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Abstract

Predicting the behavior of volatile organic compounds in soils or sediments is necessary for managing their use and designing

appropriate remedial systems to eliminate potential threats to the environment, particularly the air and groundwater resources.

In this effort, based on continuity of mass flux, we derive a mass flux boundary condition of the third type in terms of physically

based mass transfer rate coefficients, describing the resistance to mass inflow of the soil–air interface, and obtain one-

dimensional analytical solutions for transport and degradation of volatile organic compounds in semi-infinite structured soils

under steady, unsaturated flow conditions. The advective–dispersive mass balance formulation allows for mobile–immobile

liquid phase and vapor diffusive mass transfer, with linear equilibrium adsorption and liquid–vapor phase partitioning in the

dynamic and stagnant soil regions. The mass transfer rate coefficients of volatile organic chemicals across the soil–air interface

are expressed in terms of solute properties and hydrodynamic characteristics of resistive soil and air-boundary layers. The

solutions estimate solute vapor flux from soil surface and describe mobile-phase solute concentration as a function of depth in

the soil and time. In particular, solutions were derived for: (1) zero-initial concentration in the soil profile subject to a

continuous and pulsed source at the soil surface; and (2) depletion from the soil following an initially contaminated soil profile.

Sensitivity analysis with respect to different dimensionless parameters is conducted and the effect on solute concentration and

vapor flux of such parameters as volatilization mass transfer velocity relative to infiltration, soil Peclet number, biochemical

decay, and diffusive mass transfer into the immobile phase, is plotted and the results are discussed. The mass transfer rate

coefficients and the analytical solutions are applied to simulate transport of an example volatile organic compound in an

aggregated soil. The simulated results indicate that macropore-aggregate vapor phase diffusion may profoundly impact

transport of volatile compounds in aggregated soils.
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1. Introduction

Gas-phase transport affects the fate and transport of

volatile organic chemicals (VOCs) in unsaturated

soils and can have important environmental
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consequences. Disposal of organic waste in landfills

and land treatment systems, accidental chemical

spills, and leaky storage tanks, are potential con-

tributors to air and groundwater pollution, by

volatilization from the soil surface and downward

migration to ground water through the vadose zone.

Widespread use of soil fumigants, although useful for

increasing crop production, has also contributed to air

pollution and groundwater contamination. Under-

standing the transport and fate of organic chemicals

is not only useful for assessing their behavior in the

environment, but also in the management of organic

waste and agricultural chemicals, and the remediation

of VOCs by soil venting or vacuum extraction. In this

regard, mathematical models describing the move-

ment and fate of chemicals are effective tools for

predicting their behavior in the environment, mana-

ging their use and/or disposal, and for the design of

effective land treatment and remedial strategies.

This paper presents a mathematical model for

transport and degradation of VOCs in three-phase,

two-region (aggregated) unsaturated soils. The pro-

cesses of mobile–immobile phase diffusion (e.g.

between macropores and aggregates) of soluble and

gaseous phases and volatilization from the soil surface

are particularly emphasized. Transport in dual-

porosity soils (structured or mobile–immobile phase

porous media) is often characterized by early initial

breakthrough and an asymmetric concentration profile

with extended tailing (Coats and Smith, 1964; van

Genuchten and Wierenga, 1976; Gaudet et al., 1977;

Rao et al., 1980; Rasmuson and Neretnieks, 1980;

DeSmedt and Wierenga, 1984; Valocchi, 1985;

Brusseau, 1992). This phenomenon has also been

reported in the literature for stratified porous media

and fractured media (Grisak and Pickens, 1980, 1981;

Tang et al., 1981; Gillham et al., 1984; Güven et al.,

1984; Sudicky et al., 1985; Shapiro, 1987; Tang and

Aral, 1992; Piquemal, 1993; Li et al., 1994; Hantush

and Mariño, 1998a,b). The early initial breakthrough

may be the result of the water flow being confined to a

fraction of the total pore space due to existing stagnant

water regions or pockets occupying the remaining

fraction; thus, leading to a faster water flow than that

predicted on the basis of flow through the entire pore

space. The asymmetric concentration profile and

extended tailing may be caused by physical or

transport related nonequilibrium, resulting from

diffusive mass transfer between the dynamic (mobile)

and stagnant (immobile) water regions, and sorption-

related nonequilibrium resulting from rate-limited

sorption–desorption processes (van Genuchten and

Wagenet, 1989; Brusseau et al., 1989; Haggerty and

Gorelick, 1995). These studies presented mathemat-

ical models in which equilibrium and nonequilibrium

sorption–desorption occur at multiple sites, with

physical nonequilibrium resulting from mobile–

immobile phase transport.

The advent of soil venting or vacuum extraction as

a means for the removal of volatile organic com-

pounds and the impact these compounds and agri-

cultural pesticides can have on the environment when

released to the atmosphere, has increased the interest

in modeling gas phase transport in soils (Jury et al.,

1983; Hutzler et al., 1989; Gierke et al., 1990;

Brusseau, 1991; Gierke et al., 1992; Yates et al.,

1993; Batterman et al., 1995; Johnson et al., 1996;

Zaidel et al., 1996; Yates et al., 2000; Hantush et al.,

2002). Choy and Reible (2000) provided a compen-

dium of analytical solutions describing volatilization

from the soil surface of initially contaminated semi-

infinite and finite soil profiles. They also considered

stratified initial concentration and multi-layered soil

systems, with time-dependent soil–air partition coef-

ficients. The effect of intra-aggregate (liquid) diffu-

sion and rate-limited/instantaneous sorption, on solute

vapor transport has also been analyzed (Gierke et al.,

1990; Braussea, 1991; Gierke et al., 1992; Hantush

et al., 2002). Gierke et al. (1990), however, considered

mass transfer resistance at the air–water interface, in

which mass transfer from solution to vapor phase is

considered rate-limited.

Although the utility of analytical solutions is

limited by the simplifying assumptions, they are

useful for: (1) elucidating the relative importance of

interacting processes; (2) designing and interpreting

data from column studies; (3) screening of chemicals;

and (4) validating the performance of complex

numerical algorithms. The mathematical model for-

mulated in this paper is based on partial differential

equations describing mass balance of volatile organics

in three-phases and in aggregated soil. The mobile–

immobile phase system of equations is shown to be

essentially similar to that developed by van Genuch-

ten and Wagenet (1989), however, extended here to

transport of VOCs with mobile–immobile phase
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diffusion of solute in solution and vapor phases. The

latter occurs due to nonequilibrium of liquid phase

concentrations in partially saturated mobile and

immobile regions. Explicit expressions are derived,

which describe soil surface resistance to VOCs’ mass

flux across the soil –air interface. Further, the

equations are solved in a semi-infinite soil profile

for three different boundary and initial conditions:

(1) zero-initial concentrations with instantaneous

flushing of mass from depth of incorporation;

(2) zero-initial concentrations and time-dependent

and pulsed-type sources introduced at a rate equal to

the infiltration rate; and (3) flushing of a contaminated

soil profile, with uniform initial concentration in each

of the mobile and immobile phases. We later use the

solutions to conduct sensitivity analyses and demon-

strate their applicability through an example.

2. Mathematical development

2.1. Mass balance formulation

The conceptual framework underlying the model

development herein is shown in Fig. 1. Fig. 1(a) shows

an overview of the solution domain and an aggregated

Fig. 1. (a) Illustrations of soil profile and mobile–immobile phase transport in aggregated soil, and (b) conceptual two-region multiphase

(liquid, solid, and air) transport model with advection–dispersion normal to the page.

M.M. Hantush, R.S. Govindaraju / Journal of Hydrology 279 (2003) 18–4220



soil, with mobile–immobile phase (macropore-aggre-

gate) transport. Fig. 1(b) shows typical liquid–vapor–

solid phases in macropores and aggregates, and related

mobile–immobile phase mass transfer. Under unsatu-

rated soil conditions, vapor transport may occur by

diffusion between macropores and aggregates through

interconnected air-occupied pore space. At contact

surfaces between the liquid and solid phase, mass

transfer can occur by adsorption and desorption in the

macropores and aggregates. In our two-region model,

we allow for mobile–immobile phase vapor diffusion

and assume that it—as the case of liquid phase

diffusion—affects the behavior of VOCs in partially

saturated soils.

The two-region model presented here and the

analyses that follow are based on these assumptions:

(1) equilibrium liquid–vapor partitioning; (2) linear

equilibrium liquid–solid phase sorption isotherms;

(3) steady-state flow in a semi-infinite and uniform

soil profile; (4) mobile–immobile phase mass transfer

(liquid and vapor) is limited by a first-order diffusion

process; and (5) transport of solute vapor from soil

surface (i.e. volatilization) occurs through thin,

resistive soil and air-boundary layers (Fig. 2).

Mass balance of volatile solutes in mobile and

immobile regions may be described by these

equations:

›umCm

›t
þ

›kmCvm

›t
þ fmrb

›Sm

›t

¼
›

›z
umDl

›Cm

›z
2qCm

� �
þ

›

›z
kmDvm

›Cvm

›z

� �

2alðCm 2CimÞ2avðCvm 2CvimÞ2umklmCm

2kmkvmCvm 2 fmrbksmSm ð1Þ

›uimCim

›t
þ

›kimCvim

›t
þ fimrb

›Sim

›t

¼alðCm 2CimÞþavðCvm 2CvimÞ2uimklimCim

2kimkvimCvim 2 fimrbksimSim ð2Þ

in which Cm and Cim are concentrations of solute in

solution in mobile and immobile phases, respectively

[ML23]; Cvm are Cvim are solute vapor concentrations

in mobile and immobile regions, respectively

[ML23]; q is soil flow rate per unit area [LT21]; um

is volumetric water content in mobile region; uim is

volumetric water content in immobile region; klm is

first-order liquid phase degradation rate in mobile

region [T21]; klim is first-order liquid phase degra-

dation rate in immobile region [T21]; km is volumetric

air content in mobile region; kim is volumetric air

content in immobile region; Dl is liquid-phase soil

dispersion coefficient [L2T21]; kvm is first-order solute

vapor degradation rate in mobile region [T21]; kvim is

first-order solute vapor degradation rate in immobile

region [T21]; Dvm is gaseous diffusion coefficient in

mobile region [L2T21]; al is first-order mass transfer

rate coefficient for liquid phase [T21]; av is first-order

mass transfer rate coefficient for vapor phase [T21];

Sm is sorbed phase concentration in mobile region

[MM21]; Sim is sorbed phase concentration in

immobile region [MM21]; fm is fraction of sorbent

in contact with mobile water; rb is soil bulk density

[ML23]; fim ¼ 12 fm is fraction of sorbent in contact

with immobile water; ksm is first-order degradation

rate of adsorbed phase in mobile region [T21]; ksim is

first-order degradation rate of adsorbed phase in im-

mobile phase [T21]; t is time [T]; and z is distance [L].

