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Abstract

This paper presents a general study of horizontal well hydraulics for three aquifer types: a leaky confined aquifer, a leaky

water table aquifer, and a leaky aquifer under a water reservoir. Semi-analytical solutions are obtained for cases that exclude

and include the aquitard storage. The type curves and derivative type curves for these different conditions are provided.

A graphically integrated MATLAB program named HW_LEAK is written to facilitate numerical calculations and generation of

the type curves and derivative type curves. This study shows that (1) derivative type curves are more sensitive to the aquitard

parameters than the type curves; and that (2) drawdown is sensitive to the aquitard/aquifer thickness ratio and the hydraulic

conductivity ratio at the intermediate and later time. Both curves are less sensitive to the aquitard/aquifer specific storage ratio,

while the degree of sensitivity of the drawdown to the aquitard parameters is high in a leaky confined aquifer, moderate in a

water table aquifer, and low in an aquifer under a water reservoir.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Horizontal wells have gained significant interest

among hydrogeologists and environmental scientists

and engineers in recent years because of their many

advantages over conventional vertical wells. The study

of horizontal wells in hydrologic sciences dates back

to Hantush and Papadopulos (1962). During the last

decade, groundwater flow to horizontal wells was

studied in various aspects (Tarshish, 1992; Cleveland,

1994; Murdoch, 1994; Falta, 1995; Sawyer and

Lieuallen-Dulam, 1998; Zhan, 1999; Hunt

and Massmann, 2000; Kawecki, 2000; Zhan and

Cao, 2000; Steward and Jin, 2001; Zhan et al., 2001;

Zhan and Park, 2002; Park and Zhan, 2002; Zhan and

Zlotnik, 2002).

Nevertheless, a general theory of groundwater flow

to a horizontal well in a leaky aquifer is not yet

available and will be the focus of this paper.

New solutions for groundwater flow in a leaky

confined aquifer, a leaky aquifer under a water

reservoir, and a leaky water table aquifer will be

presented. Both type curves and derivative type

curves will be generated for these different aquifer

conditions, where the type curve is defined as the

dimensionless drawdown versus dimensionless time

on a log–log scale, and the derivative type curve is

defined as the first derivative of the dimensionless

drawdown over the logarithmic dimensionless time as

a function of the dimensionless time on a log–log

scale. Graphically integrated MATLAB programs

were written to facilitate the calculation of
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drawdowns and the generation of type curves and

derivative type curves. These type curves and

derivative type curves are useful tools for interpreting

horizontal well pumping tests. By combining these

solutions with previous studies (Zhan et al., 2001;

Zhan and Zlotnik, 2002), one gains a better under-

standing of horizontal well hydraulics under various

aquifer conditions.

2. Mathematical model I: no aquitard storage

2.1. Problem statement

When the leaky aquitard is thin, the storage water

from the aquitard is limited and its influence upon

flow inside the aquifer is negligible. A mathematical

model for a case that neglects the aquitard storage

Nomenclature

d thickness of the main aquifer

d0; d00 thickness of the aquitard

d0
D dimensionless thickness of the aquitard

Fðx0DÞ ¼ ½ðxD 2 x0DÞ
2 þ y2

D�
1=2

h hydraulic head in the main aquifer

h0 initial hydraulic head in the main aquifer

H0 the horizontal function used in solution

(17) (n ¼ 0)

Hn the horizontal function used in solution

(17) (n . 0)

Kx; Ky; Kz principal hydraulic conductivities of the

main aquifer

K 0; K 00 hydraulic conductivity of the aquitard

K0ðxÞ the zero-order, second kind modified

Bessel function

L screen length of the horizontal well

LD dimensionless screen length of the hori-

zontal well

p Laplace transform parameter correspond-

ing to the dimensionless time

Q pumping rate

rD ¼ ½ðxD 2 x0DÞ
2 þ ðyD 2 y0DÞ

2�1=2; radial

distance from the point sink/source

s drawdown

sD dimensionless drawdown due to a point

sink

sHD dimensionless drawdown near a pumping

horizontal well

�sD dimensionless drawdown near a point sink

in the Laplace domain

�sHD dimensionless drawdown near a pumping

horizontal well in the Laplace domain

�s0D dimensionless drawdown in the aquitard

in the Laplace domain

Ss specific storage of the main aquifer

S0
s specific storage of the aquitard

Sy specific yield of the main aquifer

t time

tD dimensionless time

Wðu; vÞ leaky well function

x; y; z coordinates of the monitoring point or

piezometer

x0; y0; z0 coordinates of the sink/source point

xD; yD; zD dimensionless coordinates of the

monitoring point or piezometer

x0D; y0D; z0D dimensionless coordinates of the

sink/source point

zw distance from the horizontal well to the

lower boundary

zwD dimensionless distance from the horizon-

tal well to the lower boundary

a1 delayed index of the water table

a1D dimensionless delayed index of the water

table

g dimensionless term related to the specific

storage ratio of the aquitard and aquifer,

defined in Table 1

dðuÞ Dirac delta function

l leaky parameter defined in Table 1
�l modified leaky parameter defined in

Table 1

m dimensionless term related to the hydrau-

lic conductivity ratio of the aquitard and

aquifer, defined in Table 1

s dimensionless term related to the ratio of

specific storage and specific yield, defined

in Table 1

vn spatial frequency used in solution

G dimensionless leakage term

C a dimensionless term defined in Eq. (30)

