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Abstract

Practical application of geostatistical inversion to coupled problems is hampered by a number of difficulties. In this paper, we

address two of them: first, the computational cost of sensitivity (Jacobian) matrices and, second, the evaluation of the relative

weights of different types of data. Regarding the first, we revise the adjoint state equations to propose a form whose cost is

independent of the number of unknown parameters and only grows with the number of observation wells. Regarding the second,

we derive expressions for the relative weights of different types of data. These expressions are based on minimizing the

expected likelihood, rather than the likelihood itself. The efficiency of both improvements is tested on a synthetic example. The

example analyzes a wide range of groundwater flow and solute transport conditions. Yet, the expected likelihood consistently

yields the optimal weights. The proposed form of the adjoint state equations leads to one order of magnitude reduction in CPU

time with respect to the conventional sensitivity equations.
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1. Introduction

Modeling groundwater flow or transport is difficult

because of uncertainties in characterizing hydraulic

conductivity, defining boundary conditions and esti-

mating internal sink and sources. As a result,

computed concentrations and/or heads often fail to

resemble field measurements. It is then natural to try

to use these measurements to reduce those uncertain-

ties. This is what has motivated the large body of

research in groundwater inverse models (see reviews

by Yeh, 1986; Carrera, 1987; McLaughlin and

Townley, 1996). Also, it is widely recognized that

heterogeneity plays an important role when modeling

flow and transport. Heterogeneity has led naturally to

the so called geostatistical inversion methods, in

which some parameters (usually the log-transmissiv-

ity, Y) are viewed as regionalized variables.

Geostatistical inversion methods can be classified

in two groups, which we will call estimation and

simulation inversions. The first group seeks an

optimum identification of the regionalized variables

(i.e. conditional expectation, minimum error esti-

mations or similar) given all available information. If
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the estimated fields are used for predicting linear or

slightly non-linear problems, the resulting prediction

will also be optimal. However, these fields may yield

very poor predictions in highly non-linear problems

because they (the estimated fields) are much smoother

than reality. In these cases, rather than a single

‘optimal’ estimation, one may seek a number of

equally likely simulations of the unknown fields, all of

them conditioned upon all available information. This

is the objective of simulation inversions.

Estimation inversion methods may be linear

(Kitanidis and Vomvoris, 1983; Hoeksema and

Kitanidis, 1984, 1985; Dagan, 1985; Rubin and

Dagan, 1987) or non-linear (Clifton and Neuman,

1982; Carrera and Neuman, 1986a; Sadeghipur and

Yeh, 1984; Hill et al., 1998; Cooley, 1982). In this

context, linearization refers to the process of expres-

sing heads as a linear function of perturbations of Y

around its mean. This avoids the need for iterating,

thus leading to simple and computationally efficient

methods. However, Carrera and Glorioso (1991)

showed that iterating is profitable when Y variances

are large, or when the estimation relies heavily on

heads and/or concentrations. As a result, non-linear

methods tend to yield superior results (Zimmerman

et al., 1998). It is not surprising that they have become

somewhat standard (see e.g. Kitanidis, 1995; Yeh

et al., 1996).

Simulation inversion is much more recent. It can be

traced back to the work of Sahuquillo et al. (1992). The

standard approach is the one described by Gómez--

Hernández et al. (1997) and by Capilla et al. (1997). In

essence, it consists of generating a random field, YðxÞ;

conditioned upon direct measurements of Y and, in

fact, of any other variable linearly dependent on Y :

This random field is then perturbed so as to minimize

the distance between measured and computed heads

(and concentrations) while maintaining the condition-

ing on direct data. The resulting fields can then be

considered as equally likely simulations of Y fields

conditioned on direct measurements of Y and heads. It

should be stressed that the main difference between

simulation and estimation inversions relies on the

ability to accommodate unusual statistical assump-

tions. This is true both in the input data (a fact that was

exploited by Capilla et al. (1999) to invert fields with

arbitrary distributions) and on the output results (by

generating a number of equally probable fields, one

does not have to assume that they are normal or belong

to any other distribution). Aside from these differ-

ences, simulation and estimation inversions are very

similar. Certainly, both are computationally demand-

ing and both require a proper estimation of the

statistical properties of the input fields.

Of all practical difficulties shared by all geostatis-

tical inversion methods, we will stress two of them:

computational burden and estimation of statistical

parameters. Geostatistical inversion is computation-

ally demanding because it involves optimization with

respect to a large number of parameters. Carrera and

Neuman (1986b) advocated the use of gradient search

optimization methods because these only require

computing the gradient at each iteration. This can be

achieved at a cost independent of the number of

unknowns by using the adjoint state method. How-

ever, Cooley (1985) proved that Gauss–Newton

methods converge much faster. Unfortunately, these

require computing the Jacobian matrix (derivatives of

heads w.r.t. parameters), which implies solving a

problem equivalent to that of the direct problem for

each parameter. The growth of geostatistical inver-

sion, which demands a large number of parameters,

has brought gradient search methods back into fashion

(Gómez-Hernández et al., 1997; Capilla et al., 1999),

but at the cost of a severe loss in convergence rate and

robustness. One of the objectives of this paper is to

revise the adjoint state methodology of Carrera and

Medina (1994) to compute the Jacobian matrices at a

cost that grows with the number of wells, but is

independent of the number of parameters.