These equations apply to both soil regions as a

whole irrespective of whether the sorption process is

rate-limited or at equilibrium, and they account for

first-order vapor mass transfer between the mobile and

immobile regions.

We consider linear equilibrium sorption isotherms

Sm ¼ KdCm; Sim ¼ KdCim ð3Þ

and assume that vapor concentration is linearly related

to solution concentration (Henry’s law),

Cvm ¼ KHCm Cvim ¼ KHCim ð4Þ

Fig. 2. A schematic diagram of soil–air interface model.
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in which Kd is the soil–water distribution coefficient

[L3M21]; and KH is the dimensionless Henry’s

constant. Substituting Eqs. (3) and (4) for Sm; Sim;

Cvm; and Cvim; into Eqs. (1) and (2), one obtains for

steady state flow in a uniform medium these equations

umRm

›Cm

›t
¼ umDm

›2Cm

›z2
2q

›Cm

›z
2umRmkmCm

2umaðCm 2CimÞ ð5Þ

uimRim

›Cim

›t
¼ umaðCm 2CimÞ2uimRimkimCim ð6Þ

in which the effective solution phase dispersion

coefficient Dm is given by

Dm ¼Dl þ
kmDvmKH

um

ð7Þ

and the effective liquid-phase first-order rate transfer

coefficient, and effective liquid-phase degradation

rates in the mobile and immobile regions, respect-

ively, are given by

a¼
al þKHav

um

ð8Þ

km ¼ 1þ
fmrbKd

um

ksm

klm

þ
kmKH

um

kvm

klm

� �
1

Rm

klm ð9Þ

kim¼ 1þ
fimrbKd

uim

ksim

klim

þ
kimKH

uim

kvim

klim

� �
1

Rim

klim ð10Þ

where

Rm ¼ 1 þ
kmKH þ fmrbKd

um

;

Rim ¼ 1 þ
kimKH þ fimrbKd

uim

ð11Þ

Rm and Rim are the retardation factors in the mobile

and immobile phases, respectively.

Dividing both sides of Eqs. (5) and (6) by um and

adding the latter to the former yields

Rm

›Cm

›t
þ bRim

›Cim

›t
þ bkimRimCim

¼ 2
›Fm

›z
2 kmRmCm ð12Þ

in the mobile phase, and

bRim

›Cim

›t
þ bkimRimCim ¼ aðCm 2 CimÞ ð13Þ

in the immobile phase, where

Fmðz; tÞ ¼ 2Dm

›Cmðz; tÞ

›z
þ uCmðz; tÞ ð14Þ

in which b ¼ uim=um; and u ¼ q=um is the average

pore-water velocity in the dynamic soil region

[LT21]. Its worth noting that if sufficient pressure

gradient is applied to induce gas advection at a flux

rate of v (positive along the z axis), then, in this case,

u ¼ ðq þ vKHÞ=um: In essence, Eqs. (12) and (13) can

describe gas advection during soil venting or vacuum

extraction (Brusseau, 1991). For nonvolatile com-

pounds Eqs. (13) and (14), although remain similar in

form, reduce to those originally developed by van

Genuchten and Wagenet (1989), with the parameters

Eqs. (8)–(11) redefined accordingly. Hantush and

Mariño (1998a) arrived at a similar system, which

describes transport of nonvolatile reactive contami-

nant in a two-layer stratified system, under saturated

flow conditions.

In the absence of soil surface resistance, the

following initial and boundary conditions may be

considered:

Cimðz; 0Þ; Cmðz; 0Þ ¼ 0 ð15aÞ

2kmDvm

›Cvmð0; tÞ

›z
¼ 2Da

Cvmð0; tÞ2 Cp
vðtÞ

d
ð15bÞ

2umDl

›Cmð0;tÞ

›z
þqCmð0;tÞ¼ModðtÞþqCp

l ðtÞ ð15cÞ

›Cm

›z
;
›Cim

›z
¼0; z!1 ð15dÞ

in which Cp
vðtÞ is solute vapor concentration above the

air-boundary layer [ML23]; Cp
l ðtÞ is liquid solute

concentration entering soil surface at a constant rate q

(e.g. precipitation or irrigation) [ML23]; Da is the

vapor diffusion coefficient in free air [L2T21]; Mo is

initial mass per unit area within depth of incorporation

[ML22]; dðtÞ is the Dirac delta function [T21].

Depending on the actual system under consideration,

the two boundary-source terms on the right-hand-side

of Eq. (15c) need not be accounted for simul-

taneously. For example, in the absence of an external

source, Cp
l ðtÞ¼0:
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The total mass flux at the soil–air interface is given

by Fmð0; tÞ; which is the sum of Eqs. (15b) and (15c).

Assuming zero vapor concentration above the surface

ðCp
vðtÞ ¼ 0Þ; it is given by

umFmð0; tÞ ¼ 2sCmð0; tÞ þ ModðtÞ þ qCp
l ðtÞ ð16Þ

where

s ¼ KHDa=d ð17Þ

in which we used the Henry’s law relation Cvmðz; tÞ ¼

KHCmðz; tÞ; and Cp
v ðtÞ ¼ 0: Eq. (16) describes volatil-

ization from soil surface, advective liquid phase solute

source, and rapid flushing of solute mass from a thin

topsoil layer (depth-of-incorporation). The parameter

s describes the rate of solute vapor mass transfer at

the soil-air interface (i.e. volatilization mass transfer

velocity). We note that Eqs. (16) and (17) ignore soil

resistance to mass transfer and account only for air

resistance.

For applications related to land treatment sys-

tems, contaminated sediments may be sealed from

the environment by a cap layer that provides

resistance to solute vapor mass transfer in addition

to minimizing infiltration rates significantly. Surface

crusts and compacted topsoil layers also present

interface resistance to diffusive and advective mass

transfer (Yates et al., 2000). In the presence of such

layers, solute flux through the layers may be

described by a third-type boundary condition,

expressed in terms of unknown rate transfer

parameter (Yates et al., 2000). The rate transfer

parameter is usually estimated by calibration, since

no expressions are currently available to estimate

this parameter. In the following section we derive a

general form for the flux boundary condition (16) in

terms of mass transfer rate coefficients that describe

the resistance to solute mass flow at the soil–air

interface, as shown in Fig. 2. The coefficients extend

the utility of the analytical solutions to transport of

VOCs in soil with a distinct, thin resistive layer at

the surface.

2.2. Effective mass transfer rate coefficient

Fig. 2 shows the two-layer system of soil crust and

air-boundary layer under consideration. In deriving a

general form for the flux boundary condition (16), we

make two main assumptions. First, the residence time

in the resistive soil layer is too small for degradation

to significantly impact the solute concentration.

Secondly, the sorptive process is too slow relative to

the rate of fluid flow in the layer, for adsorption to

affect liquid phase concentration. Based on these

assumptions, transport of solute in vapor and soluble

phases through the resistive soil layer may be

described by this equation:

uc

›Clc

›t
þ kc

›Cvc

›t

¼
›

›z
kcDvc

›Cvc

›z

� �
þ

›

›z
ucDlc

›Clc

›z

� �
2 q

›Clc

›z

ð18Þ

in which Clc is liquid-phase concentration in the

resistive soil layer [ML23]; Cvc is solute vapor

concentration in the resistive layer [ML23]; uc is

volumetric water content of the resistive layer

[L3L23]; kc is volumetric air content of the resistive

layer [L3L23]; Dvc is resistive-layer gaseous diffusion

coefficient [L2T21]; and Dlc is dispersion coefficient in

the resistive layer [L2T21]. For convenience, we

redefine the origin of z to be at the upper boundary of

the layer whose thickness is l [L]. The use of

equilibrium vapor-soluble phase partitioning relation-

ship Cvc ¼ KHClc in Eq. (18) leads to a mass balance

equation expressed in terms of the soluble concen-

tration,

ðuc þ KHkcÞ
›Clc

›t
¼

›

›z
ucDc

›Clc

›z

� �
2 q

›Clc

›z
ð19Þ

in which the effective liquid-phase dispersion is

given by

Dc ¼ Dlc þ KH

kc

uc

Dvc ð20Þ

Comparison of the order of magnitudes of the

dispersive and advective terms on the right-hand-side

of Eq. (19) with the time-derivative term on left-hand-

side reveals that

ðuc þ KHkcÞ
›Clc

›t

����
����p ›

›z
ucDc

›Clc

›z

� �����
����; q

›Clc

›z

����
����
ð21Þ

if

t q ðl2
=DcÞ 1 þ KH

kc

uc

� �
; lðuc þ KHkcÞ=q ð22Þ
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in which l is the thickness of resistive layer [L]. Under

either condition, the partial derivative term with

respect to time can be neglected relative to the

dispersive and/or advective terms on the right-hand

side of Eq. (19), and the concentration in the solution

phase, in this case, is at quasi-steady state. For purely

diffusive transport, the first constraint in Eq. (22) is

required. Based on condition (22), the partial deriva-

tive with respect to time can be dropped and Eq. (19) is

simplified to

›

›z
ucDc

›Clc

›z

� �
2 q

›Clc

›z
¼ 0 ð23Þ

In which we retained the partial derivative terms to

emphasize that Clc still is a function of t: In Appendix

A we solve Eq. (23) subject to these boundary

conditions (see Fig. 2)

2kcDvc

›Cvcð0; tÞ

›z
¼ 2Da

Cvcð0; tÞ2 Cp
vðtÞ

d
ð24aÞ

2ucDlc

›Clcð0; tÞ

›z
þ qClcð0; tÞ ¼ qCp

l ðtÞ ð24bÞ

Note that although Eq. (23) is essentially an ordinary

differential equation, its solution subject to the time-

dependent boundary conditions (24a) and (24b)

actually is a function of time. The solution of Eqs.