Vn a dimensionless term defined in Eq. (22)

t dummy variables used in the time inte-

gration
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effect is developed in this section. Fig. 1 shows three

schematic diagrams of horizontal pumping wells in a

leaky confined aquifer, a leaky aquifer under a water

reservoir, and a leaky water table aquifer,

respectively. The sufficiently distant lateral

boundaries do not influence the flow.

We start with a simple leaky aquifer, when one

aquitard exists either above or below the main aquifer,

Fig. 1. The schematic diagrams of the horizontal pumping wells. The origin of the coordinate system is at the lower boundary with the x- and

y-axes along the horizontal directions and the z-axis along the vertical direction. (A) A leaky confined aquifer; an aquitard is at the upper and/or

lower boundary. (B) A leaky aquifer under a water reservoir; an aquitard is at the lower boundary. (C) A leaky water table aquifer; an aquitard is

at the lower boundary.
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and the adjacent aquifer that leaks water through the

aquitard to the main aquifer holds a constant hydraulic

head (h0). This implies that before pumping,

the multiaquifer system is hydrostatic with a common

hydraulic head h0: We derive an analytical solution

for the problem and gain physical insights into

the problem. After developing the mathematical

model for this simple conceptual model, this study

will show that solutions for more general leaky

aquifer conditions can be easily obtained by using

certain modifications.

For an aquifer under a water reservoir, the upper

boundary is treated as a constant head and the bottom

is bounded by an aquitard through which leakage can

occur. For a water table aquifer, the upper boundary is

the free water table and the bottom is bounded by an

aquitard. Hantush (1960) has done an extensive

research on leakage from the upper and/or lower

aquitards.

We use the Cartesian system of coordinates

with the origin at the bottom of the aquifer. The

well is positioned along the x-axis and is centered at

(0, 0, zw), where zw is the distance from the well to the

lower boundary. The horizontal well is treated as a

line sink and the flux distribution along the well axis is

assumed uniform. Zhan et al. (2001), and Zhan

and Zlotnik (2002) have provided detailed

explanations on the suitability of these assumptions.

These assumptions can provide sufficiently accurate

approximations to the actual solutions when the

horizontal well pumping rate is not extremely large,

which is usually true in environmental applications

where small pumping rates are favored.

However, if a horizontal well is pumped with a

large pumping rate, the flow inside the horizontal well

could become so strong that significant hydraulic head

losses will exist in the in-well flow. Under these

circumstances, different flow states such as laminar,

transitional, and turbulent flows can co-exist inside the

wellbore and the problem must be treated as a

coupled well-aquifer hydraulics problem. A closed-

form analytical solution in this case is not possible and

a numerical solution will be needed.

First, we will derive a solution for groundwater

flow to a point sink, and then superimpose the

point solutions along the axis of the horizontal

well with uniform strength. Groundwater flow to

a point sink in a leaky confined aquifer without

the aquitard storage is described as follows

(Hantush, 1964; p. 349)

Ss

›h

›t
¼ Kx

›2h

›x2
þ Ky

›2h

›y2
þ Kz

›2h

›z2
þ K 0 h0 2 h

dd0

2 Qdðx 2 x0Þdðy 2 y0Þdðz 2 z0Þ; ð1Þ

hðx; y; z; t ¼ 0Þ ¼ h0; ð2Þ

›hðx; y; z ¼ 0; tÞ=›z ¼ 0; ð3Þ

hðx ¼ ^1; y; z; tÞ ¼ hðx; y ¼ ^1; z; tÞ ¼ h0; ð4Þ

where Ss is the specific storage (m21); h is the

hydraulic head (m); t is time (s); Kx; Ky; Kz are

values of principal hydraulic conductivity (m/s) in

the x-, y-, and z-directions, respectively; K 0 is the

hydraulic conductivity of the aquitard (m/s); Q is

the pumping rate (m3/s) (Q . 0 for pumping and

Q , 0 for injection); d is the Dirac delta function

(m21); h0 is the initial hydraulic head (m); d is the

aquifer thickness (m); d0 is the thickness of the

aquitard; and (x0; y0; z0) are the sink coordinates.