Regarding statistical parameters, they have been

traditionally estimated by maximum likelihood (Kita-

nidis and Vomvoris, 1983; Carrera and Neuman,

1986a). However, likelihood estimation is often

ambiguous. For example, Carrera (1994) shows that

the optimum weight between head and transmissivity

data may occur not at the maximum of the likelihood

function, but at an inflection point. To overcome these

difficulties, Akaike (1978) had advocated the use of

the expected value of the likelihood, rather than the

likelihood itself. Both Honjo et al. (1994) and

Kitanidis (1995) support the use of this expected

value. The second objective of this work is to explore

the use of the expected likelihood for the purpose of

estimating the relative weight among different sources

of information.
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In order to achieve these two objectives (namely,

revised adjoint state equations and revised objective

function), we start by reviewing the methodology, so

as to introduce the basic notation. We then present the

revised adjoint state equations and computation of the

Jacobian. Third, we present the methodology for

estimating the relative weights. We conclude with the

application to one example.

2. Brief review of the methodology

2.1. Direct problem

We outline here the approach of Medina and

Carrera (1996). Let us consider, without loss of

generality, a 2D transient transport problem with

steady state flow:

7ðT7hÞ þ q ¼ 0 in V ð1Þ

bfR
›c

›t
¼ 7ðD7cÞ2 q7c þ qðc 2 c0Þ in V ð2Þ

where h is head, T is transmissivity tensor, q is an

areally distributed sink/source (recharge/extraction),

f is porosity, b is thickness, c is solute concentration,

D is dispersion tensor, q ¼ 2T7h (notice that in 2D q

is not Darcy flux, but flow rate per unit width), c0 is

external solute concentration in areally distributed

sinks or sources, V is the problem domain and t is

time. Eqs. (1) and (2) are solved with appropriate

initial and boundary conditions. These equations are

solved using a semidiscretization finite element

method (Dautray and Lions, 1988), where spatial

and temporal variabilities are considered separately.

This leads to:

c0 ¼ Ah0 2 b0 ¼ 0 ð3Þ

cj ; uE þ
F

Dt

� �
cj 2 ðu2 1ÞE þ

F

Dt

� �
cj21

2 gj21þu ¼ 0 ð4Þ

where A is the matrix of the discretized flow equation,

E and F are the matrices of the discretized transport

equation, h0 is the vector of steady state nodal heads, c

is the vector of nodal concentrations, b and g are the

right hand sides of the algebraic flow and transport

equations after discretization, respectively, u is

the time weight (u ¼ 0 is the explicit scheme, u ¼ 1

is implicit and u ¼ 0:5 is Crank–Nicholson scheme)

and j goes from 1 to Nt (number of time steps).

2.2. Statistical formulation and objective function

The estimation problem is formulated as maximiz-

ing the likelihood function. To build this function, we

assume that residuals (differences between measured

and computed heads and/or concentrations) and prior

estimation errors follow a normal distribution and that

errors on heads, concentrations and model parameters

are independent. The likelihood function is:

L¼ð2pÞ2n=2 lChkCcl
Y

j

lCjl

0
@

1
A

21=2

exp 2
1

2

0
@ðh2hpÞt

2
4

�C21
h ðh2hpÞþðc2cpÞtC21

c ðc2cpÞ

þ
X

j

ðpj2pp
j Þ

tC21
j ðpj2pp

j Þ

1
A
3
5 ð5Þ

where Ch; Cc and Cj; are the covariance matrices of

errors in heads, concentrations and type j parameters,

respectively; j represents type of parameter (j¼1 for

transmissivity, 2 for storativity, etc.); hp is the vector

of nh head measurements; cp is the vector of nc

concentration measurements; pp
j is the vector of nj

prior information data of the j-th type parameters; h is

the vector of computed heads; c is the vector of

computed concentrations and pj is the vector of

computed values of the j-th type parameters. Max-

imizing this function is equivalent to minimizing the

support (minus two times the log-likelihood) function:

S¼ t21
h Fhþt21

c Fhþ
X

j

t21
j Fjþnh lnðthÞþnc lnðtcÞ

þ
X

j

kj lnðtjÞþlnlVhlþlnlVcl

þ
X

j

lnlVjlþnlnð2pÞ ð6Þ

where Fh¼ðh2hpÞtV21
h ðh2hpÞ; Fc¼ðc2cpÞtV21

c

ðc2cpÞ; Fj¼ðpj2pp
j Þ

tV21
j ðpj2pp

j Þ: The total num-

ber of unknown parameters is np¼
P

kj; where kj is

the number of unknown parameters of type j: The

total number of data (heads and concentrations plus

prior information of unknown parameters) is N¼

nhþncþnp: Parameters th; tc; and tj are unknown
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and multiply matrices Vh; Vc and Vj to obtain the

true but unknown covariance matrices (Ch¼thVh;

Cc¼tcVc and Cj¼thVj; see e.g. Neuman and

Yakowitz, 1979). Later we will generalize this

formulation for the case of arbitrary number of

types of variables, not just heads and

concentrations.