(23), (24a) and (24b) is shown in Appendix A to yield

this flux boundary condition

umFmð0; tÞ ¼ 2sCmð0; tÞ þ mvCp
vðtÞ þ mlC

p
l ðtÞ

þ ModðtÞ ð25Þ

where

s ¼
KH

q

ePc21

KH þ d
Da

q ePc

ePc21

ð26Þ

mv ¼
q ePc

ePc21

KH þ d
Da

q ePc

ePc21

ð27Þ

ml ¼ q2 d

Da

ePc

ePc 2 1
KHþ

d
Da

q
ePc

ePc21

ð28Þ

in which Pc ¼ ql=ðucDcÞ is the resistive-layer Peclet

number. These mass transfer rate parameters are based

on the quasi-steady-state transport and negligible

impact of degradation and adsorption within the

resistive soil layer.

Recall that Eq. (16) applies to the case of no

resistive soil layer, in which case, by taking the limits

l ! 0 and Pc ! 0 in Eqs (27)–(28), respectively, one

obtains the rather expected results: s ¼ KHDa=d;

mv ¼ Da=d; and ml ¼ q: For purely diffusive transport,

we have q ¼ 0; limq!0 ½q=ðe
Pc 2 1Þ� ¼ ucDc=l; and

Eqs. (26)–(28) become

s ¼
ucDc

l

KH

KH þ
d

Da

ucDc

l

;

mv ¼
ucDc

l

1

KH þ
d

Da

ucDc

l

; ml ¼ 0

ð29Þ

Eqs. (26)–(28) describe the rate of mass transfer

across the soil–air interface in wet soils, with the

solute liquid-vapor partitioning, fluid advection, gas

diffusion, longitudinal dispersion, and geometry

accounted for explicitly.

2.3. Solutions

We limit the solutions herein to the mobile-phase

concentrations, Cm; and consider first, the case of a

source at soil surface with zero initial concentrations

throughout a semi-infinite soil profile, and second, a

soil profile with uniform mobile–immobile initial

concentrations subject to infiltration and no source at

soil surface. Since Eqs. (12) and (13) are linear, a

solution for a combination of both source at soil

surface and uniform initial concentrations can be

obtained by superposition of individual solutions.

We will consider a time-dependent source, instan-

taneous flushing of mass from soil surface (i.e. from

depth of incorporation), and a pulsed-type source.

We use the general flux boundary condition (25) to

obtain solutions for exponentially decaying solute

concentration entering soil surface, Cp
l ðtÞ ¼ Cpe2a1t

(Govindaraju et al., 1996), however, for zero vapor

concentration above the air-boundary layer, Cp
v ðtÞ ¼ 0:

Solutions for a constant or exponentially decaying

vapor concentration above the air-boundary layer can

be easily deduced.
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2.3.1. Time dependent source with zero-initial

concentration

The solution of Eqs. (12) and (13) subject to initial

condition (15a) and boundary conditions (15d) and

(25) is obtained using Laplace transformation, the

details of which are shown in Appendix B. We

express the solution in terms of the dimensionless

variables:

Cp
mðz

p
; tpÞ ¼ Cmðz; tÞ=C0; g ¼ ðml=qÞC

p
=C0; tp

¼ t=Tr; zp ¼ z=h; l ¼ s=q; ap

¼ aTr=Rm; kpm ¼ kmTr; kpim

¼ kimTr; 1 ¼ bRim=Rm; ap
1

¼ a1Tr; Kp ¼ ðkpim þ ap
=1Þ ð30Þ

where C0 ¼ Mo=ðqTrÞ ¼ Mo=ðhumRmÞ is a character-

istic initial liquid-phase solute concentration within

soil depth h; h is a characteristic soil depth, chosen

arbitrarily [L]; and Tr ¼ hRm=u is the residence time.

Cp
mðz

p
; tpÞ

¼
ffiffi
P

p
Fðzp; tpÞ þ

ffiffi
P

p
g
ðtp

0
e2ap1ðt

p2tÞh1ðz
p
; tÞcðtÞdt

ð31Þ

where Fðzp; tpÞ ¼
ffiffiffi
Tr

p
f ðz; tÞ; f ðz; tÞ is given in Appen-

dix B

Fðzp; tpÞ ¼
apffiffi
1

p
ðtp

0

ffiffiffiffiffiffiffiffiffi
t

tp 2 t

r
I1

2apffiffi
1

p
ffiffiffiffiffiffiffiffiffiffiffi
ðtp 2 tÞt

p
 �
� e2Kpðtp2tÞgpðzp; tÞdtþ gpðzp; tpÞ ð32Þ

gpðzp; tÞ ¼ e2½kpmþap�thpðzp; tÞ ð33Þ

h1ðz
p
;tÞ ¼ exp 2 kpm þ

1apðkpim 2ap
1Þ

apþ1ðkpim 2ap
1Þ

" #
t

 !
hpðzp;tÞ

ð34Þ

hpðzp;tÞ¼exp 2
Pt

4

zp

t
21

� �2
 !

1ffiffiffiffi
pt

p 2

ffiffi
P

p

2
ð2lþ1Þ

(

�exp
Pt

4

zp

t
þð2lþ1Þ

� �2
 !

�erfc

ffiffiffiffi
Pt

p

2

zp

t
þð2lþ1Þ

� �" #)
ð35Þ

cðtÞ ¼ 12 exp 2
ap2t

1ðkpim 2ap
1Þþap

( 

þ
eðkpim 2ap

1Þþap

1


 �
ðtp2 tÞ

)!

�
X1
m¼1

1ap2

½1ðkpim 2ap
1Þþap�2

t

tp2 t

 !m=2(

� Im

2apffiffi
1

p
ffiffiffiffiffiffiffiffiffiffiffi
ðtp2 tÞt

p
 �)
ð36Þ

where gpðzp; tpÞ ¼
ffiffiffi
Tr

p
g1ðz; tÞ; g1ðz; tÞ is given in

Appendix B; P¼ uh=Dm is the Peclet number; Im½x�

is the modified Bessel function of the first kind of

order m: Lindstrom and Stone (1974) derived another

form for Eq. (36):

cðtÞ¼exp 2
ap2t

1ðkpim2ap
1Þþap

þ
1ðkpim2ap

1Þþap

1


 �( 

�ðtp2tÞ

)!X1
m¼0

½1ðkpim2ap
1Þþap�2

1ap2

tp2t

t

 !m=2(

�Im

2apffiffi
1

p
ffiffiffiffiffiffiffiffiffiffi
ðtp2tÞt

p
 �)
ð37Þ

From the speed of convergence standpoint, they

recommended that the integral in Eq. (32) be broken

into two parts from t¼0 to t¼ tp={1þ1ap2=½1ðkpim2

ap
1Þþap�2} with cðtÞ given by Eq. (36) and from t¼

tp={1þ1ap2=½1ðkpim2ap
1Þþap�2} to t¼ tp with cðtÞ

defined by Eq. (37). The following approximation

may be useful for evaluating Eq. (35) (Abramowitz

and Stegun, 1972):

hpðzp;tÞ¼

exp 2
P

4t
ðt2zpÞ2

� �
ffiffiffiffi
pt

p
zp

zpþð2lþ1Þt
;

if

ffiffiffiffi
Pt

p

2

zp

t
þð2lþ1Þ

� �
.3

ð38Þ

Eq. (31) describes liquid-phase solute concentrations

in the mobile region as a function of depth in soil and

time. The first term on the right-hand-side accounts

for instantaneous flushing of mass from soil surface,

and the second term describes the contribution of

exponentially decaying (or a constant) source at soil

surface introduced at a rate equal to the infiltration

rate.
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Vapor flux across the soil–air interface without

vapour source can be estimated from this equation:

FvðtÞ ¼ 2sCmð0; tÞ ð39Þ

which in a dimensionless form can be written as

Fp
vðt

pÞ ¼ 2lCp
mð0; t

pÞ ð40Þ

where

Fp
vðt

pÞ ¼
Tr

Mo

FvðtÞ ð41Þ

2.3.2. Pulse-type source with zero-initial

concentration

For pulse-type application of the chemical in

solution at the source,

ClðtÞ ¼
Cp 0 # t # t1

0 t . t1

(
ð42Þ

The solution for Cp
mðz

p; tpÞ; by virtue of the linearity of

Eqs. (12) and (13), is thus given by superposition:

For tp . tp1;

Cp
mðz

p
; tpÞ ¼

ffiffi
P

p
Fðzp; tpÞþ

ffiffi
P

p
g
ðtp

0
h1ðz

p
;t;a1 ¼ 0Þ

(

�cðt;a1 ¼ 0Þdt2
ðtp2tp1

0
h1ðz

p
;t;a1 ¼ 0Þ

�cðt;a1 ¼ 0Þdt

)
ð43Þ

and for tp , tp1;

Cp
mðz

p
; tpÞ ¼

ffiffi
P

p
Fðzp; tpÞþ

ffiffi
P

p
g
ðtp

0
h1ðz

p
;t;a1 ¼ 0Þ

�cðt;a1 ¼ 0Þdt ð44Þ

in which h1ðz
p;t;a1 ¼ 0Þ and cðt;a1 ¼ 0Þ are given by

Eqs. (34) and (36) or (37) evaluated at a1 ¼ 0; and tp1 is

the dimensionless time for duration of pulse.

