methods indicate that the biases and standard errors

are poorer for the larger coefficients of variation. This

is expected, as the greater internal variation of the

samples increases the spread about the mean. The

maximum likelihood approximation yields smaller

biases and standard errors than the B17B method.

2.6. Effect of threshold proportion

B17B limits the use of its technique such that the

missing proportion of the duration of record must not

exceed 25 percent, i.e. discharge values must be

available for at least 75% of the years for which the

site was gauged. The bias and accuracy of the

maximum likelihood approximation were evaluated

for threshold probabilities of 50, 60, 70, 75, 85, and 95

percent. The threshold probability is the proportion of

the underlying population above the threshold dis-

charge. Thus, it reflects the amount of record that is

complete. For example, a threshold probability of

60% would indicate that in 40% of the years the

largest value was below the threshold.

Ideally, the bias and accuracy would not get poorer

as the threshold probability decreases. The values in

Table 5 indicate that the quality of the estimated

values of the standard deviation decreases with

decreases in the threshold probability. At 75%,

which is the bound for using the B17B procedure,

the maximum likelihood approximation shows a

relative under prediction of s of 24%, although

the relative standard error is a reasonable 7.7%.

The statistics on the mean are much more encouraging

with a small relative bias and relative standard error

even for the 50% threshold probability. The results

suggest that the maximum likelihood approximation

can be used for a 50% threshold probability which is

much less constraining than the 75% threshold

imposed with the B17B procedure.

Table 4

Variation of bias and accuracy of the mean and standard deviation with the coefficient of variation ðCvÞ for the maximum likelihood

approximation (MLA) and the Bulletin 17B method (B17B) for a sample size of 25

Method Cv Mean Standard deviation

Bias Relative bias Std. error Rel. std. error Bias Relative bias Std. error Rel. std. error

MLA 0.1 0.029 0.009 0.0033 0.0004 20.053 20.176 0.004 0.040

0.3 0.080 0.029 0.0257 0.0033 20.148 20.176 0.028 0.040

B17B 0.1 0.039 0.013 0.0045 0.0005 20.066 20.221 0.006 0.061

0.3 0.138 0.049 0.0377 0.0048 20.199 20.237 0.047 0.066

Table 3

Variation of bias and accuracy of the mean and standard deviation with sample size for the maximum likelihood approximation and the Bulletin

17B method

Method Sample size Mean Standard deviation

Bias Relative bias Std. error Rel. std. error Bias Relative bias Std. error Rel. std. error

MLA 10 0.092 0.031 0.064 0.007 20.168 20.186 0.048 0.059

25 0.080 0.029 0.026 0.003 20.148 20.176 0.028 0.040

50 0.080 0.029 0.016 0.002 20.146 20.174 0.024 0.034

75 0.077 0.026 0.013 0.001 20.087 20.111 0.014 0.018

B17B 10 0.104 0.035 0.091 0.010 20.201 20.243 0.071 0.087

25 0.138 0.049 0.038 0.005 20.199 20.237 0.047 0.067

50 0.132 0.047 0.027 0.003 20.194 20.231 0.041 0.058

75 0.116 0.039 0.023 0.003 20.192 20.213 0.041 0.050
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2.7. Application

The procedure was applied to four watersheds,

which ranged in area from 3.85 to 31.9 mi2 and had

annual maximum record lengths of 15, 29, 42, and 42

years. All of the watersheds are in the Eastern Coastal

Plain of Maryland (see Table 6). The year was divided

into four seasons: October–December, January–

March, April–June, July–September. The number of

years in which a seasonal discharge greater than

the threshold discharge was available is also shown

in Table 6. In only one season at one of the four gauges

was the percentage greater than the 75% needed to use

the B17B method for handling incomplete records. The

maximum likelihood approximation was used instead.

The percentage of years with a flow above the threshold

was as low as 5%, as high as 76%, and averaged 45.1%.

Thus, on the average, the threshold discharges were

used to fill in more than 50% of the records.

The seasonal records were adjusted by using the

threshold discharge when the actual value did not

exceed the threshold. The annual maximum series

weighted log skew was used with the computed

seasonal log mean and log standard deviation (Eqs.