Neglecting terms in Eq. (6) that depend only on

statistical parameters, th; tc; tj and possibly others

(required to define Vh; Vc and Vj), and multiplying

Eq. (6) by th; the objective function to be minimized

becomes:

F ¼ Fh þ lcFc þ
X

j

ljFj ð7Þ

where lc and lj are weights between the different

pieces of information (heads, concentrations and prior

information). Observe that weights in Eq. (6) are

related to statistical parameters in Eq. (5) ðlc ¼ th=tc;

lj ¼ th=tjÞ:

One of the problems related to multiple objective

functions, such as Eq. (6) is the definition of

weights, l: These weights control the relative

importance assigned to the different types of

information (heads, concentrations, prior estimates,

etc.). The actual relevance of those weights is not

always analyzed, (see Neuman, 1973; Neuman and

Yakowitz, 1979). It is evident, however, that giving

too much importance to some data may bias the

estimation. In fact, the main motivation behind the

use of the likelihood function, in the first place, was

the estimation of statistical parameters such as the

l’s. However, this is not always straight-forward.

For one thing, no minimum exists for S (6) as a

function of l in many geostatistical inversion

problems (Carrera, 1994). It is to overcome these

difficulties that the expected likelihood function will

be introduced in Section 4.

2.3. Minimization

Optimum parameters are the ones minimizing (7).

A very robust estimation can be obtained using

Marquardt’s method. This method consists of updat-

ing iteratively the set of all parameters, pm; m being

iteration number, by means of:

ðHðpmÞ þ mmIÞðpmþ1 2 pmÞ ¼ 27FðpmÞ ð8Þ

where mm is Marquardt’s parameter, updated itera-

tively, I is the identity matrix, and 7F and H are the

gradient and first order approximation to the Hessian

of F; respectively, given by:

7F ¼ 2Jt
hV21

h ðh 2 hpÞ þ 2lcJt
cV21

c ðc 2 cpÞ

þ 2
X

j

ljV
21
j ðpj 2 pp

j Þ ð9Þ

H ¼ 2Jt
hV21

h Jh þ 2lcJt
cV21

c Jc þ 2
X

j

ljV
21
j ð10Þ

where Jh and Jc are the Jacobian matrices, i.e.

derivatives of heads and concentrations w.r.t. model

parameters.

Once the Jacobian matrices Jh and Jc are

computed, evaluating Eqs. (9) or (10) or solving

Eq. (8) is neither computationally intensive nor

conceptually difficult. The computational problem is

associated with the evaluation of the Jacobian

matrices. As mentioned in the introduction, this is

usually achieved by means of the so called sensitivity

equations. They are obtained by direct derivation of

discretized state Eqs. (3) and (4), which leads to a set

of np systems of equations very similar to Eqs. (3) and

(4). This becomes a very heavy burden for realistic

geostatistical inversion problems, in which np; the

number of estimated parameters can be equal to

several hundreds. An alternative is discussed below.

3. Computation of Jacobian matrices

using the adjoint state

The adjoint state method is a common technique to

obtain derivatives of an objective function, depending

on heads and/or concentrations, with respect to model

parameters (Sun and Yeh, 1992; Townley and Wilson,

1985 among others). For this reason, only an outline is

presented in this section for the sake of completeness,

as well as some hints about its practical implemen-

tation following the guidelines of Carrera and Medina

(1994).

Let us assume we wish to compute the derivatives

w.r.t. p of a linear combination (with coefficients a) of

concentrations c at time k; that is, f k ¼ atck: This

derivative is constrained by the fact that state variables

(h and c) and parameters must satisfy the state
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equations (3) and (4). Therefore, a natural choice

would be to build the Lagrangian:

Lk ¼ f k þ
XNt

j¼0

mkt

j cj ð11Þ

wheremk
j is the adjoint state associated with function f k

and the j-th state equation. If we take total derivatives

with respect to p in Eq. (11), we will have terms

depending on ›cj=›p: As discussed in Section 2,

evaluating them is extremely expensive. The adjoint

states mk
j are chosen precisely so as to eliminate these

derivatives from the gradient of fk: This can be

achieved by, first, factoring ›cj=›p out in the deriva-

tives of Eq. (11) w.r.t. parameters, and, then, setting the

factor to zero. This leads to the adjoint state equations:

atdk
j þ mkt

j uE þ
F

Dt

� �
2 mkt

jþ1 ðu2 1ÞE þ
F

Dt

� �
¼ 0

ð12Þ

where dk
j ¼ 1 when j ¼ k and zero otherwise. Eq. (11)

is solved backwards in time, starting with mk
N

ðmk
Nþ1 ¼ 0Þ: Steady state adjoint vector (associated

with steady state heads) is given by (Carrera and

Medina, 1994):

mkt

0 A þ atdk
0 þ

Xk

j¼1

mkt

j

›E

›h0

cjþu21

�

þ
›F

›h0

cj 2 cj21

Dt
þ

›gjþu21

›h0

�
¼ 0 ð13Þ

where gjþu21 ¼ ugj þ ð1 2 uÞgj21 and cjþu21 ¼ ucj þ

ð1 2 uÞcj21: The computation of ›E=›h0 is quite

expensive, but it should be noticed that it needs to be

computed only once, because it depends neither on

parameters nor on time. It depends on h0 through Darcy

velocity and boundary flows, that are time independent

because the flow equation is in steady state. For this

reason, ›E=›h0 is computed once and stored. It should

be noticed that the amount of storage is not as large as it

might look (number of elements times nine for

triangular linear elements).