2.3.3. Initially contaminated profile

The initial and boundary conditions of a soil

profile, with uniform initial concentration and

no source applied at the soil surface ðCp
l ;C

p
v ¼

0;Mo ¼ 0Þ are

Cmðz; 0Þ ¼ C0
m; Cimðz; 0Þ ¼ C0

im ð45aÞ

2kmDv

›Cvmð0; tÞ

›z
¼ 2Da

Cvmð0; tÞ

d
ð45bÞ

2umDl

›Cmð0; tÞ

›z
þ qCmð0; tÞ ¼ 0 ð45cÞ

›Cm

›z
;
›Cim

›z
¼ 0; z !1 ð45dÞ

Concentration above air layer is also assumed zero,

Cp
v ¼ 0: Combining Eqs. (45b) and (45c) with Eq. (14)

leads to

umFmð0; tÞ ¼ 2sCmð0; tÞ ð46Þ

in which s is give by Eq. (26) for soil–air resistance.

The solution of the partial differential Eqs. (12) and

(13) subject to Eqs. (45a), (45d), and (46) is obtained

in Appendix C, using Laplace transformation, which

in a dimensionless form is

Cp
mðz

p
; tpÞ ¼ 2ðlþ 1Þ

ffiffi
P

p
{g1C1ðz

p
; tpÞ

þ g2C2ðz
p
; tpÞ} þ g1F1ðt

pÞ

þ g2F2ðt
pÞ ð47Þ

where

F1ðt
pÞ ¼ e2Kptp m1em1tp 2 m2em2tp

m1 2 m2

;

m1;2 ¼ 2
kp

2
^

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp2 þ 4

ap2

1

s ð48Þ

F2ðt
pÞ ¼ ape2Kptp em1tp 2 em2tp

m1 2 m2

ð49Þ

C1ðz
p
; tpÞ ¼

m1

m1 2 m2

ðtp

0
e2ðKp2m1Þðt

p2tÞ

� h1ðz
p
; t; a1 ¼ Kp 2 m1Þ

� cðt; a1 ¼ Kp 2 m1Þdt

2
m2

m1 2 m2

ðtp

0
e2ðKp2m2Þðt

p2tÞ

� h1ðz
p
; t; a1 ¼ Kp 2 m2Þ

� cðt; a1 ¼ Kp
2 m2Þdt ð50Þ
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C2ðz
p
; tpÞ ¼

ap

m1 2 m2

ðtp

0
e2ðKp2m1Þðt

p2tÞ

(

� h1ðz
p
; t; a1 ¼ Kp 2 m1Þ

� cðt; a1 ¼ Kp 2 m1Þdt

2
ðtp

0
e2ðKp2m2Þðt

p2tÞ

� h1ðz
p
; t; a1 ¼ Kp

2 m2Þ

� cðt; a1 ¼ Kp 2 m2Þdt

)
ð51Þ

where h1ðz
p; t; a1 ¼ rÞ is given by Eq. (34) with r

substituted for a1; and cðt; a1 ¼ rÞ is given by Eqs.

(36) or (37) with r substituted for a1. The dimension-

less variables above are defined by

Cp
mðz

p
; tpÞ ¼ Cm=Cavg;

Cavg ¼ ðum=uÞC
0
m þ ðuim=uÞC

0
im;

gl ¼ C0
m=Cavg; g2 ¼ C0

im=Cavg;

kp ¼ kpm 2 kpim þ
12 1

1

� �
ap

ð52Þ

in which ap; kpm; kpim; e ; Kp; zp; and tp are defined

earlier; u ¼ uim þ um is the soil volumetric water

content; and Cavg is weighted-average initial concen-

tration in soil.

Eq. (47) describes redistribution and depletion of

mobile-phase solution concentrations in a structured

or aggregated soil profile starting with a uniform

initial concentration in each phase. The first (integral)

term on the right-hand-side accounts for the contri-

bution of initial concentration in the mobile water,

and the second term describes the contribution of

initial concentration in the stagnant water.

Vapor flux, Fv; is given by Eq. (39), which in

dimensionless form is expressed also as in Eq. (40),

Fp
vðt

pÞ ¼ 2lCp
mð0; t

pÞ; where Cp
m is redefined here to

be Cm=Cavg; and

Fp
vðt

pÞ ¼
FvðtÞ

qCavg

ð53Þ

3. Parameter sensitivity

Fig. 3(a) shows Cmðz
p; tpÞ at zp ¼ 1 versus tp

plotted on log-scale, for the dimensionless parameters:

g ¼ 0; P ¼ 0:01; ap ¼ 5; 1 ¼ 0:5; kpim ¼ 0; kpm ¼ 0;

and l ¼ 0; 2, 5, and 10. This case corresponds to rapid

(instantaneous) flushing of solute mass from the

surface. Although not shown in the plot, the

concentrations increase rapidly to peak values at tp ,

0:01 before declining to near zero values at tp ¼ 100:

As expected, the dimensionless concentration

decreases with increasing l; since mobile-phase

Fig. 3. Dimensionless mobile solution concentration versus

dimensionless time at zp ¼ 1 for l ¼ 0; 2, 5, and 10: (a) g ¼ 0;

(b) g ¼ 4: (P ¼ 0:01; ap ¼ 5; 1 ¼ 0:5; ap1 ¼ 0:2; kpm ¼ kpim ¼ 0).
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concentration decreases with increasing rate of vapor

mass transfer away from the soil surface. Fig. 3(b)

shows the contribution of a source of magnitude

l ¼ 4; exponentially decaying at a dimensionless rate

ap
1 ¼ 0:2: This source produces a second peak

concentration in the simulated breakthrough curve,

much more delayed than that produced by the rapid

flushing of mass from soil surface. The simulated peak

dimensionless concentration is significantly reduced

when l increases from 0 to 10, with the concentration

generally decreasing with increasing l:

Fig. 4(a) shows simulated dimensionless vapor flux

Fp
v ðt

pÞ at soil surface following instantaneous flushing

of solute mass from the soil surface, for l ¼ 0:5; 2, 5,

and 10. Negative values imply the flux is from soil

surface to atmosphere; i.e. in the negative z direction.

The vapor flux generally increases with l; but

diminishes in time and eventually approaches zero

following leaching of initial mass deep in the soil by

advection and dispersion. For exponentially decaying

liquid-phase solute source of magnitude g ¼ 4; the

vapor flux levels off and slightly increases over an

extended period of time before declining to zero, as

Fig. 4(b) shows. The effect of solute entering soil

surface is to maintain vapor flux through the surface

for a finite period in time, until source concentration

diminishes.

Figs. 5(a) and (b) show dimensionless vapor flux

Fp
v ð0; t

pÞ for the case of instantaneous flushing of solute

mass from soil surface without source at the soil

surface ðg ¼ 0Þ; and with an exponentially decaying

source (g ¼ 2; ap
1 ¼ 0:2), respectively. In each case,

we used these dimensionless parameters: P ¼ 0:01;

l ¼ 2; kpm; k
p
im ¼ 0; 1 ¼ 5;ap ¼ 0:05; 0.5, 5, and 15. In

both cases, the greater the dimensionless rate of mass

transfer ap; the smaller the dimensionless vapor flux

initially, for tp , 0:1: However, Fp
v ðt

pÞ approaches

zero more gradually with greater ap and drops to zero

relatively faster for smaller values of ap: The spread of

the solute mass between the mobile and immobile

phases produced by diffusive mass transfer increases

with ap; leading to a reduced vapor concentration

gradient at the interface, thereby a reduced vapor flux

from the soil surface. At later times, diffusion of the

solute mass from the immobile phase to the mobile

region provides further but a limiting source of vapor

available for mass transfer across the soil–air inter-

face. The impact of exponentially decaying source

concentration at the soil interface on the simulated

vapor flux in Fig. 5(b) is similar to that of Fig. 4(b).

The effect of the Peclet number P on the

dimensionless vapor flux is shown in Fig. 6, for the

case of rapid flushing of Mo: The soil is assumed

uniform with the parameters: l ¼ 1; kpm; k
p
im ¼ 0;

1 ¼ 0; ap ¼ 0; and P ¼ 0:1; 1, 5, and 40. The

dimensionless vapor flux Fp
v ðt

pÞ increases with P for

small tp; but decreases with this parameter for larger

Fig. 4. Dimensionless vapor flux versus dimensionless time for l ¼

0:5; 2, 5, and 10: (a) g ¼ 0; (b) g ¼ 4 and ap1 ¼ 0:2: (P ¼ 0:01;

ap ¼ 5; 1 ¼ 0:5; kpm ¼ kpim ¼ 0).
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tp; where Fp
v ðt

pÞ approaches zero relatively faster for

larger P: Initially, dispersion dampens the concen-

tration gradient at the soil surface resulting in the

decrease of Fp
v ðt

pÞ with P; whereas at later tp; the

concentration gradient at the soil surface is smaller for

larger P where advection dominates dispersion and

the initial solute mass would have been flushed away

more rapidly from the soil surface, thereby resulting

in smaller vapor flux for greater P:

To elucidate the role of biochemical decay in the

immobile phase as a potential sink, we consider

the hypothetical case of degradation limited to the

immobile phase (i.e. intra-aggregate) and ignore

losses in the mobile phase (i.e. macropores). Fig. 7

shows breakthrough plots at zp ¼ 5 of dimensionless

concentrations, and vapor flux for kpim ¼ 0; 0.2, 1, and

10. The source is limited to initial mass within depth of

incorporation. The following parameters are assumed:

ap ¼ 1; l ¼ 1; kpm ¼ 0; 1 ¼ 0:5; and P ¼ 0:01:

The dimensionless breakthrough concentrations at

zp ¼ 5 is initially invariant with the dimensionless

decay rate in the immobile phase, kpim; but decrease

with increasing values of this parameter at later

dimensionless times. Although not shown, the vari-

ation of the dimensionless concentration with kpim
appears earlier as the dimensionless rate transfer

parameter ap increases from 1 to 10. This indicates

that degradation in the immobile phase has no

immediate impact on the breakthrough concentrations

until sufficient time has elapsed for diffusive mass

transfer into the immobile phase to take effect. Thus,

biochemical losses in the immobile phase are limited

by the rate of mass transfer when degradation in the

mobile phase is negligible. For small tp; the simulated

dimensionless vapor flux Fp
v ðt

pÞ shows insignificant

variation with kpim; as shown in Fig. 7(b). Similarly,

although not shown in a figure, Fp
v ðt

pÞ is more

Fig. 5. Dimensionless vapor flux versus dimensionless time for

ap ¼ 0:05; 0.5, 5, and 15: (a) g ¼ 0; (b) g ¼ 2 and ap1 ¼ 0:2:

(P ¼ 0:01; 1 ¼ 5; l ¼ 2; kpm ¼ kpim ¼ 0).