A few assumptions are used in formulating Eq. (1)

(Hantush, 1964, p. 348–349): (1) the aquifer is

homogeneous and anisotropic; (2) flow in the

homogeneous aquitard is vertical; (3) the leakage

crossing the interface is assumed to be generated

within the main aquifer and is approximated by the

fourth term on the right-hand side of the equation; and

(4) only one aquitard is considered in Eq. (1).

When two aquitards are presented as shown in

Fig. 1A, another term related to leakage should be

added on the right-hand side of Eq. (1). The solution

for this two-aquitard case can be modified easily for

the one-aquitard solution. The detail is discussed in

Section 2.2.4.

Three different upper boundaries are considered

›hðx; y; z ¼ d; tÞ=›z ¼ 0; ð5Þ

for a leaky confined aquifer

hðx; y; z ¼ d; tÞ ¼ h0; ð6Þ

for a leaky aquifer under a water reservoir that is

treated as a constant head boundary; and

Kz›hðx;y;z¼d;tÞ=›zþSy›hðx;y;z¼d;tÞ=›t¼0; ð7Þ
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for a leaky water table aquifer with an instantaneous

drainage, or

Kz

›hðx;y;z¼d;tÞ

›z
þa1Sy

ðt

0

›hðx;y;z¼d;t0Þ

›t0

�exp½2a1ðt2 t0Þ�›t0 ¼0; ð8Þ

for a delayed yield drainage, where Sy is specific

yield, and a1 is the empirical constant (Moench,

1995).

We should point out that because the leakage is

treated as a term generated within the main aquifer, so

the upper and lower boundaries of the leaky confined

aquifers are assumed to be impermeable. The boundary

conditions (3) and (5) are suitable for cases when

leaking aquitard is at the top or base or at both (Fig. 1A).

Changing the variable from h to drawdown

s ¼ h0 2 h; defining all the dimensionless parameters

in Table 1, and conducting the Laplace transform,

one obtains the following

›2�sD

›x2
D

þ
›2�sD

›y2
D

þ
›2�sD

›z2
D

2ðpþlÞ�sD

¼2
4p

p
dðxD2x0DÞdðyD2y0DÞdðzD2z0DÞ; ð9Þ

›�sDðxD;yD;zD¼0;pÞ=›zD¼0; ð10Þ

›�sDðxD;yD;zD¼1;pÞ=›zD¼0; ð11Þ

�sDðxD ¼^1;yD;zD;pÞ

¼ �sDðxD;yD ¼^1;zD;pÞ ¼ 0; ð12Þ

where the subscripts ‘D’ denote dimensionless terms,

�sD refers to the dimensionless drawdown in the

Laplace domain, the dimensionless term l is the leaky

parameter defined in Table 1, and p is the Laplace

transform parameter corresponding to dimensionless

time tD:

The three upper boundary conditions are

›�sDðxD; yD; zD ¼ 1; pÞ=›zD ¼ 0; ð13Þ

for a leaky confined aquifer

�sDðxD; yD; zD ¼ 1; pÞ ¼ 0; ð14Þ

for a leaky aquifer under a water reservoir that is

treated as a constant head boundary

s›�sDðxD;yD;zD ¼ 1;pÞ=›zD þp�sDðxD;yD;zD ¼ 1;pÞ¼ 0;

ð15Þ

for a leaky water table aquifer with instantaneous

drainage; or

s
›�sDðxD;yD;zD¼1;pÞ

›zD

þ
pa1D

pþa1D

�sDðxD;yD;zD¼1;pÞ¼0;

ð16Þ

for delayed yield drainage, where the dimensionless

specific ratio s and dimensionless delay index a1D are

also defined in Table 1.

2.2. Solution of drawdown

The above equations can be solved using the

Fourier transform in the z-direction first.

Superimposing the point sink solutions along

the horizontal well axis will yield the solution (Zhan

et al., 2001; Zhan and Park, 2002; Park and Zhan,

2002). Solution of Eq. (9) is:

�sD ¼
X1
n¼0

HnðxD; yD; pÞcosðvnzDÞ: ð17Þ

Table 1

Dimensionless variables

d0
D ¼

d0

d
a1D ¼

Ssd
2a1

Kz

LD ¼
L

d

ffiffiffiffiffi
Kz

Kx

s
g ¼

S0sKz

SsK
0

sD ¼
4p

ffiffiffiffiffiffiffi
KxKy

p
d

Q
s l ¼

K 0d

Kzd
0

tD ¼
Kz

Ssd
2

t �l ¼
K 0

d0
þ

K 00

d00

� �
d

Kz

s ¼
Ssd

Sy
m ¼

K 0

Kz

xD ¼
x

d

ffiffiffiffiffi
Kz

Kx

s
; yD ¼

y

d

ffiffiffiffiffi
Kz

Ky

s
;

zD ¼
z

d
; x0D ¼

x0

d

ffiffiffiffiffi
Kz

Kx

s
;

y0D ¼
y0

d

ffiffiffiffiffi
Kz

Ky

s
; z0D ¼

z0

d
;

zwD ¼
zw

d
:
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Substituting Eq. (17) into the upper boundary

conditions (13)–(16) will lead to the determination

of vn: Substituting Eq. (17) into Eq. (9) will result in

equations of Hn; which are then solved subject to

boundary condition (12).