Once the different adjoint states are computed, we

obtain the gradient of f k from the derivative of Lk;

where now all terms containing derivatives of state

variables have been eliminated. This leads to:

df k

dp
¼

›f k

›p
þ

XNt

j¼0

mkt

j

›cj

›p
ð14Þ

It should be noticed that due to the linear dependence

of c0;…;cn on model parameters, their derivatives

with respect to model parameters are constant through

points and time, which allows us to make some

computations only once by using some storage (it is

not usually a problem in current computers).

What we have described up to here is nothing but

the standard adjoint state method. Yet, contrary to the

standard adjoint state method, one does not need to

compute a state per measurement because Eq. (12) for

mk
j does not depend separately on k and j (if it did, one

would need Nt adjoint states). As it is, the equation

only depends on k 2 j; but not on k or j separately.

Indeed, Eq. (12) is homogeneous for k , j; because

mk
Nþ1 ¼ 0; for all k; and the forcing term atdk

j is null

for k – j: As a result, if E and F are time independent,

mNt

Nt
is equal to mNt21

Nt21; m
Nt22
Nt22; etc. Applying again

Eq. (12), we would get thatmNt

Nt21 ¼ mNt21
Nt22 ¼ · · · ¼ m2

1

and so on. In short, for any k and j;

mk
j ¼ mN

N2kþj ð15Þ

This is very important, because it shows that one can

use a single adjoint state per observation point to

compute the derivatives of all concentrations at each

observation point with respect to all parameters. That

is, one needs to solve Nt systems of equations, such as

Eq. (12), per observation point. Actually, if flow

parameters are uncertain, so that one needs to compute

derivatives of heads and take into account the

uncertainty of flow into transport, then one would

also need to solve Eq. (13) at every observation time (at

most, Nt for the transport equations, j – 0; and one for

the flow equation, j ¼ 0). That is, at most, one needs to

solve 2Nt þ 1 linear systems per observation point.

This is a dramatic reduction with respect to the ðNt þ

2ÞðNt þ 1Þ=2 linear systems required by the conven-

tional formulation of the adjoint state. A full

comparison is made in Table 1 for varying number of

times, wells, and parameters. As one can see, the

proposed alternative is always superior to the conven-

tional adjoint state. The direct derivation method

should only be preferred when the number of

parameters is smaller than twice the number of time
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steps. Actually, the adjoint state method suffers some

overhead due to the fact that it has to be solved

backwards in time, so the advantage is not as big as one

might expect. Still, as we shall see later, it is very

advantageous.

4. Finding the optimal weights

As discussed in the introduction, we seek the

minimization of the expected likelihood, given by:

�L¼
ð
ð2pÞ2n=2 lthVhktcVcl

Y
j

ltjVjl

0
@

1
A

21=2

�exp 2
1

2
t21

h Fhþt21
c Fcþ

X
j

t21
j Fj

0
@

1
A

2
4

3
5dp ð16Þ

As this integral cannot be solved analytically, heads

and concentrations are linearized around the estimate

of pðp̂Þ; i.e.

hðpÞ¼hðp̂ÞþJhðp2p̂Þ

andcðpÞ¼cðp̂ÞþJcðp2p̂Þ
ð17Þ

where Jh and Jc are Jacobian matrices of heads and

concentrations at p¼ p̂; respectively, and p̂ are

estimated parameters. Substituting Eq. (17) into Eq.

(16), integrating, taking natural logarithm, multiply-

ing by 22 and neglecting constant terms, one obtains:

�S¼
X

i

a21
i Fui

þ
X

j

t21
j Fj

þln
X

i

a21
i Jt

ui
V21

ui
Jui

þ
X

j

t21
j V21

j

������
������

2
X

i

ni lnða
21
i Þþ

X
j

kj lnðt
21
j Þ ð18Þ

we have generalized Eq. (18) for the case in which one

has got an arbitrary number of types of measurements

ui (i.e. a1¼th; a2¼tc; Fu1
¼Fh; Fu2

¼Fc; in previous

equations). In order to compute �S, one has to compute

the statistical parameters ai; tj: Observe that different

combinations of ai; tj can be found for given weights

(l in Eq. (7)). We look for statistical parameters (ai;

tj) that minimize Eq. (18). In Appendix A, we show

that minimization of �S with respect to the statistical

parameters leads to:

a1¼
Fu1

n12trðH21Jt
u1

V21
u1

Ju1
Þ

ð19Þ

ai¼
Fui

þa1trðH21Jt
ui

V21
ui

Jui
Þ

ni

ð20Þ

tj¼
Fjþa1trðH21V21

j Þ

kj

ð21Þ

where H is as given by Eq. (10). It is interesting to

notice that these values coincide with those derived by

Carrera and Neuman (1986a) for the case of only head

data and neglecting the traces of the matrices

appearing in Eqs. (19)–(21).