(8a) and (8b), respectively) to compute seasonal

discharges for six return periods (2, 5, 10, 25, 50, and

100 yr). The discharges for the six return periods, four

seasons, and four gauges are given in Table 7 along

with the discharges from the annual maximum series

analysis. It is interesting to compare the computed

100-yr seasonal discharge to the annual maximum

frequency curve and compute the return period of

the seasonal 100-yr discharge as if it were an

annual maximum discharge. The return periods of

the seasonal 100-yr discharges when assessed using

the annual maximum frequency curves are given in

Table 6. About one-half of the seasonal 100-yr

discharges would have a return period of less than

10 years when evaluated with the flood frequency

curve of the annual maximum series. Given that the

region is characterized by a relatively uniform

distribution of rainfall, it is reasonable to expect that

Table 5

Variation of bias and accuracy of the mean and standard deviation for selected threshold probabilities ðp0Þ of the maximum likelihood

approximation for a sample size of 25

p0 Mean Standard deviation

Bias Relative bias Std. error Rel. std. error Bias Relative bias Std. error Rel. std. error

0.95 0.005 0.0018 0.0033 0.0004 20.015 20.051 0.0015 0.0168

0.85 0.029 0.0095 0.0033 0.0004 20.053 20.176 0.0036 0.0395

0.75 0.050 0.0166 0.0045 0.0005 20.079 20.236 0.0070 0.0773

0.70 0.062 0.0208 0.0056 0.0006 20.092 20.305 0.0091 0.1008

0.60 0.092 0.0305 0.0096 0.0011 20.117 20.389 0.0143 0.1589

0.50 0.129 0.0429 0.0175 0.0019 20.141 20.471 0.0206 0.2290

Table 6

Seasonal frequency analysis of four coastal watersheds varying in record length ðnÞ and drainage area

Gauge no. n Area (km2) Threshold

discharge (m3/s)

Record length for

season

Percentage of n for

season

Return period (yr) of

100-yr seasonal

discharge for season

1 2 3 4 1 2 3 4 1 2 3 4

01483200 42 9.86 1.42 14 28 20 24 33 67 48 57 4 5 40 25

01483500 15 23.94 3.40 9 7 7 6 60 47 47 40 25 5 4 18

01483700 42 81.66 2.63 2 19 9 12 5 45 21 29 ,2 22 4 22

01484000 29 34.82 3.68 12 18 22 13 41 62 76 45 4 7 5 30

R.H. McCuen, R.E. Beighley / Journal of Hydrology 279 (2003) 43–5650



an annual maximum could occur in any season. Thus,

the disparity between the seasonal and annual

maximum curves is reasonable. The average ratios

are shown in Table 7. Therefore, the seasonal

frequency curves should be at similar levels and

have similar ratios to the annual maximum curves.

Within the bounds of sampling variation, the results of

these four gauges are very similar, as expected.

3. Regional seasonal frequency analysis

Gauging records often include average daily

discharge records and selected instantaneous maxi-

mum discharges above a threshold. The threshold is

generally low enough to include at least one value

per year, which becomes the annual maximum

discharge. The annual maximum instantaneous

discharge record is therefore adequate to perform a

LP3 annual maximum frequency analysis. The

record of instantaneous maximum discharges will

generally not include a value above the threshold for

each season of the year. That is, seasonal frequency

records of instantaneous discharges will often be

incomplete.

3.1. A regional model for incomplete records

Where records of mean daily and instantaneous

maximum discharges are available, the problem of

incomplete seasonal frequency records can be over-

come using the maximum likelihood approximation.

Another approach is to develop relationships for

predicting the missing instantaneous value from

Table 7

Annual and seasonal maximum discharges using a maximum likelihood approximation for adjusting incomplete seasonal records and the four-

station mean ratios of the seasonal to annual flows

Gauge no. Season Discharge (m3/s) for return period

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

1483200 Annual 4.02 7.02 9.48 13.22 16.45 20.13

1 1.81 2.66 3.28 4.16 4.87 5.61

2 2.10 3.14 3.91 4.98 5.86 6.77

3 1.95 2.97 3.77 4.84 5.75 6.68

4 2.32 4.25 5.89 8.44 10.73 13.36

1483500 Annual 5.89 10.99 16.11 25.31 34.71 46.91

1 4.28 7.36 10.22 15.12 19.84 25.76

2 3.99 5.32 6.31 7.79 8.98 10.31

3 3.79 4.84 5.63 6.74 7.64 8.61

4 3.99 6.37 8.47 11.86 15.03 18.80

1483700 Annual 14.10 24.24 13.70 43.57 53.00 63.17

1 2.89 4.08 4.87 5.92 6.71 7.50

2 5.15 10.87 16.05 24.32 31.82 40.54

3 3.82 7.28 10.19 14.55 18.35 22.57

4 4.53 9.82 14.72 22.65 29.95 38.48

1484000 Annual 8.21 16.45 24.01 36.41 47.93 61.67

1 4.53 6.51 7.93 9.88 11.41 13.02

2 4.95 7.81 9.99 13.11 15.68 18.49

3 5.27 7.84 9.74 12.34 14.44 16.70

4 5.72 10.87 15.46 22.74 29.36 37.12

Mean ratio 1 0.483 0.403 0.366 0.330 0.308 0.289

2 0.542 0.463 0.430 0.401 0.386 0.374

3 0.511 0.411 0.367 0.327 0.304 0.286

4 0.567 0.562 0.562 0.563 0.566 0.569
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the recorded mean daily flow for the day on which the