2.2.1. Drawdown in a leaky confined

aquifer without aquitard storage

Appendix A shows that the dimensionless

drawdown near a pumping horizontal well, denoted

as sHD; is

sHDðtDÞ¼

ffiffi
p

p

LD

ðtD

0

1ffiffi
t

p

�
erf

�
LD=2þxD

2
ffiffi
t

p

�

þerf

�
LD=22xD

2
ffiffi
t

p

�	
exp

�
2

y2
D

4t

�

£

�
expð2ltÞþ2

X1
n¼1

cosðnpzwDÞcosðnpzDÞ

£expð2½n2p2þl�tÞ

	
dt; ð18Þ

where LD is the dimensionless horizontal-well screen

length defined in Table 1, and erfðxÞ is the error

function. When l¼0; there is no leakage and Eq. (18)

reduces to the solution for a confined aquifer by Zhan

et al. (2001).

2.2.2. Drawdown in an aquifer under a water

reservoir without aquitard storage

Substituting Eq. (17) into Eq. (14) results in:

vn ¼ npþ
p

2
; n ¼ 0; 1; 2; 3;… ð19Þ

Following the procedure in Appendix A, the

dimensionless drawdown in an aquifer under a water

reservoir is obtained

sHDðtDÞ¼

ffiffi
p

p

LD

ðtD

0

1ffiffi
t

p

�
erf

� LD

2
þxD

2
ffiffi
t

p

	
þerf

� LD

2
2xD

2
ffiffi
t

p

	�

£exp

�
2

y2
D

4t

	
2
X1
n¼0

cos

��
npþ

p

2

�
zD

	

£cos

��
npþ

p

2

�
zwD

	

£exp

�
2


�
npþ

p

2

�2

þl

�
t

	
dt; ð20Þ

where l–0 refers to a case in which a leaky aquitard

exists at the bottom of the aquifer. When l¼0; there is

no leakage, and the solution then refers to an aquifer

with a water reservoir at the upper boundary and a

no-flow boundary at the bottom.

2.2.3. Drawdown in a water table aquifer

without aquitard storage

Using a similar procedure as that employed by

Zhan and Zlotnik (2002) for a water table aquifer

(Appendix A), one can obtain the dimensionless

drawdown in the Laplace domain for a water table

aquifer with a leaky aquitard at the bottom as

follows

�sHDðpÞ¼
4

pLD

X1
n¼0

cos½vnzD�cos½vnzwD�

1þ0:5sinð2vnÞ

£
ðLD=2

2LD=2
K0½VnFðx0DÞ�dx0D; ð21Þ

where

V2
n¼v2

nþpþl; Fðx0DÞ¼½ðxD2x0DÞ
2þy2

D�
1=2
; ð22Þ

and vn is defined as

vntanðvnÞ¼p=s; n¼0;1;2;… ð23Þ

for an instantaneous drainage, and

vntanðvnÞ¼pa1D=½sðpþa1DÞ�; n¼0;1;2;… ð24Þ

for a delayed drainage.

When l ¼ 0; there is no leakage from the lower

aquitard and Eq. (21) becomes identical to that of

Zhan and Zlotnik (2002). Inversion of Laplace

transform of Eq. (21) will result in the drawdown in

the real time domain.

2.2.4. Generalization of the solution of drawdown

The above semi-analytical solutions can be

generalized by considering more realistic leaky

conditions. Eq. (1) considers one aquitard that is

either above or below the main aquifer. If there are

two aquitards, one above and one below the aquifer

with hydraulic conductivity K 0 and K 00 and thickness

d0 and d00 for the upper and lower aquitards,

respectively, then Eq. (1) is modified by adding one

term K 00ðh0 2 hÞ=dd00 on the right-hand side of the

equation if the adjacent aquifers have the same
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hydraulic head (h0). An effective leakage parameter

�l ¼
K 0

d0
þ

K 00

d00

� �
d

Kz

can be introduced for this case. Substituting �l for l in

the derived solution will result in the solution for this

generalized case.

3. Mathematical model II: with aquitard storage

3.1. Problem statement

When the leaky aquitard is thick, the storage water

from the aquitard can be significant, and its influence

upon flow inside the aquifer is non-negligible.