Fig. 6. Dimensionless vapor flux versus dimensionless time for P ¼

0:1; 1, 5, and 40. (g ¼ 0; ap ¼ 0; 1 ¼ 0; l ¼ 1; kpm ¼ kpim ¼ 0).
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sensitive to kpim as ap increases. In general, Fp
v ðt

pÞ

decreases as kpim increases.

Fig. 8(a)–(c) show Fp
v variation with tp for ap ¼

0; 0.1, 1, and 5, for three distinct cases of initially

contaminated soil profile in which fraction of

immobile phase is assumed to be uim=u ¼ 0:6:

Fig. 8(a) simulates the case of initially contami-

nated immobile zone only, g1 ¼ 0 and g2 ¼ C0
im=

{ðuim=uÞC
0
im} ¼ 1:67; and using the following

dimensionless parameters: P ¼ 0:01; 1 ¼ 1:5; l ¼

5; kpm ¼ kpim ¼ 0: The absolute value of Fp
v is shown

to increase initially to a peak value, then declines and

approach zero at larger tp: In this scenario, the

immobile phase acts as the only source of solute to

the mobile phase. The increase in the upward vapor

flux is the result of a build-up in vapor concentration

gradient at the soil surface, produced by initially

greater solute diffusion from the immobile region to

the mobile phase, thus, leading to increase in Fp
v : As

the concentration gradient between the mobile and

immobile phases declines in time and solute is being

leached from the soil surface deep in the profile, Fp
v

would eventually decrease as diffusive mass transfer

into the mobile zone diminishes in time and mobile

solution concentration continues to be reduced from

the soil profile by leaching. In general, absolute Fp
v

increases with ap; however, at relatively large tp

(say, greater than 20), this behavior is reversed. The

other two cases of uniform and equal initial

concentration in both mobile and immobile phases

and zero initial concentration in the immobile phase,

respectively, are shown in Fig. 8(b) and (c). In both

cases, absolute Fp
v decreases monotonically with tp;

albeit at different rates over the time scales 0:01 #

tp # 100: Fig. 8(b) shows that absolute Fp
v ; generally,

increases with ap: This, however, is not the case for

zero-initial immobile-phase concentration, where

absolute Fp
v decreases with increasing ap for tp ,

1: Such behavior is expected, since initially, greater

ap implies greater mass transfer by diffusion from

the mobile zone and eventually reduced mobile-

phase solute vapor concentration and gradient at the

soil surface; thus, smaller Fp
v : An interesting feature

is that for the zero-initial immobile phase concen-

tration (Fig. 8(c)) as ap increases, the behavior of Fp
v

with tp becomes visibly characterized by two distinct

slopes corresponding to the rate of decrease of

absolute Fp
v with tp; an initially sharp decline

followed by a much more gradual one. Reversed

mass transfer from the immobile phase back into the

mobile phase may be responsible for such a behavior.

For sufficiently large tp; absolute Fp
v appears to

increase with ap:

Fig. 9 shows simulated dimensionless mobile-

phase concentration profiles at tp ¼ 1 for ap ¼ 0; 1,

and 5, starting with a uniform initial concentration,

g1 ¼ g2 ¼ 1: Cp
m increases with ap because of

Fig. 7. Dimensionless: (a) mobile solution concentration at zp ¼ 5;

(b) vapor flux, for kpm ¼ 0; kpim ¼ 0; 0.2, 1, and 10. (g ¼ 0; P ¼ 0:01;

ap ¼ 1; 1 ¼ 0:5; l ¼ 1).
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the increase with this parameter of the solute mass

transfer by diffusion from the immobile phase to the

mobile phase. Fig. 10 shows variation of dimension-

less mobile-phase concentration with l; in which Cp
m

at depths closer to the surface decreases significantly

with increasing values of this parameter.

4. Application

Table 1 lists example soil and chemical parameters

and relationships for estimating diffusion, dispersion,

and degradation rate. The selected values for KH; Koc;

lim; and lm resemble those of the pesticide Heptachlor

Fig. 8. Dimensionless vapor flux versus time following initially contaminated soil profile and no other source for ap ¼ 0; 0.1, 1, and 5: (a)

g1 ¼ 0; g2 ¼ 1:67; (b) g1 ¼ 1; g2 ¼ 1; (c) g1 ¼ 2:5; g2 ¼ 0: (fim ¼ 0:6; P ¼ 0:01; e ¼ 1:5; l ¼ 5; kpm ¼ kpim ¼ 0).
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(Rao et al., 1985). The relatively large half-life of

2000 d is indicative of the low degradation rate.

Degradation in the vapor phase is ignored.

This example simulates two transport scenarios in

a semi-infinite profile: (1) leaching following rapid

flushing of initial mass of Mo ¼ 2 £ 1024 kg/m2 from

soil surface (Figs. 11 and 12); and (2) leaching

following an initially contaminated soil with

a uniform concentration of 1025 kg/m3 (Fig. 13). A

steady-state infiltration rate q ¼ 1 cm/d is assumed to

occur through a surface crust of thickness l ¼ 1 cm and

an aggregated soil with a total porosity of 0.7 and

aggregate radius of 0.4 cm. The results plotted in

Figs. 11 and 12 are obtained by evaluating the first term

on the right-hand-side of Eq. (B36) or Eq. (31) (recall,

g ¼ 0). Volatilization velocity s ¼ 0.042 m/d is

obtained from Eq. (26) and the example soil crust

parameters in Table 1. In this particular example,

we have ðl2=DcÞð1 þ KHkc=ucÞ ¼ 0:05 d and

lðuc þ KHkcÞ=q ¼ 0:23 d, which, with some confi-

dence, implies that the use of Eq. (26) may be justified

for t $ 1 d. We use this relationship for estimating the

liquid-phase mass transfer coefficient for spherical

Fig. 9. Dimensionless mobile solution concentration profiles at tp ¼

1 for ap ¼ 0; 1, and 5. (g1 ¼ 1; g2 ¼ 1; P ¼ 0:01; 1 ¼ 1:5; l ¼ 5;

kpm ¼ kpim ¼ 0).

Fig. 10. Dimensionless mobile solution concentration profiles at

tp ¼ 1 for l ¼ 0; 1, 5, and 10. (g1 ¼ 1; g2 ¼ 1; P ¼ 0:01; ap ¼ 0:5;

1 ¼ 1:5; kpm ¼ kpim ¼ 0).

Table 1

List of example parameters

Parameter Value

Mo (kg/m2) 2 £ 1024

C0
m;C

0
im (kg/m3) 1025

lm; lim (d) 2000

KH 1.45 £ 1021

Koc (m3/kg) 24

foc (kg/kg) 2 £ 1023

Da (m2/d) 4.32 £ 1021a

Dw (m2/d) 4 £ 1025

ad (cm)b 5

ac (cm)c 1

q (cm/d) 1

d (cm) 0.5a

l (cm) 1

r (cm) 0.4

rb (kg/m3) 1.2 £ 103

nm (cm3/cm3) 0.4

nim (cm3/cm3) 0.3

um (cm3/cm3) 0.2

uim (cm3/cm3) 0.15, 0.3

nc (cm3/cm3) 0.4

uc (cm3/cm3) 0.2

Dl (m2/d) 2.5 £ 1023b

Dc (m2/d) 2.33 £ 1023c

s (m/d) 4.2 £ 1022d

a Suggested by Jury et al. (1983), d ¼ 0.5 cm for bare soil surfaces.
b Dl ¼ adq=um þ Dwðu

10=3
m =n2

mÞ; ad is the soil dispersivity [L].
c Dc ¼ acq=uc þ Dwðu

10=3
c =n2

cÞ þ KHðkc=ucÞDvc; Dvc ¼ Dak
10=3
c =n2

c ;

ac is the surface crust dispersivity [L].
d Eq. (26). Dvm ¼ Dak

10=3
m =n2

m; Dvim ¼ Dak
10=3
im =n2

im klm ¼

lnð2Þ=lm; klim ¼ lnð2Þ=lim.
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aggregate (Brausseau, 1991, and references therein):

al ¼ 15
Dim

r2
; Dim ¼ Dw

u10=3
im

n2
im

ð54Þ

in which Dw is the diffusion coefficient in water

[L2T21]; and r is the aggregate radius [L]. Similarly, by

assuming interconnected vapor-occupied macropore

and micropore spaces, the rate of vapor mass transfer

between the macropores and the aggregates may be

described by this relationship:

av ¼ 15
Dvim

r2
; Dvim ¼ Da

k10=3
im

n2
im

ð55Þ

We simulate three different cases: (1) saturated

aggregates and partially saturated macropores, (2) par-

tially saturated macropores and aggregates with

interconnected mobile—immobile vapor phase, (3)

partially saturated macropores and aggregates with a

disconnected mobile—immobile vapor phase. In the

first case, the solute vapor is limited to the mobile

phase, whereas in the second case, solute vapor exists

in both the aggregates and macropores and vapor mass

transfer occurs by diffusion between the two regions. In

the third case, solute vapor exists in both regions but

without significant interactions (i.e. both regions are

disconnected). The retardation factors (Eq. (11)) are

estimated using the approximation fm ¼ um=ðum þ

uimÞ; which has been shown to be successful in

previous applications (Brausseau, 1991, and references

Fig. 11. Simulated mobile solution concentration following rapid

flushing of an initial mass from soil surface, for saturated ðuim ¼

0:3Þ and partially saturated aggregates ðuim ¼ 0:15Þ; with connected

(av ¼ 1210 d21) and disconnected (av ¼ 0 d21) mobile–immobile

air-pore space.