instantaneous value occurred. One possible model

would be to use the existing records to develop a

relationship of the form

qi ¼ bqd ð12Þ

in which qi is the instantaneous maximum discharge,

qd is the mean daily discharge for the same day, and b

is a regression coefficient. To use the relationship of

Eq. (12) at sites where instantaneous discharges are

not available, the regression coefficient b could be

related to watershed characteristics by regionalizing b

from watersheds where the necessary data are

available.

The regionalization procedure was applied to the

USGS delineated (Dillow, 1996) Eastern Coastal

Plain of Maryland. Each of the flood records for the

gauges in the region were used to develop the

relationship of Eq. (12) (see Table 8). The number

of discharges above the instantaneous discharge

threshold varied from watershed to watershed, with

a range from 22 to 167 and a median of 116 for the 18

stations in the region. The 18 values of b varied from

1.08 to 2.74 with a mean of 1.58. When applied to the

18 watersheds, the zero-intercept regression model of

Eq. (12) provided accurate estimates, with the

correlation coefficients ranging from 0.81 to 0.98,

with a mean of 0.92. When correlations are poor, the

adjustments of Matalas and Jacobs (1964) should be

considered. The relative biases range from 226 to

9%, although 15 of 18 watersheds have relative biases

of less than 5% in absolute value. For the three

watersheds with large relative biases, the correlation

coefficients are 0.87, 0.915, and 0.98, which suggests

that, in spite of the biases, the prediction accuracies

are still quite good.

Graphical analyses of the data showed that the

computed values of b were related to both the

drainage area A (km2) and the percentage of forest

cover F; with the relationships showing negative,

curvilinear trends. Negative trends would be rational.

For smaller drainage areas, the duration of the

hydrograph would be shorter and the portion of the

hydrograph around the peak would be less. This

would yield a relative low mean daily discharge with

respect to the peak discharge. Heavily forested areas

generally cause significant smoothing of the hydro-

graph, so the peak will be relatively smaller than for

an unforested area. Several models were tried, with

the following model providing the best fit and most

rational structure:

b
_

¼ 1 þ 3:2 expð20:00195A 2 0:025ðF þ 10Þ

2 0:000273AðF þ 10ÞÞ ð13Þ

The values of b for the 18 watersheds provided a

correlation coefficient of 0.913 and a relative bias

of zero.

To assess the accuracy of computed instantaneous

discharges using Eqs. (12) and (13), the two models

were used to predict the 1898 instantaneous maximum

discharges for the 18 watersheds in the Eastern

Coastal Plain. The correlation coefficient for the

model is 0.978, with a relative standard error ratio of

22.6%. Fig. 1 shows the predicted and actual values of

the values of the instantaneous maximum discharges.

The overall fit is excellent except for the slight under

prediction for the very small discharges. The results

Table 8

Characteristics (n; sample size; A; area (km2); F; precent forest

cover) of gauges in the Eastern Coastal Plain of Maryland and

results of calibration of Eq. (12) (b; regression slope; R; correlation

coefficient; Rb; relative bias; Se=Sy; standard error ratio)