A mathematical model for such a case that includes

the aquitard storage effect is developed in this section.

The governing Eq. (9) is modified for this case as

follows

›2�sD

›x2
D

þ
›2�sD

›y2
D

þ
›2�sD

›z2
D

þG2p�sD

¼2
4p

p
dðxD2x0DÞdðyD2y0DÞdðzD2z0DÞ; ð25Þ

where the leakage term G is defined as

G¼m
›�s0D
›zD

�����
zD¼1

; ð26Þ

where �s0D refers to the dimensionless drawdown in the

aquitard in the Laplace domain, and m is related to

the hydraulic conductivity ratio between the aquitard

and aquifer (Table 1). The associated boundary

conditions are identical to what has been discussed

in the case without aquitard storage.

Only the vertical flow is considered in the aquitard.

Using a leaky confined aquifer as an example and

assuming that the aquitard is above the aquifer (Fig. 1),

Hantush (1960, Eq. (36)) provided a solution that

relates the drawdown of the aquitard to the aquifer as

�s0D ¼ �sD

sinhð½1 þ d0
D 2 zD�

ffiffiffiffi
gp

p
Þ

sinhðd0
D

ffiffiffiffi
gp

p
Þ

; ð27Þ

where d0
D is the dimensionless thickness of the

aquitard, and g is related to the specific storage ratio

between the aquitard and aquifer. Both are defined in

Table 1. Thus, the leakage term becomes:

G ¼ 2m
ffiffiffiffi
gp

p
cothðd0

D

ffiffiffiffi
gp

p
Þ�sD: ð28Þ

Substituting Eq. (28) into Eq. (25) results in the

following governing equation

72
�sD2C2

�sD¼2
4p

p
dðxD2x0DÞdðyD2y0DÞdðzD2z0DÞ;

ð29Þ

where

C¼½pþm
ffiffiffiffi
gp

p
cothðd0

D

ffiffiffiffi
gp

p
Þ�1=2: ð30Þ

A slight modification is needed if the aquitard is at

the bottom of the aquifer extending from z¼2d0 to

z¼0 (Fig. 1A). For this case, �s0D becomes:

�s
0
D¼�sD

sinhð½d0
DþzD�

ffiffiffiffi
gp

p
Þ

sinhðd0
D

ffiffiffiffi
gp

p
Þ

: ð31Þ

The leakage term G for this case becomes

G¼2m
›�s0D
›zD

�����
zD¼0

:

Equations for G and C for this case are identical to

Eqs. (28) and (30), respectively.

Appendix B shows the details of calculation for

this case.

4. Type curve and derivative type curve analyses

A graphically integrated MATLAB program

HW_LEAK for calculation of Eqs. (18) and (20)

and the spatial integration and the inverse Laplace

transform of Eq. (21) was developed. The integration

is carried out numerically using the Gaussian

Quadrature method (Abramowitz and Stegun, 1972,

p. 916; Press et al., 1989), and the numerical inverse

Laplace transform utilizes the Stehfest (1970)

algorithm. The MATLAB program is available from

the authors.

The default values of the parameters used in the

following analyses are shown in Table 2.

The piezometer is located at (1, 1, 5 m). Examples of

analyses based on these solutions are presented below.

In general, the derivative type curves, dsD=dðln tDÞ;

are more sensitive to the change of the aquitard

parameters than the type curves, and will be used as

the diagnostic tool if the type curves fail to show the

details of the transient aquifer responses.
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4.1. Type curves and derivative type curves

in a leaky confined aquifer

Figs. 2 and 3 show the sensitivity of the type

curves and the derivative type curves to the aquitard

thickness in a leaky confined aquifer without the

aquitard storage. Four different cases with

dimensionless aquitard thickness 0.01, 0.1, 1, and

10 are presented and compared with the case

without leakage. As expected, these type curves

become flat at the later time when the leakage

becomes the major water source. The type curve for

a thin aquitard case ðd0
D ¼ 0:01Þ is substantially

different from that of a confined aquifer case. The

differences among various cases are clearly shown

in the derivative type curves (Fig. 3). The derivative

type curves of the leaky aquifer drop sharply to zero

at the later time while the counterpart of the

confined aquifer becomes flat. This difference can

be used to distinguish the confined aquifers from the

leaky aquifers.

Figs. 4 and 5 are identical to Figs. 2 and 3

except that the aquitard storage is considered. A

few interesting observations follow from comparing

Figs. 4 and 5 to Figs. 2 and 3. First, when aquitard

storage is considered, the aquitard will release

water from storage soon after the pumping starts.

Thus, the type curves of the leaky aquifer case will

deviate from the confined aquifer type curve earlier

than their counterparts of the non-storage case.