Fig. 12. Simulated vapor flux following rapid flushing of an initial

mass from soil surface, for saturated ðuim ¼ 0:3Þ and partially

saturated aggregates ðuim ¼ 0:15Þ; with connected (av ¼ 1210 d21)

and disconnected (av ¼ 0 d21) mobile–immobile air-pore space.

Fig. 13. Simulated vapor flux following leaching of initially

contaminated soil with uniform concentration, for saturated ðuim ¼

0:3Þ and partially saturated aggregates ðuim ¼ 0:15Þ; with connected

(av ¼ 1210 d21) and disconnected (av ¼ 0 d21) mobile–immobile

air-pore space.
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therein). For a fully saturated aggregate ðuim ¼ 0:3Þ;

Eqs (54) and (55) estimate al ¼ 2:26 d21, and

av ¼ 0 d21, and for partially saturated aggregate

ðuim ¼ 0:15Þ; we have al ¼ 0:11 d21, and

av ¼ 1210 d21. Eq. (55) predicts vapor mass transfer

at a rate of four orders of magnitude greater than the

rate of liquid phase mass transfer.

Fig. 11 shows simulated mobile-phase concen-

tration in time at depth 5 cm below soil following

rapid flushing of an initial mass. Breakthrough is

predicted earlier, with a more rapid increase toward

a peak value for saturated aggregates when

compared to partially saturated aggregates with a

connected macropore – micropore vapor phase

ðav ¼ 1210 d21). The solution predicts a signifi-

cantly greater peak concentration and smaller

concentrations at later times for the case of a

partially saturated, disconnected vapor phase

(uim ¼ 0.15, av ¼ 0). Vapor mass transfer between

the macropores and aggregates by diffusion has the

effect of retarding solute movement in the soil and

producing a greater spread of the solute relative to

the case of no vapor interactions between the two

regions (Fig. 11). Fig. 12 shows computed vapor

flux as a function of time at the soil surface. The

solution predicts greater vapor flux—negative

values implying vapor flux from the soil to the

air—with decreasing saturation of aggregates for a

relatively long period of time. However, and

although not shown in the figure, the computed

vapor flux at t , 2 d is greater for saturated

aggregates than for the case of partial saturation.

For saturated aggregates ðuim ¼ 0:3Þ the residence

time, Tr; for soil depth 0.1 cm is equal to 2.3 d.

Initially, and within this window of time, a fraction

of the solute initial mass still is remaining within

this depth, with potentially more solute vapor

available for diffusion from the surface than for

partially saturated aggregates ðuim ¼ 0:15Þ: In the

latter, however, vapor diffusion into the partially

saturated micropores (or aggregates) reduces vapor

concentration at the interface, and the dampened

concentration gradients at the interface therefore

lead to smaller vapor fluxes. However, at times

much greater than the residence time, much of the

initial mass would be flushed deeper in the soil,

and vapor diffusion from the aggregate back into

the soil macropores would then sustain a greater

vapor flux from soil surface than would be the case

for saturated aggregates. The solution computes

asymptotically similar vapor flux for both the

saturated and partially saturated aggregate scen-

arios; e.g., at time greater than 60 d in this

example. For this particular application, Ignoring

vapor transfer between macropores and aggregates

(uim ¼ 0:15, av ¼ 0)--or equivalently, a discon-

nected macropore-aggregate vapor phase--slightly

overestimates vapor flux earlier, say, t # 10 d,

while underestimates it significantly at later times.

Fig. 13 shows simulated vapor flux at the soil

surface following an initially wetted soil profile with

a uniform concentration of 1025 kg/m3, using the

data in Table 1 and Eq. (C13) or Eq. (47). The

solution predicts less vapor flux from the soil

surface with increased aggregate saturation for at

least 30 d. The relatively greater vapor flux from the

surface for the partially saturated aggregates is the

result of vapor-phase diffusion to macropores, even

though solution phase diffusion to macropores

increases with increasing saturation of aggregates.

The computed vapor flux in Fig. 13 is greater when

the solute vapor is allowed to diffuse between the

aggregates and micropores than for the case of no

interactions (i.e. av ¼ 0 d21). If indeed the micro-

pore void space and macropores are connected, then

solutions, which ignore aggregate-macropore vapor

diffusion, may either underestimate vapor flux from

the soil surface or produce artifact parameters

during calibration.

5. Summary and conclusions

The disposal of VOCs in landfills and land

treatment systems or their use as soil fumigants in

agriculture has increased the interest in using

mathematical models as tools for predicting the

behavior of these chemicals in the environment and

estimating the potential for air pollution and

groundwater contamination. A coupled system of

partial differential equations is presented, which

describes mass balance of VOCs in three-phases

(liquid, air, and solid) in a dual-porosity (aggre-

gated or structured) soil under unsaturated flow

conditions. The coupled transport and fate

equations are essentially similar in form to those
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developed by van Genuchten and Wagenet (1989),

however, extended here to the vapor phase,

including mobile–immobile phase vapor diffusion.

Physically based algebraic expressions were

developed, which describe the resistance to solute

mass flux at the soil surface. The expressions,

valid when certain conditions are satisfied, related

mass transfer rate coefficients to the solute

chemical properties and hydrodynamic character-

istics of the surface crust and air-boundary layer.

In effect, a boundary condition of third type (i.e.

Cauchy boundary condition) has been developed

for liquid-vapor phase mass flow through a

resistive soil–air interface. Semi-infinite domain

analytical solutions were developed for three

different cases: (1) zero-initial concentration

and leaching and volatilization from soil surface

following rapid flushing of mass from soil surface;

(2) zero-initial concentrations and time dependent

and pulsed-type source introduced at a rate equal

to infiltration rate; and (3) flushing of a contami-

nated soil profile with uniform initial concentration.

The solutions predict concentration as a function of

depth in soil and time, and the resulting vapor

flux at the soil (sediment)-air interface (i.e.

volatilization rate). The processes of vapor flux

from the soil surface and mobile–immobile phase

mass transfer were particularly emphasized.

Simulations based on the solution in a dimension-

less form showed the synergistic effect at different

time scales (relative to residence time) of such

processes as advection relative to hydrodynamic

dispersion, volatilization from soil surface relative to

infiltration, biochemical decay, and macropore-

aggregate diffusion, on dimensionless breakthrough

concentration, dimensionless vapor flux from

the soil surface, and concentration profile. Appli-

cability of the analytical solutions and mass

transfer rate coefficients was demonstrated through

an example. The results showed that macropore-

aggregate vapor phase diffusion impacts signifi-

cantly the predicted mobile solution concentrations

and vapor flux from the soil surface. The

expressions for the mass transfer rate coefficients

and the analytical solutions may be useful for

management of VOCs in agriculture and designing

disposal sites.
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Appendix A

For convenience, we replace the partial derivatives

with ordinary derivative, and rewrite Eq. (23) with j

as the spatial coordinate as

ucDc

d2Clc

dj2
2 q

dClc

dj
¼ 0; 0 # j # l ðA1Þ

in which j ¼ 0 is at soil–air interface (i.e. top of the

resistive soil layer in Fig. 2). The soil moisture

and dispersion are assumed to be uniform in the

resistive soil layer. Integrating Eq. (A1) from 0 to j

yields

ucDc

dClc

dj
2qClcþ 2f ucDc

dClc

dj
þqClc j¼0

��� �
¼0 ðA2Þ

or

ucDc

dClc

dj
2 qClc þ Fc ¼ 0 ðA3Þ

in which Fc is the equivalent liquid-phase flux at the

soil surface, given by the two terms between

parentheses in Eq. (A2) [ML22T21]. Thus, by adding

the boundary fluxes Eqs. (24a) and (24b), we have

FcðtÞ ¼
Da

d
Cp

vðtÞ2 KHClcð0; tÞ
� �

þ qCp
l ðtÞ ðA4Þ

in which we used Cvc ¼ KHClc: Irrespective of the

dependence of Clc and Fc on time, the solution of

the ordinary differential Eq. (A3) is given by

Clcðj; tÞ ¼ exp
q

ucDc

j

� �
Clcð0; tÞ þ

1

q
FcðtÞ

� 1 2 exp
q

ucDc

j

� �� �
ðA5Þ
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in which Clcð0; tÞ is liquid phase concentration at j ¼