Gauge no. n A F b R Rb Se=Sy

1483200 135 10.0 43 1.924 0.943 0.026 0.334

1483500 37 24.1 21 1.906 0.931 20.037 0.364

1483700 42 81.7 46 1.222 0.903 0.037 0.430

1484000 99 34.8 35 1.505 0.972 20.039 0.234

1484100 96 7.2 45 1.525 0.844 0.044 0.536

1484300 22 18.2 54 1.267 0.929 20.009 0.369

1484500 128 13.3 51 1.398 0.805 0.044 0.594

1485000 116 154.9 30 1.084 0.979 0.012 0.202

1485500 160 114.9 85 1.090 0.979 0.002 0.204

1486000 163 12.3 57 1.807 0.901 0.000 0.433

1487000 142 193.0 40 1.151 0.979 0.024 0.203

1488500 167 112.4 29 1.354 0.870 0.093 0.493

1489000 78 18.2 33 2.280 0.916 0.019 0.401

1490000 29 38.4 50 1.280 0.915 0.081 0.404

1491000 124 289.3 35 1.149 0.985 0.015 0.170

1492000 117 15.1 26 2.191 0.871 20.039 0.492

1493000 140 57.1 43 1.491 0.909 20.010 0.235

1493500 102 32.5 8 2.735 0.980 20.261 0.197

Minimum 22 7.2 8.0 1.08 0.80 20.26 0.17

Maximum 167 289.3 85.0 2.74 0.99 0.09 0.59

Mean 105 68.1 40.6 1.58 0.92 0.00 0.35

Std dev 47 77.8 16.6 0.47 0.05 0.07 0.13
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indicate that, where regional data are available, a

regional model such as Eq. (13) is an alternative for

filling in incomplete records.

3.2. Regional index ratios for seasonal

frequency curves

Each of the streamflow records for the 18

watersheds in the Eastern Coastal Plain region were

divided into two seasons, October through March and

April through September. The annual maximum and

seasonal maximum frequency curves were assembled

from the available records of above-threshold instan-

taneous discharges. Where a seasonal instantaneous

discharge above the threshold did not occur in any

year, a value was estimated with the regional model of

Eq. (13) from the largest daily mean discharge for the

season in that year. The percentage of instantaneous

discharges that had to be estimated ranged from 15 to

65% for the winter season and from 19 to 50% for the

summer season.

Frequency curves were fit to the annual maximum

record and the two seasonal records for each of the 18

gauging stations. The B17B procedure was used, with

a few low outliers detected, and censored, based on

the B17B outlier criterion. The weighted skew for the

annual maximum series was used in computing

the seasonal frequency curves in order to prevent

the seasonal curve from intersecting the annual

maximum curve. Log Pearson Type III discharges

were then computed for six return periods: 2-, 5-, 10-,

25-, 50-, and 100-yr. For each watershed, the ratio of

the T-yr seasonal discharge to the T-yr annual

maximum discharge was computed, and then the

ratios were averaged over the 18 watersheds. The

ratios for the six return periods from the 2- to 100-yr

in the winter season are: 0.73, 0.71, 0.70, 0.69, 0.69,

and 0.69. The ratios for the summer season are: 0.70,

0.77, 0.82, 0.88, 0.92, and 0.96.

The two sets of ratios show different trends, as well

as indicating that the seasonal frequency curve is

considerably different from the annual curve. More

records included maximum values below the

threshold in the summer season, which meant that

the low values, which had to be estimated, would

cause a larger variation. With a higher standard

deviation, the slopes of the curves, in general,

increased, which leads to higher ratios for the

infrequent (high return period) discharges. For the

winter season, the ratios showed a relatively constant

ratio of about two-thirds. The variation did not reveal

a dominant trend, thus it is reasonable to apply a

constant ratio over all return periods.

Fig. 1. Measured discharge versus instantaneous discharge predicted with Eqs. (12) and (13).
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3.3. Estimation at ungauged locations

Where the gauged data are not adequate to develop

a seasonal frequency curve, an index flood approach

can be used. The annual maximum frequency curve

can be estimated with a model and then seasonal-

dependent ratios can be used to transform the T-yr

annual maximum discharge to a T-yr seasonal

maximum discharge. Where the USGS regressions

are applicable, they could be used to estimate the

annual maximum frequency curve. Otherwise, an

uncalibrated rainfall-runoff model such as HEC-1 or

TR-20 could be applied to estimate the annual

maximum frequency curve.

The index ratios given above enable the seasonal

frequency curve to be developed for ungauged

watersheds within the Eastern Coastal Plain region.

The annual maximum frequency curve could be

computed by multiplying the above index ratios to

obtain the seasonal frequency curve for the season of

interest:

qST ¼ RST qaT ð14Þ

in which qST is the seasonal instantaneous maximum

discharge for return period T and season S, qaT is the

annual maximum instantaneous discharge for return

period T ; and RST is the index ratio for season S and

return period T :

4. Conclusions

Several procedures related to seasonal flow

frequency analysis have been developed and pre-

sented. The flow chart of Fig. 2 shows how a seasonal

flow frequency curve can be developed for either

gauged or ungauged watersheds. If the site is

ungauged, then a regional model would need to be

developed (Stedinger et al., 1993), such as the model

developed herein for the Eastern Coastal Plain of

Maryland. In order to develop the regional index

ratios, it would be necessary to apply the portion of

the flowchart that is applicable to gauged sites.