On occasions, the user sets the values of the

relative weights (li and mj) on the basis of his (her)

own feeling. In such cases, the estimation of ai and tj

must be made by minimizing �S constrained to li and

mj: We show in the appendix that this leads to:

a1 ¼
FX

i

ni þ
X

j

kj

¼
F

N
ð22Þ

where F is the total objective function (generalization

of Eq. (7) with an arbitrary number of types of

measurements and N is the total number of data,

including both measurements and prior estimation of

Table 1

Computational cost of Jacobian matrices (measured in number of linear systems like Eq. (4) to be solved)

Number of times Nt 10 100 1000 100

Number of obs. points Nw 10 10 10 100

Number of parameters Np 1000 1000 1000 100

Direct derivation (sensitivity equations) NtNp 104 105 106 104

Adjoint state (conventional) Nw

ðNt þ 2ÞðNt þ 1Þ

2
6.6 £ 102 5 £ 104 5 £ 106 5 £ 105

Adjoint state (proposed) Nwð2Nt þ 1Þ 2 £ 102 2 £ 103 2 £ 104 2 £ 104
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model parameters). Again, using this equation

together with the restrictions, one obtains

ai ¼
a1

li

ð23Þ

tj ¼
a1

mj

ð24Þ

It is interesting to notice that Eqs. (22)–(24) are

identical to the equations derived by Carrera and

Neuman (1986a), who used the likelihood function

(but not its expected value). Inserting these values into

Eq. (18) leads to

�S1 ¼
X

i

a21
i Fui

þ
X

j

t21
j Fj þ lnlHl2

X
i

ni lnða21
i Þ

2
X

j

kj lnða1t
21
j Þ ð25Þ

�S2 ¼ N þ lnlHlþ N lnða1Þ2
X

i

ni lnðliÞ

2
X

j

kj lnðmjÞ ð26Þ

The robustness of these two functions is studied

below.

5. Synthetic example

5.1. Methodology

We generate four examples (two flow and two

transport) on a single domain. In essence, the

examples consist of generating data from a synthetic

problem and then use this data to test the effectiveness

of the approaches described above. Specifically, our

work consists of the following steps:

1. Define the problem domain.

2. Generate the ‘true’ transmissivity fields.

3. Generate measurements.

4. Solve the different problems.

steady state flow

transient flow

transient transport,

Following is a brief description of each step and the

results.

5.2. Problem domain

The base example is a rectangular domain with an

extension of 200 £ 90 m2; containing 18 control

points (Fig. 1). No flow is imposed at the top and

bottom boundaries. A flow rate of 9 m3/day is

prescribed at the left boundary (uniformly distributed)

and a head of 0 m is prescribed at the right side.

Observation point 14 is an extraction well with a rate

of 10 m3/day. All flow parameters, but transmissivity,

are assumed known. Transmissivity is treated as a

lognormal random field. Two transport problems are

simulated. The first one consists of the invasion of a

solute from the left boundary; this is simulated by

assigning a concentration of 100 ppm to the incoming

water. The second example consists of the simulation

of four tracer tests.

5.3. Generation of ‘true’ transmissivity field

Generation of the transmissivity field consists of

three steps.

1. A log-transmissivity field is generated with an

exponential variogram with a sill of 5 and a range

of 50 m. We use sequential simulation with the

GCOSIM code (Gómez-Hernández, 1991). This

simulation was made with a resolution of 1 £ 1 m2:

2. Six transmissivity values are taken from the above

field at observation points (3, 4, 8, 9, 13, 15). We

use them as point data to obtain kriging estimates

on a grid of 25 £ 18 regular blocks. In this way we

Fig. 1. Schematic description of the flow domain. Water flows

from left to right. The first flow problem (Example 1) consists of

the steady-state conditions. A constant solute in flux is simulated

with this flow field to obtain the solute invasion transport problem

(Example 3). The steady state flow plus the response to pumping

defines the transient flow problem (Example 2). Finally, the

Example 4 consists of simulating four tracer tests, injecting at

points 10, 12, 16 and 18 and steady-state pumping at point 14.
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obtain a kriged field and their covariance matrix.

One transmissivity value will be estimated at each

one of these blocks.

3. Four random fields are generated such that their

means and covariance matrices are equal to the

ones of the kriged field. Those simulations will be

our ‘true’ fields (see Fig. 2), and the computed field

will be compared with it.

5.4. Generation of ‘measurements’

Heads and concentrations are computed at every

grid node of Fig. 1 by performing a flow and solute

transport simulation. These are assumed to be the

‘real’ heads and concentrations of the system.

