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Abstract

Recent work with stochastic inverse modeling techniques has led to the development of efficient algorithms for the

construction of transmissivity (T) fields conditioned to measurements of T and head. Small numbers of calibration targets and

correlation between model parameters in these inverse solutions can lead to a relatively large region in parameter space that will

produce a near optimal calibration of the T field to measured heads. Most applications of these inverse techniques have not

considered the effects of non-unique calibration on subsequent predictions made with the T fields. Use of these T fields in

predictive contaminant transport modeling must take into account the non-uniqueness of the T field calibration. A recently

developed ‘predictive estimation’ technique is presented and employed to create T fields that are conditioned to observed heads

and measured T values while maximizing the conservatism of the associated predicted advective travel time. Predictive

estimation employs confidence and prediction intervals calculated simultaneously on the flow and transport models,

respectively. In an example problem, the distribution of advective transport results created with the predictive estimation

technique is compared to the distribution of results created under traditional T field optimization where model non-uniqueness

is not considered. The predictive estimation technique produces results with significantly shorter travel times relative to

traditional techniques while maintaining near optimal calibration. Additionally, predictive estimation produces more accurate

estimates of the fastest travel times.
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1. Introduction

In recent years, the practice of inverse parameter

estimation has become relatively commonplace in

the groundwater modeling field. Inverse parameter

estimation has been applied to a wide variety of

problems including hydraulic test analysis, basin scale

modeling, tracer test analysis and the estimation of

spatially variable property fields. It is this latter area

that is the focus of this paper. The essence of the

problem is to estimate the value of a spatially variable

property, usually transmissivity, T ; at every grid cell

in a model domain based on a limited set of spatially

distributed T measurements and measurements of

hydraulic head at the same or other locations.

0022-1694/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0022-1694(03)00194-X

Journal of Hydrology 281 (2003) 265–280

www.elsevier.com/locate/jhydrol

* Corresponding author. Tel.: þ1-505-844-2450; fax: þ1-505-

844-7354.

E-mail addresses: samcken@sandia.gov (S.A. McKenna),

jdoherty@gil.com.au (J. Doherty), dbhart@cc.usu.edu (D.B. Hart).

http://www.elsevier.com/locate/jhydrol


A number of approaches to this inverse estimation

problem have been developed. A critical review and

assessment of various techniques from the perspective

of functional analysis is given by McLaughlin and

Townley (1996). A series of blind tests of seven

geostatistically based inverse estimation approaches

on exhaustively known, synthetic transmissivity fields

is reported in Zimmerman et al. (1998). These two

papers, as well as other review articles, provide general

background and highlight the strengths and weak-

nesses of different inverse approaches to the problem

of estimating spatially variable property fields.

One inverse technique, generally known as the

‘pilot point’ method, has been used by a number of

authors (Certes and De Marsily, 1991; Lavenue and

Pickens, 1992; RamaRao et al., 1995) to estimate

heterogeneous transmissivity fields. The pilot point

technique consists of selecting locations (the pilot

points) within a domain at which the value of T is

adjusted. The values of T at locations surrounding

each pilot point are also adjusted through a kriging

procedure using a spatial covariance model estimated

from the original T measurements. The values of T at

each pilot point are calculated so as to reduce the

mismatch between the observed and modeled value of

head. Early applications of the pilot point technique

determined the locations of the pilot points subjec-

tively (Certes and De Marsily, 1991) or added pilot

points iteratively at locations where the modeled

heads were most sensitive to the local T value

(Lavenue and Pickens, 1992). Recent work has

extended the pilot point method to three-dimensional

applications (Hendricks Franssen et al., 1999; Lave-

nue and de Marsily, 2001). Advantages of the pilot

point technique over other inverse parameter esti-

mation techniques are that it does not require a small

log T variance or zonation of the model domain and it

can incorporate qualitative information through the

initial estimate of T at the pilot point locations. The

main disadvantage of the pilot point technique is that

it can be computationally expensive.