Table 2

The default values used in this study

Parameter Default value

d 10 m

d0 1 m

Kx; Ky; Kz 0.0001 m/s

K 0 0.000001 m/s

L 100 m

Q 0.001 m3/s

Ss 0.00002 m21

S0s 0.001 m21

Sy 0.2

zw 5 m

a1 1

Location of the piezometer (1, 1, 5 m)

Fig. 2. Comparison of the type curves between a confined aquifer and leaky confined aquifer conditions for different aquitard thickness

(d0
D ¼ 10; 1, 0.1, and 0.01) without aquitard storage.
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Fig. 3. Comparison of the derivative type curves dsHD=dðln tDÞ between a confined aquifer and leaky confined aquifer conditions for different

aquitard thickness (d0
D ¼ 10; 1, 0.1, and 0.01) without aquitard storage.

Fig. 4. Comparison of the type curves between a confined aquifer and leaky confined aquifer conditions for different aquitard thickness

(d0
D ¼ 10; 1, 0.1, and 0.01) with aquitard storage ðS0s=Ss ¼ 50Þ:
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This is shown in Figs. 3 and 5. Second, because

the aquitard storage releases water soon after the

pumping starts, the aquitard now serves as a buffer

zone for the leakage. Thus, the leakage effect

is delayed if compared to the case without storage.

Fig. 5 shows that because the aquitard storage

releases water to the aquifer around the same

time as the aquifer releases its storage water,

the drawdown in the aquifer is smaller than that

observed in a confined aquifer. Furthermore,

when the aquitard thickness increases, the

aquitard storage effect becomes greater (Figs. 3

and 5).

Figs. 6 and 7 show the sensitivity of the

dimensionless drawdown to the aquitard/aquifer

specific storage ratio, S0
s=Ss: As expected, a higher

ratio implies greater amounts of water released

from the aquitard, resulting in a larger deviation

from the case without storage ðS0
s ¼ 0Þ: The specific

storage of the aquitard mostly affects the

intermediate time drawdown. Fig. 6 indicates that

the type curves are generally not very sensitive

to S0
s=Ss:

Analysis of the increasing aquitard/aquifer

hydraulic conductivity ratio, K 0=Kz; is found to be

identical to that caused by increasing d0
D when the

aquitard storage is negligible, because the

drawdown only depends on l ¼ K 0d=Kzd
0:

Thus decreasing K 0=Kz is equivalent of increasing

d0
D: Figs. 8 and 9 show the sensitivity of the

dimensionless drawdown to K 0=Kz when the

aquitard storage is considered. Eqs. (27)–(30)

indicate that the drawdown depends on d0
D; S0

s=Ss;

and K 0=Kz for this case. The case without aquitard

storage is different; decreasing K 0=Kz is not exactly

equivalent to increasing d0
D (Figs. 4, 5, 8 and 9).

A greater K 0=Kz implies a rapid release of the

storage water from the aquitard and a faster speed

of leakage across the aquitard, which is a departure

from the non-leaky curve.

4.2. Type curves and derivative type curves

in a leaky aquifer under a water reservoir

In general, type curves and derivative type

curves in a leaky aquifer under a water reservoir

Fig. 5. Comparison of the derivative type curves dsHD=dðln tDÞ between a confined aquifer and leaky confined aquifer conditions for different

aquitard thickness (d0
D ¼ 10; 1, 0.1, and 0.01) with aquitard storage ðS0

s=Ss ¼ 50Þ:
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Fig. 6. Comparison of the type curves between a case without the aquitard storage and cases with different aquitard storage coefficients

(S0s=Ss ¼ 500; 50, and 5) in leaky confined aquifers.

Fig. 7. Comparison of the derivative type curves dsHD=dðln tDÞ between a case without aquitard storage and cases with different aquitard storage

coefficients (S0s=Ss ¼ 500; 50, and 5) in leaky confined aquifers.
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Fig. 8. Comparison of the type curves between a confined aquifer and leaky confined aquifers with different aquitard hydraulic conductivities

(K 0=Kz ¼ 0:1; 0.01, 0.001, and 0.0001) with aquitard storage ðS0s=Ss ¼ 50Þ:

Fig. 9. Comparison of the derivative type curves dsHD=dðln tDÞ between a confined aquifer and leaky confined aquifers with different aquitard

hydraulic conductivities (K 0=Kz ¼ 0:1; 0.01, 0.001, and 0.0001) with aquitard storage ðS0s=Ss ¼ 50Þ:
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are less sensitive to the aquitard parameters

compared to a case of a leaky confined aquifer.