Measurements are obtained by adding a white noise

to these ‘real’ values. The variance of this noise is

included in the Vh and Vc matrices. As a result, ah and

ac should be equal to 1.

5.5. Results for Example1: steady state flow

Fig. 3 contains the transmissivity fields calibrated

against steady state heads at the 17 points (pumping

well was excluded). The ‘true’ transmissivity field

is also included for comparison. As one may see, the

fields are a simplified version of reality (indepen-

dently of the lT weight), although a little better than

the kriging field (prior information for the calibration

process). It should be stated that we have found some

convergence difficulties for very small lT (0.001) due

to the large number of estimated parameters (450 T

values). Regarding the estimation of lT ; we know

exactly the statistical variables (that is, the true

covariance matrices), therefore the optimal value of

lT should be 1. Table 2 contains the values of lT for

which the estimation statistics reach their optimum

value. For instance, the minimum value of SSE is

attained at lT ¼ 5 in simulation #2. The displayed

statistics are as follows:

SSE—Sum of square errors of estimated log-T’s. It

is the basic raw criterion to evaluate the goodness

of the estimated field.

Fh—Head fit criterion. See Eqs. (6) and (7). It is

not a good estimation criterion, because it should

grow monotically with l (reducing l unconstrains

the problem).

S2—(Eq. (3.11) of Carrera, 1994). Support func-

tion (6) evaluated after unconstrained minimiz-

ation with respect to th and ti:

S3—(Eq. (3.12) of Carrera, 1994). Support func-

tion (6) evaluated after minimization with respect

to th and ti; but constrained by lT ¼ th=tT :
�S1—(Eq. (25)). Expected support evaluated after

unconstrained minimization of (18) with respect to

th and ti:
�S2—(Eq. (26)). Expected support evaluated after

minimization of Eq. (18) with respect to th and ti;

but constrained by lT ¼ th=tT :

In theory, the minimum value of �S should be

attained at lT ¼ 1; and this happens in two of the four

cases.

Fig. 2. Four conditional simulations used as true fields.
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5.6. Results for Example 2: transient flow

Initial conditions are obtained as a steady state

without pumping and transient state is generated by

pumping at well #14. Measurements are taken at

the 17 observation points in 9 times (0.25, 0.5, 0.75,

1.0, 2.0, 3.0, 5.0, 10.0 and 20.0 days), that is, 153

measurements are used. The estimated fields obtained

with lT ¼ 0:001 and 1.0 for true field #2 are displayed

in Fig. 3. As a general statement, the new fields are

Fig. 3. Transmissivity fields obtained with “reality” #2 (recall Fig. 2) for the four problems. Notice also that the essential features of the true field

are captured by all problems when the optimum weight ðlT ¼ 1; lc ¼ 1Þ is used. However, these features are smeared when lT grows (the

kriging field is the limit when lT tends to infinity for all cases). Spurious fluctuations on transmissivities are computed on the left side in all cases

when the weights are too small.
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closer to reality than those obtained using steady state

flow data only. It should be noticed that the kriged

field is much smoother than the reality or the

computed field with head information. However, the

objective function is only about double for the kriged

field than for the estimated one. Transmissivities

estimated with lT ¼ 0:001 are somewhat unstable

(see the maximum and minimum values in the gray

scale for each field).

The evolution of �S2; Fh; S1; and SSE versus lT

are shown in Fig. 4. One can see that �S2 correctly

identifies 1.0 as the optimum value of lT : In this

case, estimation errors (as measured by SSE) are

also minimum (or nearly so) for the optimal lT :

Table 2

Values of lT for which the shown statistics are minima (tested lT

values are 0.001, 0.01, 0.03, 0.1, 0.3, 1.0, 5.0, 20.0) in Example 1

(steady-state flow problem). Notice that �S2 identifies lT ¼ 1 as

optimum in two of the cases, although estimation errors happen to

be smaller for larger lT ’s in three cases

Simulation 1

lT

Simulation 2

lT

Simulation 3

lT

Simulation 4

lT

SSE 1 5 20 5

Fh 0.001 0.001 0.001 0.001

S2 20 20 0.001 20

S3 20 20 0.001 20
�S1 0.01 1 0.001 0.001
�S2 1 1 0.001 0.001

Fig. 4. Dependence of S1, �S2; SSE and Fh on lT for the second flow problem. Several things should be noticed. First, the second expected

likelihood (Eq. (26)) consistently identifies the optimum lT ð�S2Þ: The first expected likelihood (Eq. (25)), ð�S1Þ; underestimates lT. Fh cannot be

used to estimate lT because it grows monotonically with lT. Finally, the smallest estimation errors (SSE) tend to be obtained with the optimal

weights.
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Table 3 displays the values of lT that lead to the

minimum values of the estimation statistics (SSE,

Fh; S2; S3; �S1; and �S2). In this case, the optimum lT

is found in the four realizations. The remaining

statistics tend to miss the mark. The use of the

proposed adjoint state method was very advan-

tageous, a ratio of 10.6 was obtained (CPU time

using direct derivation divided by CPU time using

adjoint state method).