Three methods for filling in missing data are

discussed and illustrated. The maximum likelihood

approximation requires the least data and can be used

if a regional model is not available or the model for

the specific gauged site provides poor correlation, as

might be the case for small watersheds. If seasonal

analyses will be made at many sites in a region, then

the regional model would be preferable in order to

provide some stability between the seasonal curves

for the individual watersheds in the region.

The maximum likelihood approximation appears

to be more accurate than the method provided in

B17B for computing a frequency curve from an

incomplete record. This may result from the adjust-

ment using the ratio of the number of discharges

above the threshold to the record length, R ¼ N=H:

Jennings and Benson (1969) indicate that this is

“the probability in any year of an event that

exceeds…a base level…above which flood magni-

tudes are recorded…” This ignores the fact that the

probability of a large flood is different than the

probability of a low discharge. If all flood magnitudes

Fig. 2. Flowchart of procedure for developing seasonal frequency

curves (SFC) at gauged and ungauged sites.
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had an equal probability, then this would be true.

However, it is only an approximation when floods

follow a distribution other then the uniform distri-

bution, such as a log-normal or LP3 distribution. For

distributions other than a uniform pdf, it is only an

approximation. For cases in semiarid climates where

data records often have zero-flood values, the

maximum likelihood approach could be used to

develop a model similar to Eqs. (8a) and (8b).

Annual flood frequency estimates can be adjusted

into seasonal estimates for both gauged and ungauged

locations. However, missing data that result from

separating the annual maximum series into seasons

must be addressed. B17B provides one method for

filling in missing data but is limited to only 25%

missing (threshold probability of 75%), which may

not be sufficient for seasonal analyses. For peak flow

gauges, which often include all instantaneous maxi-

mum discharges above a threshold, a maximum

likelihood approximation was developed to overcome

the problem of missing data in the individual seasons.

Two reason missing data may be a problem are: (1) the

available data are primarily used for annual analyses

and the thresholds values are set accordingly; and

(2) depending on region, the distributions of seasonal

rainfall can range from uniform to highly variable (i.e.

wet and dry seasons).

To demonstrate the accuracy of the MLA for filling

in missing seasonal values, Monte Carlo simulations

were used. The simulations, which varied the

population skew, sample size, coefficient of variation,

and the percentage of missing values, show that the

MLA provides better estimates of mean and standard

deviation than the method presented in B17B.

Additionally, the simulations showed that the MLA

could be used below the limiting probability of 75%

specified for the B17B method. For a threshold

probability of 50%, the MLA still results in acceptable

accuracy.

As a case study, a seasonal frequency analysis

based on four seasons at four gauges within the USGS

delineated Eastern Coastal Plain of Maryland shows

the results of the MLA. The results show that the

seasonal 100-yr discharges are quite different than the

corresponding annual series 100-yr discharge, which

shows the value of making seasonal frequency

analyses for season-sensitive design problems.

Almost half of the seasonal 100-yr discharges were

less than their corresponding annual maximum 10-yr

discharges.

For ungauged locations, a regional approach must

be taken to develop seasonal frequency curves.

Gauges that record both instantaneous peaks and

daily averaged discharges, were used to develop a

relationship between instantaneous and averaged

daily flows. The regional relationship presented in

this paper, Eqs. (12) and (13), applies to the Eastern

Costal Plain and uses both drainage area and forest

cover as predictor variables. When tested on 1898

instantaneous maximum discharges from 18 gauges,

the relationship yielded accurate estimates having a

correlation coefficient of 0.978 and a relative standard

error ratio of 22.6%, which indicates that maximum

seasonal daily averaged discharges can be used to

estimate missing instantaneous data. If a regional

model provides accurate estimates and daily data are

available, it could be used rather than the maximum

likelihood approximation.

A second case study evaluated the use of a regional

relationship to estimate missing data for two seasons

October–March and April–September. The seasonal

frequency curves for the 18 watersheds were calcu-

lated, and the ratios of the seasonal T-yr discharge to

T-yr annual maximum discharge were calculated. The

winter ratios were on average approximately 70% for

each return period. The summer ratios, which required

estimating a higher fraction of missing values, had

higher standard deviations, which resulted in a sloped

ratio curve increased from about 70% at the 2-yr

return period and to 96% for the 100-yr return period.

These ratios represent the winter and summer regional

index ratios and could be used for applications at an

ungauged location in the region. The seasonal

frequency estimates can be determined by multiplying

the annual estimates, determined by the USGS

regional regression equations or a rainfall-runoff

model, by their corresponding T-yr index ratio, as

shown by Eq. (13).
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