0 (Fig. 2). Note that we have restored the dependence

on time notation between parentheses. Evaluating

Eq. (A5) at j ¼ l and noting that Clcðl; tÞ ¼ Cmð0; tÞ

(Fig. 2) leads to this expression for FcðtÞ

FcðtÞ ¼ 2q
Cmð0; tÞ2 ePc Clcð0; tÞ

ePc 2 1
ðA6Þ

where

Pc ¼
ql

ucDc

ðA7Þ

is the liquid-phase Peclet number associated with the

soil resistive layer. Solving Eq. (A4) for Clcð0; tÞ and

substituting into Eq. (A6) and solving for Fc leads to

FcðtÞ ¼ 2sCmð0; tÞ þ mvCp
vðtÞ þ mlC

p
l ðtÞ ðA8Þ

where s; mv; and ml are given by Eqs. (26)–(28),

respectively. The contribution of initial mass within

depth of incorporation can be added to yield this

general boundary flux equation

umFmð0; tÞ ¼ FcðtÞ þ ModðtÞ ðA9Þ

For purely diffusive mass transport through the air

layer, we have q ¼ 0; thus,

lim
q!0

FcðtÞ ¼
ucDc

l

1

KH þ ðd=DaÞðucDc=lÞ

� Cp
vðtÞ2 KHCmð0; tÞ

� �
ðA10Þ

Appendix B

The Laplace transforms of Eq. (12), after sub-

stituting Eq. (14) for Fmðz; tÞ; and Eq. (13) are

pRm
~Cmðz; pÞ2 RmCmðz; 0Þ þ bRimp ~Cimðz; pÞ

2 bRimCimðz; 0Þ þ bkimRim
~Cimðz; pÞ

¼ Dm

d2 ~Cmðz; pÞ

dz2
2 u

d ~Cmðz; pÞ

dz
2 kmRm

~Cmðz; pÞ

ðB1Þ

bRimp ~Cimðz; pÞ2 bRimCimðz; 0Þ þ bkimRim
~Cimðz; pÞ

¼ a ~Cmðz; pÞ2 ~Cimðz; pÞ
� �

ðB2Þ

where the Laplace transform of a function f ðz; tÞ is

~fðz; pÞ ¼
ð1

0
f ðz; tÞe2pt dt ðB3Þ

Boundary conditions (15d) and (25) with Cp
l ðtÞ ¼

Cpe2a1t and Cp
v ðtÞ ¼ 0 in the Laplace domain are

given by

d ~Cm

dz
;

d ~Cim

dz
¼ 0; z !1 ðB4Þ

um
~Fmð0; pÞ ¼ 2s ~Cmð0; pÞ þ Mo þ

mlC
p

p þ a1

ðB5Þ

Eq. (B2) can be solved for ~Cimðz; pÞ in terms of
~Cmðz; pÞ;

~Cimðz; pÞ ¼
a

bRimðp þ kimÞ þ a
~Cmðz; pÞ ðB6Þ

In which we used the initial condition (15a).

Combining Eqs. (B6) with (B1) to eliminate
~Cimðz; pÞ and substituting Eq. (15a) for Cmðz; 0Þ

and Cimðz; 0Þ leads to this ordinary differential

equation:

d2 ~Cmðz; pÞ

dz2
2

u

Dm

d ~Cmðz; pÞ

dz
2

Rm

Dm

� p þ km þ
1

Rm

bRimðp þ kimÞa

bRimðp þ kimÞ þ a

� �
~Cmðz; pÞ

¼ 0

ðB7Þ

The solution of this equation subject to boundary

conditions (B4) and (B5) is obtained immediately,

~Cmðz; pÞ ¼
1

sþ umDmm2ðpÞ

� Mo þ
mlC

p

p þ a1


 �
em1ðpÞz ðB8Þ

where

m1ðpÞ ¼ ð1=2Þ u=Dm 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=D2

m þ 4ðRm=DmÞ p þ km þ
ðbRim=RmÞðp þ kimÞa

bRimðp þ kimÞ þ a

� �s" #
ðB9Þ
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We start by rewriting Eq. (B8) as

~Cmðz; pÞ ¼ Mo þ
mlC

p

p þ a1

� � ~f½z; sðpÞ�

um

ffiffiffiffiffiffiffiffi
DmRm

p ðB11Þ

where

~f½z; sðpÞ� ¼
e{u=2Dm2

ffiffiffiffiffiffi
Rm=Dm

p ffiffiffiffiffiffiffi
dpþsðpÞ

p
}z

bp þ
ffiffiffiffiffiffiffiffiffiffiffiffi
dp þ sðpÞ

p ðB12Þ

in which

sðpÞ ¼ p þ K þ
a

p þ K
ðB13Þ

K ¼ kim þ
a

bRim

; a ¼ 2
a2

bRimRm

ðB14Þ

dp ¼
u2

4RmDm

þ km þ
a

Rm

2 K;

bp ¼
u

2
ffiffiffiffiffiffiffiffi
RmDm

p 2
s

v
þ 1

� � ðB15Þ

The right-hand side of Eq. (B12) an be inverted

following the procedure of Lindstrom and Narasim-

ham (1973),

f ðz; tÞ ¼ L
21{~fðz; pÞ}

¼ e2Kt ›

›t

ðt

0
J0½2

ffiffiffiffiffiffiffiffiffiffiffi
aðt 2 tÞt

p
�gðz; tÞdt ðB16Þ

where

gðz; tÞ ¼ L
21
s {~fðz; sÞ}

¼ L
21
s

e{u=2Dm2
ffiffiffiffiffiffiffi
Rm=Dm

p ffiffiffiffiffi
dpþs

p
}z

bp þ
ffiffiffiffiffiffiffiffi
dp þ s

p

8<
:

9=
;

¼ eðu=2DmÞz2dpt
L
21
s

e2ap
ffi
s

p

bp þ
ffiffi
s

p

( )
ðB17Þ

and
ap ¼

ffiffiffiffiffiffi
Rm

Dm

s
z ðB18Þ

in which J0½x� is the zero-order Bessel function of the

first kind; and L21 is the Laplace inverse transform

operator with respect to the parameter s: The

evaluation of Eq. (B17) is readily available from

Roberts and Kaufman (1966),

gðz; tÞ ¼ eðuz=2DmÞ2dpt e2
ap2

4tffiffiffi
pt

p 2 bpeapbpþbp2t

8<
:

�erfc
ap

2
ffi
t

p þ bp
ffi
t

p

 �9=

; ðB19Þ

Eq. (B16) can be written after the substitution for a in

the integrand as

f ðz; tÞ ¼ e2Kt ›

›t

ðt

0
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffiffi
ðt 2 tÞt

p
 �

� gðz; tÞdt ðB20Þ

in which J0½ix� ¼ I0½x� is employed. I0½x� is the zero-

order modified Bessel function of the first kind. It can

be simplified further using Leibnitz’ rule and I0½0� ¼

1 to yield

f ðz; tÞ ¼
ðt

0

affiffiffiffiffiffiffiffiffiffi
bRimRm

p

ffiffiffiffiffiffiffi
t

t2 t

r
I1

affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffi
ðt2 tÞt

p
 �

�gðz;tÞdtþe2Ktgðz; tÞ ðB21Þ

in which the Bessel identity d=dt{I0½uðtÞ�}¼ I1½uðtÞ�

du=dt is used; and I1½x� is the first-order modified

Bessel function of the first kind. Also, note that in

applying the Leibnitz’ rule, gðz;0Þ ¼ 0; which can be

verified using the familiar identity limt!0 gðz; tÞ ¼

lims!1 s~fðz;sÞ and evaluating this limit. Eq. (B21) can

be written in a more compact form after substituting

for ap; bp; and dp into Eq. (B19) and completing

a square,

f ðz; tÞ ¼
affiffiffiffiffiffiffiffiffiffi

bRimRm

p
ðt

0

ffiffiffiffiffiffiffi
t

t2 t

r
I1

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffi
ðt2 tÞt

p
 �

�e2Kðt2tÞglðz;tÞdtþglðz; tÞ ðB22Þ

where

and

m2ðpÞ ¼ ð1=2Þ u=Dm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=D2

m þ 4ðRm=DmÞ p þ km þ
ðbRim=RmÞðp þ kimÞa

bRimðp þ kimÞ þ a

� �s" #
ðB10Þ
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By noting that L21{1=ðpþa1Þ}¼ e2a1t; then the

inverse transform of Eq. (B11) is given by

Cmðz; tÞ ¼
Mo

um

ffiffiffiffiffiffiffiffi
RmDm

p f ðz; tÞþ
mlC

p

um

ffiffiffiffiffiffiffiffi
RmDm

p

�
ðt

0
e2a1ðt2tÞf ðz;tÞdt ðB24Þ

In its current form and from the definition of f ðz;tÞ:

This equation requires double integration. Fortu-

nately, it can be reduced to a single integral by,

firstly, substituting Eq. (B22) for f ðz;tÞ in Eq. (B24),

and commuting the order of integration; i.e.
Ðt

0

Ðt
0 ð Þ

dh dt¼
Ðt

0

Ðt
h ð Þdtdh; and secondly, by using

the transformation l¼ t2h; dl¼ dt; and the fact

that

d

dl
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 �

¼
affiffiffiffiffiffiffiffiffiffi

bRimRm

p
ffiffiffiffiffi
h=l

p
I1

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 �
ðB25Þ

Thus,ðt

0
e2a1ðt2tÞf ðz;tÞdt¼

ðt

0
g1ðz;hÞe

2a1ðt2hÞ

� I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffiffi
hðt2hÞ

p
 �

�e2ðK2a1Þðt2hÞdhþðK 2a1Þ

�
ðt

0
e2a1ðt2hÞg1ðz;hÞ

ðt2h

0
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 ��

�e2ðK2a1Þldl

�
dh ðB26Þ

The inner integral can be evaluated by parts with the

aid of the following Bessel’s identity (Wylie and

Barrett, 1982):

d

dl
{ða2lÞ2u=2Iu½a

ffiffi
l

p
�}¼

a2uþ1

2
ð
ffiffi
l

p
Þ2u21Iuþ1½a

ffiffi
l

p
�

ðB27Þ

and the use of the following limits:

lim
l!0

I1½a
ffiffi
l

p
�

a
ffiffi
l

p ¼
1

2
; and lim

l!0

I2½a
ffiffi
l

p
�

a2l
¼

1

8
ðB28Þ

which follows from the definition of the modified

Bessel functions. Iu½x� is the modified Bessel function

of the first kind of order u: Thus,

ðK2a1Þ
ðt2h

0
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 �
e2ðK2a1Þldl

¼ 1þ
a2

4ðK2a1Þ
þ

1

2

a2

4ðK2a1Þ

 !2

þ···

( )

2e2ðK2a1Þðt2hÞ I0½a
ffiffiffiffiffiffi
t2h

p
þ

a

2ðK2a1Þ

I1½a
ffiffiffiffiffiffi
t2h

p
�ffiffiffiffiffiffi

t2h
p

(

þ
a

2ðK2a1Þ

� �2 I2½a
ffiffiffiffiffiffi
t2h

p
�

t2h
þ ···

)
ðB29Þ

in which a¼2ða=
ffiffiffiffiffiffiffiffiffiffi
bRimRm

p
Þ
ffiffi
h

p
: By inspection, the

first three terms of the first series between parentheses

constitute the leading three terms in Taylor expansion

of exp{a2=½4ðK2a1Þ�}; and Eq. (B29) now can be

written in a more compact form:

ðK 2a1Þ
ðt2h

0
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 �
e2ðK2a1Þl dl

¼ exp
a2

bRimRmðK 2a1Þ
h

 !
2 e2ðK2a1Þðt2hÞ

�
X1
n¼0

a2

bRimRmðK 2a1Þ
2

h

t2h

" #n=2

� In

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffiffi
ðt2hÞh

p
 �
ðB30Þ

glðz; tÞ ¼ exp 2 km þ
a

Rm


 �
t2

Rm

4Dmt

ut

Rm

2 z

� �2
 !