5.7. Results for Example 3: solute invasion transport

problem

Two transport problems are considered. The first

transport problem is created by introducing a mass

flux at the left boundary in Fig. 1. This is the one

we have termed invasion problem. Concentrations

are sampled at the 18 observation points. In

addition, steady state heads are available at these

points. Concentrations are sampled 10 times at the

18 observation points, so that we have a total of

180 concentration data and 17 head data.

The transmissivity field is shown in Fig. 3 for

two pairs of lT and lc: Again, the fields estimated

with the optimal weights are a smooth version of

the true field, but capture the overall trends of

variability. On the other hand, these trends are

missed by the kriged field and by the field with too

small lT and lc; for which some spurious

variability trends show up.

The values of lT and lc yielding the minimum

values of several estimation statistics are shown in

Table 4. It can be noticed that �S2 identifies the

theoretical optimum values, lT ¼ lc ¼ 1: On the

other hand, the minimum value of SSE is not always

reached at this theoretical minimum. In this example,

a ratio of 5.4 was obtained (CPU time using direct

derivation divided by CPU time using adjoint state

method).

5.8. Results for Example 4: four tracer tests transport

problem

The second transport problem consists of the

analysis of four tracer tests injecting at 4 different

locations (boreholes 10, 12, 16 and 18) and pumping

at point 14. The steady state heads are also used as

data. Total number of data is 53 (17 steady state heads

Table 3

Values of lT for which the shown statistics are minima (tested lT

values are 0.001, 0.01, 0.03, 0.1, 0.3, 1, 5, 20) in Example 2

(transient flow problem). Notice that �S2 identifies the optimum

weights in all simulations. In this case, such weights lead to optimal

(or nearly so) estimation errors

Simulation 1

lT

Simulation 2

lT

Simulation 3

lT

Simulation 4

lT

SSE 5 1 1 5

Fh 0.001 0.001 0.001 0.001

S2 20 20 20 20

S3 20 20 20 20
�S1 0.3 0.3 0.3 0.3
�S2 1 1 1 1

Table 4

Values of lT and lc leading to the minima of the shown statistics for

Example 3 (solute invasion transport problem, tested pairs are:

lT ¼ 0:1; 1, 5 and 20 and lc ¼ 0:1; 0.5 and 1.0). Notice that �S2

consistently identifies the optimum l’s in all but one case. These l’s

also tend to yield optimal (or nearly so) parameters

Simulation 1 Simulation 2 Simulation 3 Simulation 4

lT lc lT lc lT lc lT lc

SSE 5 0.1 1 1 1 0.5 5 1

Fh 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Fc 0.1 1 0.1 1 0.1 1 0.1 1

S2 20 0.5 5 0.5 20 0.5 20 0.5

S3 20 0.5 20 0.5 20 0.5 20 0.5
�S1 0.1 0.1 1 0.5 0.1 0.1 0.1 0.1
�S2 1 0.5 1 1 1 1 1 1

Table 5

Values of lT and lc leading to the minima of the shown statistics for

Example 4 (tracer test transport problem, tested pairs are: lT ¼ 0:1;

1, 5 and 20 and lc ¼ 0:1; 0.5 and 1.0). Notice that �S2 consistently

identifies the optimum l’s in all but one case. These l’s also tend to

yield optimal (or nearly so) parameters

Simulation 1 Simulation 2 Simulation 3 Simulation 4

lT lc lT lc lT lc lT lc

SSE 1 0.1 5 1 5 1 1 1

Fh 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Fc 0.1 1 0.1 1 0.1 1 0.1 1

S2 20 0.5 20 0.5 20 0.5 20 0.5

S3 20 0.5 20 0.5 20 0.1 20 0.1
�S1 0.1 0.1 1 1 0.1 1 1 1
�S2 1 0.5 1 1 1 1 1 1
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and 36 concentration measurements, 9 for each test).

The estimated transmissivity field is also shown in

Fig. 3. Values of lT and lc yielding the minimum

values of several estimation statistics are shown in

Table 5. The analysis is similar to that of the previous

example. It is interesting to point that it is also valid

for a rather different kind of problem.

6. Concluding remarks

We have presented two methodological contri-

butions to the solution of geo-statistical inverse

problems. First, we have revised the formulation of

the adjoint state method for computing Jacobian

matrices. Second, we have used the expected value of

the likelihood function to derive the relative weights

of different types of information.

The proposed form of the adjoint state equation

had been introduced by Carrera and Medina (1994),

but had gone unnoticed, probably because we had not

tested it. We have presented a set of tests illustrating

that it can reduce computation cost by an order of

magnitude in realistic problems. The main advantage

of the method is that it yields the Jacobian matrix at a

cost that is independent of the number of parameters.

Therefore, the relative savings of the method grow

with this number.