This is because the aquifer can be fed by two water

sources in addition to the water in the aquifer

storage: one from the upper water reservoir, and

another from the lower adjacent layer. The water

reservoir is the second important water source after

the aquifer storage, because it is in direct contact

with the aquifer. One can see only small changes

to the type curves during the intermediate

time when varying S0
s from 0.01 to 0.0001

(Figs. 10 and 11).

4.3. Type curves and derivative type curves

in a leaky water table aquifer

The response of a leaky water table aquifer to

the pumping combines traits of responses of a

leaky confined aquifer and a leaky aquifer under a

water reservoir. In this case, water drained under

the moving water table becomes the dominated

water source at the later time, thus the leakage

from the lower aquitard becomes less important.

Respectively, the type curves are less sensitive to

the aquitard parameters when compared to the

leaky confined aquifer. However, water drainage

from the water table yields less water than the

upper water reservoir that is treated as constant

head. Thus, the type curves in a water table aquifer

are more sensitive to the aquitard parameters than

in the case of an aquifer under a water reservoir

(Figs. 12–15).

Figs. 12 and 13 show weak sensitivity to the

dimensionless aquifer thickness when the aquitard

storage is not considered, and this sensitivity is

less profound than that in Figs. 2 and 3. Figs. 14

and 15 show similar sensitivity to the dimension-

less aquitard thickness as Figs. 12 and 13 when

the aquitard storage is considered. In fact, the

difference between Figs. 12 and 14 or between

Figs. 13 and 15 is at the early and intermediate

time. When including the aquitard storage, the

aquitard will release water soon after the pumping

starts. Therefore, the drawdown at the early time

will be smaller than that in the non-storage

aquitard case.

Fig. 10. Comparison of the type curves between a case without the aquitard storage and cases with different aquitard storage coefficients

(S0s=Ss ¼ 500; 50, and 5) for leaky aquifers under water reservoirs.
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Fig. 11. Comparison of the derivative type curves dsHD=dðln tDÞ between a case without aquitard storage and cases with different aquitard storage

coefficients (S0s=Ss ¼ 500; 50, and 5) for aquifers under water reservoirs.

Fig. 12. Comparison of the type curves between a water table aquifer and leaky water table aquifers with different aquitard thickness (d0
D ¼ 1;

0.1, and 0.01) without aquitard storage.
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Fig. 13. Comparison of the derivative type curves dsHD=dðln tDÞ between a water table aquifer and leaky water table aquifers with different

aquitard thickness (d0
D ¼ 1; 0.1, and 0.01) without aquitard storage.

Fig. 14. Comparison of the type curves between a water table aquifer and leaky water table aquifers with different aquitard thickness (d0
D ¼ 1;

0.1, and 0.01) with aquitard storage (S0s=Ss ¼ 50).
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5. Conclusions

This study provides a general computational tool

for studying groundwater flow to a horizontal well in a

leaky confined aquifer, an aquifer under a water

reservoir and a leaky aquitard at the bottom, and a

water table aquifer with a leaky aquitard at the bottom.

It considers two different approaches in treatment of

the aquitard properties: with and without the aquitard

storage. The solution for a point sink is first derived

and then the superposition technique is used for

derivation of the solution for a horizontal well.

The type curves and derivative type curves of

groundwater flow to a horizontal well under different

aquifer conditions are analyzed. A graphically inte-

grated MATLAB program (HW_LEAK) is used for

the generation of the type curves and derivative type

curves. These curves are important tools for interpret-

ation of the horizontal well pumping data in leaky

aquifers. The sensitivity analyses of the type curves

and derivative type curves show the following

conclusions:

1. In general, the derivative type curves are more

sensitive to the aquitard parameters than the

drawdown type curves. They can be used as

diagnostic tools to the drawdown data when the

type curves fail to recognize the aquifer

properties.

2. The type curves and derivative type curves are

usually sensitive to the aquitard/aquifer thickness

ratio and the hydraulic conductivity ratio at the

intermediate and later times. They are generally

less sensitive to the aquitard/aquifer specific

storage ratio. The most noticeable effect of the

aquitard storage occurs at intermediate time.

3. Type curves and derivative type curves are most

sensitive to the aquitard parameters in a leaky

confined aquifer case. They are less sensitive to

those parameters in a leaky aquifer under a water

reservoir because the water reservoir serves as

the major water source soon after the pumping

start, and it substantially surpasses

the contribution from the aquitard leakage. The

sensitivity to the aquitard parameters in a leaky

Fig. 15. Comparison of the derivative type curves dsHD=dðln tDÞ between a water table aquifer and leaky water table aquifers with different

aquitard thickness (d0
D ¼ 1; 0.1, and 0.01) with aquitard storage (S0s=Ss ¼ 50).
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water table aquifer case is between cases of a

leaky confined aquifer and a leaky aquifer under

a water reservoir.
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Appendix A. Drawdown in a leaky confined