1ffiffiffiffi
pt

p 2
u 2s=v þ 1ð Þ

2
ffiffiffiffiffiffiffiffi
RmDm

p

(

�exp

ffiffiffiffiffiffi
Rm

Dm

s
z

2
ffiffi
t

p þ
u 2s=v þ 1ð Þ

2
ffiffiffiffiffiffiffiffi
RmDm

p
ffiffi
t

p
 !2

0
@

1
Aerfc

ffiffiffiffiffiffi
Rm

Dm

s
z

2
ffiffi
t

p þ
u 2s=v þ 1ð Þ

2
ffiffiffiffiffiffiffiffi
RmDm

p
ffiffi
t

p
" #9=

; ðB23Þ
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Thus,

The use of Eqs. (B31) in (B26) should lead to

ðt

0
e2a1ðt2tÞf ðz;tÞdt¼

ðt

0
e2a1ðt2hÞh1ðz;hÞcðhÞdh

ðB32Þ

where

h1ðz;tÞ¼exp 2 kmþ
baRimðkim2a1Þ=Rm

aþbRimðkim2a1Þ


 �
t

� �
hpðz;tÞ

ðB33Þ

hpðz;tÞ

¼ exp 2
Rm

4Dmt

u

Rm

t2 z

� �2
 !

1ffiffiffiffi
pt

p 2
uð2s=vþ1Þ

2
ffiffiffiffiffiffiffiffi
DmRm

p

(

�exp

ffiffiffiffiffi
Rm

Dm

s
z

2
ffiffi
t

p þ
uð2s=vþ1Þ

2
ffiffiffiffiffiffiffiffi
DmRm

p
ffiffi
t

p
 !2

0
@

1
A

�erfc

ffiffiffiffiffi
Rm

Dm

s
z

2
ffiffi
t

p þ
uð2s=vþ1Þ

2
ffiffiffiffiffiffiffiffi
DmRm

p
ffiffi
t

p
" #)

ðB34Þ

cðtÞ

¼12exp 2
ða2=RmÞt

bRimðkim2a1Þþa
þðK2a1Þðt2tÞ

" # !

�
X1
m¼1

a2t

bRimRmðK2a1Þ
2ðt2tÞ

 !m=2(

�Im

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffi
ðt2tÞt

p
 �)
ðB35Þ

in which Im½x� is the modified Bessel function of the

first kind of order m. Finally, substituting Eqs. (B32)

in (B24) yields

Cmðz;tÞ¼

ffiffiffiffi
P

Tr

s
Mo

q
f ðz;tÞþ

ffiffiffiffi
P

Tr

s
ml

q

�Cp
ðt

0
e2a1ðt2tÞh1ðz;tÞcðtÞdt ðB36Þ

Appendix C

The Laplace transforms of the partial differential

Eqs. (12) and (13) are Eqs. (B1) and (B2), subject to

Laplace transforms of (45d) and (46),

d ~Cm

dz
;

d ~Cim

dz
¼ 0; z !1 ðC1Þ

um
~Fmð0; pÞ ¼ 2s ~Cmð0; pÞ ðC2Þ

Substituting C0
im from Eq. (45a) for Cimðz; 0Þ; Eq.

(B2) can be solved for ~Cimðz; pÞ;

~Cimðz; pÞ ¼
a

bRimðp þ kimÞ þ a
~Cmðz; pÞ

þ
bRimC0

im

bRimðp þ kimÞ þ a
ðC3Þ

Using Eq. (45a) in Eq. (B1) yields

d2 ~Cmðz;pÞ

dz2
2

u

Dm

d ~Cmðz;pÞ

dz

2
Rm

Dm

pþ km þ
1

Rm

bRimðpþ kimÞa

bRimðpþ kimÞþa

� �
~Cmðz;pÞ

¼2
RmC0

m

Dm

2
bRim

Dm

aC0
im

aþbRimðpþ kimÞ
ðC4Þ

This equation is a linear nonhomogeneous ordinary

differential equation whose solution can be expressed

as the sum of a particular solution and the solution of

ðK 2a1Þ
ðt

0
e2a1ðt2hÞg1ðz;hÞ

ðt2h

0
I0

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffi
hl

p
 �
e2ðK2a1Þldl dh

¼
ðt

0
exp

a2=Rm

bRimðkim 2a1Þþa
h2a1ðt2hÞ

 !
g1ðz;hÞ 12 exp 2

a2=Rm

bRimðkim 2a1Þþa
h2 ðK 2a1Þðt2hÞ

 !(

�
X1
n¼0

a2

bRimRmðK 2a1Þ
2

h

t2h

" #n=2

In

2affiffiffiffiffiffiffiffiffiffi
bRimRm

p
ffiffiffiffiffiffiffiffiffiffi
ðt2hÞh

p
 �)
dh ðB31Þ
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the corresponding homogenous equation,

~Cmðz;pÞ ¼ c1em1ðpÞz þ
C0

m

kþ sðpÞ
þ

aC0
im

RmðK þpÞðkþ sðpÞÞ

ðC5Þ

where

k¼ km þ
a

Rm

2K ðC6Þ

sðpÞ is given by Eq. B(13); and c1 is a constant to be

determined by imposing the flux boundary condition

(C2). Boundary condition (C1) is used to obtain

the homogeneous solution, which is given by the first

term on the right-hand-side of Eq. (C5). The second

and third terms correspond to a particular solution of

Eq. (C4). The use of boundary flux Eq. (C2) with

Eq. (C5) leads to

~Cmðz;pÞ ¼2
ðsþ vÞ

um

ffiffiffiffiffiffiffiffi
RmDm

p C0
m
~F1ðpÞþC0

im
~F2ðpÞ

n o

� ~fðz;pÞþ C0
m
~F1ðpÞþC0

im
~F2ðpÞ

n o
ðC7Þ

where

~F1ðpÞ ¼
1

kþ sðpÞ
ðC8Þ

~F2ðpÞ ¼
a

Rm

1

ðK þpÞðkþ sðpÞÞ
ðC9Þ

in which sðpÞ and ~fðz;pÞ; respectively, are given by

Eqs. (B13) and (B12). Laplace inverse of Eq. (C7) is

Cmðz;tÞ¼2
sþv

um

ffiffiffiffiffiffiffiffi
RmDm

p
ðt

0
C0

mF1ðt2tÞþC0
imF2ðt2tÞ

h i

�f ðz;tÞdtþC0
mF1ðtÞþC0

imF2ðtÞ ðC10Þ

where (Roberts and Kaufman, 1966)

F
ðtÞ
1 ¼L

21
1

kþsðpÞ

( )
¼e2Kt

L
21 p

p2þkpþa

� �

¼e2Kt r1er1t2r2er2t

r12r2

; r1;2¼2
k

2
^

1

2

ffiffiffiffiffiffiffiffiffi
k224a

p

ðC11Þ

in which a is given by (B14). The Laplace inverse

transform of ~F2ðpÞ is

F2ðtÞ¼
a

Rm

e2Kt
L
21 1

p2þkpþa

� �

¼
a

Rm

e2Kt er1t 2er2t

r12r2

; r1;2 ¼2
k

2
^

1

2

ffiffiffiffiffiffiffiffiffiffi
k224a

p
ðC12Þ

The solution in the form shown in Eq. (C10) requires

double integration. Similarly, it can be reduced into a

single integral by substituting Eqs. (C11) and (C12)

for F1ðtÞ and F2ðtÞ; respectively, into Eq. (C10), and

using Eq. (B32), obtained in Appendix B, to yield this

solution

Cmðz;tÞ¼2
sþq

um

ffiffiffiffiffiffiffiffi
RmDm

p C0
mC1ðz; tÞþC0

imC2ðz; tÞ
n o

þC0
mF1ðtÞþC0

imF2ðtÞ ðC13Þ

where

C1ðz;tÞ¼
r1

r12r2

ðt

0
e2ðK2r1Þðt2tÞh1ðz;t;a1¼K2r1Þ

�cðt;a1¼K2r1Þdt2
r2

r12r2

�
ðt

0
e2ðK2r2Þðt2tÞh1ðz;t;a1¼K2r2Þ

�cðt;a1¼K2r2Þdt ðC14Þ

C2ðz;tÞ¼
a

Rm

1

r12r2

ðt

0
e2ðK2r1Þðt2tÞh1ðz;t;a1¼K2r1Þ

�

�cðt;a1¼K2r1Þdt2
ðt

0
e2ðK2r2Þðt2tÞ

�h1ðz;t;a1¼K2r2Þcðt;a1¼K2r2Þdt

)

ðC15Þ

in which h1ðz;t;a1¼rÞ is given by Eq. (B33) with r

substituted for a1; and cðt;a1¼rÞ is given by

Eq. (B35) with r substituted for a1:
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