The expected value of the likelihood function had

been reported to be more robust than the likelihood

function itself for the purpose of estimating statistical

parameters. We have used it to derive the weights to

be assigned to transmissivity and concentration data,

relative to head data. The results are indeed robust in

the sense that the theoretical optimum was correctly

identified in most cases. In fact, only the steady state

flow case showed poor results (the optimal weights

were identified in only two out of four simulations). It

should be noticed that in this case, the optimal weights

did not yield very good estimations of tranmissivity

(as measured by the SSE). In all other examples,

optimal weights were consistently identified and they

led to optimal, or nearly so, transmissivities.
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Appendix A

We need to minimize �S (18) w.r.t. ai and tj: We

will do it under two different assumptions. First,

assuming that there are no constraints. Second,

assuming that relative weights li ¼ a1a
21
i and mj ¼

a1t
21
j are known.

A.1. Unconstrained minimization

Differentiating Eq. (18) with respect to a21
i and

t21
j leads to

›�S

›a21
i

¼ Fui
þ a1trðH21Jt

ui
V21

ui
Jui

Þ2
ni

a21
i

ðA:1Þ

›�S

›t21
j

¼ Fj þ a1trðH21V21
j Þ2

kj

t21
j

ðA:2Þ

where H is defined by Eq. (10).

Setting Eqs. (A.1) and (A.2) to zero leads to Eqs.

(19)–(21) for a1; ai and tj:

A.2. Constrained minimization

In order to impose the constraints li ¼ a1a
21
i and

mj ¼ a1t
21
j we build the Lagrange function:

L ¼ �S þ
X

i

niðlia
21
1 2 a21

i Þ þ
X

j

rjðmja
21
1 2 t21

j Þ

ðA:3Þ

We now take derivatives w.r.t. a21
1 ; a21

i and t21
j

›L

›a21
1

¼
›�S

›a21
1

þ
X
i$2

nili þ
X

j

rjmj ðA:4Þ

›L

›a21
i

¼
›�S

›a21
i

2 ni i $ 2 ðA:5Þ

›L

›t21
j

¼
›�S

›t21
j

2 rj ;j ðA:6Þ

Finally, we set these equations to zero. Multiplying

Eqs. (A.5) by li and Eq. (A.6) by mj and adding all the

equations together, allows us to get a1 : ai and tj are
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derived directly from the constraints. This leads to

Eqs. (22)–(24).

A.3. Derivatives of �S

�S is a function of weights (li and mj), not only

through the explicit dependencies of Eq. (18) but also

through the parameters minimizing Eq. (7). In this

section, we would like to find this dependence. More

precisely, let us find the derivative of �S with respect to

li and mj: We will find it only for �S2; which seems to

be slightly more robust than �S1 in finding the optimal

weights, as seen in the examples section. Differentiat-

ing Eq. (26) with respect to li leads to:

›�S

›li

¼
›lnlHl
›li

þ
N

a1

›a1

›li

2
ni

li

ðA:7Þ

Neglecting dependence of the jacobians on l (first

order approximation):

›lnlHl
›li

. trðH21Jt
ui

V21
ui

Jui
Þ ðA:8Þ

Assuming that we have found the optimum, 7F

ðpÞ ¼ 0; so

›F

›li

¼ 7FðpÞ
›p

›li

þ Fui
¼ Fui

ðA:9Þ

Substituting Eqs. (A.8) and (A.9) into Eq. (A.7), we

obtain

›�S

›li

¼ trðH21Jt
ui

V21
ui

Jui
Þ þ

Fui

a1

2
ni

li

ði . 1Þ

ðA:10Þ

In a similar way,

›�S

›mj

¼ trðH21V21
j Þ þ

Fj

a1

2
kj

mj

ðA:11Þ

Notice the formal similarity between Eqs. (A.10)

and (A.11). In fact, we can write them in a unique

expression. Let wi be one of the weights (li or mi).

Observe that both equations may be written as

›�S

›wi

¼ trðH21AiÞ þ
Fi

a1

2
mi

wi

ðA:12Þ

where the meaning of Ai; Fi and mi depends on

whether wi is li or mi:

A.4. Second order derivatives

Second order derivatives are obtained by differ-

entiating Eq. (18) with respect to the weights. The

starting point here is the assumption that the estimate

of parameters is a minimum of Eq. (7), i.e. 7FðpÞ ¼ 0:

By differentiation of this expression with respect to li

and mj; we get:

H
›p

›li

¼ 27Fui
ðA:13Þ

where we have implicitly approximated the hessian of

F by its own first order approximation (10). Neglect-

ing again the dependence of jacobians on the

parameters, we get:

›Fi

›wj

¼ 7Ft
i

›p

›wj

¼ 27Ft
iH

217Fj ðA:14Þ

›trðH21AiÞ

›wj

. trðH21AjH
21AiÞ ðA:15Þ

Finally, we differentiate Eq. (A.12) w.r.t. wj; using

the previous equations. This leads to:

›2 �S

›wj›wi

¼ trðH21AjH
21AiÞ2

7Ft
iH

217Fj

a1

2
FiFj

Na2
1

þ
mi

w2
i

dij ðA:16Þ
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Gómez-Hernández, J.J., 1991. A Stochastic approach to the

simulation of block conductivity fields conditioned upon data

measured at a smaller scale. PhD Dissertation, Department of

Applied Sciences, Stanford University, California, USA.
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