aquifer without aquitard storage

Substituting Eq. (17) into Eq. (13) results in:

vn ¼ np; n ¼ 0; 1; 2; 3;… ðA1Þ

Substituting Eq. (17) into Eq. (9), multiplying by

cosðvnzDÞ; and integrating from 0 to 1 in the zD

direction results in the following two equations

›2H0

›x2
D

þ
›2H0

›y2
D

2 ðpþlÞH0

þ
4p

p
dðxD 2 x0DÞdðyD 2 y0DÞ ¼ 0; ðA2Þ

and

›2Hn

›x2
D

þ
›2Hn

›y2
D

2ðpþlþv2
nÞHnþ

8p

p
dðxD2x0DÞ

£ dðyD2y0DÞcosðvnzwDÞ¼0; n.0; ðA3Þ

where zw and zwD are the dimensional and

dimensionless distances from the horizontal well to

the aquifer lower boundary, respectively.

The solutions to above problems are similar to

what has been discussed by Zhan et al. (2001), and

Zhan and Park (2002), and are given below

H0 ¼
2

p
K0 rD

ffiffiffiffiffiffiffi
p þ l

p �
; ðA4Þ

Hn¼
4cosðvnzwDÞ

p
K0ðrD

ffiffiffiffiffiffiffiffiffiffiffiffi
pþv2

nþl

q
Þ; n.0; ðA5Þ

where rD¼½ðxD2x0DÞ
2þðyD2y0DÞ

2�1=2; and K0 is

the zero-order, second kind modified Bessel func-

tion. The point sink solution in Laplace domain

becomes:

�sD¼
2

p
K0ðrD

ffiffiffiffiffiffiffi
pþl

p
Þ

þ
X1
n¼1

4cosðvnzwDÞcosðvnzDÞ

p
K0ðrD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pþv2

nþl

q
Þ:

ðA6Þ

The point sink solution in the real time domain is

obtained by conducting the inverse Laplace trans-

form of Eq. (A6)

sDðtDÞ¼W
r2

D

4tD

;rD

ffiffi
l

p
 !

þ2
X1
n¼1

cosðvnzwDÞ

�cosðvnzDÞW
r2

D

4tD
;rD

ffiffiffiffiffiffiffiffi
v2

nþl

q !
; ðA7Þ

where W is the leaky well function used by Hantush

(1964). The solution to a horizontal well is obtained

by integrating Eq. (A7) along the well axis

sHDðtDÞ¼
1

LD

�ðLD=2

2LD=2
W

�
r2

D

4tD
;rD

ffiffi
l

p
�

dx0D

þ2
X1
n¼1

cosðvnzwDÞcosðvnzDÞ

�
ðLD=2

2LD=2
W

�
r2

D

4tD

;rD

ffiffiffiffiffiffiffiffi
v2

nþl

q �
dx0D

	
; ðA8Þ

where sHD refers to the drawdown generated by a

horizontal well. Integration of Eq. (A8) is similar to

what has been discussed in Zhan et al. (2001), and

Zhan and Park (2002):

sHDðtDÞ ¼

ffiffi
p

p

LD

ðtD

0

1ffiffi
t

p

�
erf

�
LD=2þ xD

2
ffiffi
t

p

�

þ erf

�
LD=22 xD

2
ffiffi
t

p

�	
exp

�
2

y2
D

4t

��
expð2ltÞ

þ2
X1
n¼1

cosðnpzwDÞcosðnpzDÞ

£expð2½n2p2 þl�tÞ

	
dt: ðA9Þ
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Appendix B. Drawdown in a leaky confined aquifer

with aquitard storage

Substituting Eq. (17) into Eq. (29), multiplying

by cosðvnzDÞ; and integrating from 0 to 1 in the zD

direction results in the equation of Hn: These

solutions are then solved using the method

provided by Zhan et al. (2001), and Zhan and

Park (2002). The point sink/source results in

Laplace domain are as follows:

In a leaky confined aquifer,

�sD¼
X1
n¼0

4cosðnpzwDÞcosðnpzDÞ

p
K0 rD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2þC2

p �
:

ðA10Þ

In a leaky aquifer under a water reservoir,

�sD¼
X1
n¼0

4cos npþ
p

2

� 	
zwD

� �
cos npþ

p

2

� 	
zD

� �
p

£K0 rD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npþ

p

2

� �2

þC2

s0
@

1
A: ðA11Þ

In a water table aquifer,

�sD¼
4

p

X1
n¼0

cosðvnzwDÞcosðvnzDÞ

1þ0:5sinð2vnÞ
K0 rD

ffiffiffiffiffiffiffiffiffiffi
v2

nþC2

q� �
;

ðA12Þ

where vn and rD are the same as that used in the case

without the aquitard storage.
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