An extension of the pilot point approach, known as

the self-calibrated algorithm, has been developed by

Gómez-Hernández et al. (1997) and demonstrated on

synthetic fields (Capilla et al., 1997) and at the Waste

Isolation Pilot Plant site in southern New Mexico,

USA (Capilla et al., 1998). This extension allows for

the simultaneous estimation of T at multiple ‘master

locations’ (essentially pilot points). The work by

Gómez-Hernández and others shows that a large

number of master locations, even greater than the

number of original T observations, located on a nearly

uniform grid, can produce T fields that are well

calibrated to the observed heads. As pointed out by

McLaughlin and Townley (1996), large numbers of

master locations/pilot points can overparameterize the

model, making it necessary to somehow regularize the

parameters. Regularization amounts to constraining

the optimization of the T fields with bounds on the

estimated T values (see examples in Capilla et al.

(1997)) or minimizing the difference between esti-

mated T values at adjacent pilot points.

Most documented applications of the pilot point

technique and its extensions have been motivated by

the need to produce T fields, calibrated to measured

head data, that can be used as the basis for contaminant

transport models. Uncertainty in the spatial distri-

bution of T can be addressed through a stochastic

approach where multiple, equiprobable realizations of

the T field are created (RamaRao et al., 1995). Most

authors acknowledge that the estimation of T fields

from a limited number of T and head measurements is

an ill-posed problem and leads to non-unique solutions

(i.e. a variety of different solutions). All of these

solutions satisfy a geostatistical characterization of the

model domain, as encapsulated in a variogram, and all

yield nearly identical model-generated heads at the

locations of the observed heads. To date, a quantitative

technique for addressing the effect of T field non-

uniqueness on model-calculated transport results has

not been presented.

The objective of this paper is to present and

demonstrate an approach for addressing the relation-

ship between non-uniqueness in estimated T fields and

resulting groundwater transport calculations. This

objective is accomplished by using an inverse

parameter estimation approach to stochastic T field

modeling that is similar to that developed by

Gómez-Hernández et al. (1997) and can include a

strong regularization constraint. Additionally, the

approach of simultaneous determination of confidence

and prediction intervals introduced by Vecchia and

Cooley (1987) is applied to the evaluation of nonlinear

confidence intervals of transport outcomes as calcu-

lated by a flow and transport model. In the case

examined here, the major contributor to the uncertainty
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in transport predictions is the transmissivity field

heterogeneity. Combining inverse T field generation

and simultaneous calculation of confidence and

prediction intervals into a ‘predictive estimation’

approach allows for generation of a calibrated T field

while maximizing the conservatism of transport

predictions based upon that T field. This approach to

addressing the non-uniqueness of T fields with respect

to transport predictive error, as implemented in the

PEST parameter estimation software (Doherty, 2000),

is demonstrated on a hypothetical example.

2. Modeling approach

We employ a three-tiered approach to T field

generation and advective transport modeling to

examine the effects of different calibration data and

calibration constraints on the overall nature of the

resulting T fields and on the distributions of advective

travel times. The three approaches are: (1) generation

of seed transmissivity fields conditioned only to the

available T measurements, (2) calibration to both T

and head measurements, and (3) predictive estimation

for calibration to T and head measurements under the

constraint of minimizing an advective travel time

prediction while quasi-maintaining the calibration.

2.1. Seed transmissivity fields

The parameter to be estimated is the log10 value of

the transmissivity, denoted as Z: Multiple, equally

probable, two-dimensional realizations of the spatial

distribution of Z are created using a multiGaussian

(MG) geostatistical simulation algorithm. For each

(x; y) location within the model domain, a conditional

Gaussian cumulative distribution function is created

from the ordinary kriging (OK) estimate of the mean

(Zp) and the variance (s2) of Z based on n surrounding

data points. The OK estimate of the mean is a

weighted linear combination of surrounding original

and previously simulated data

Zp
OKðx; yÞ ¼

Xnðx;yÞ
i¼1

lOK
i ðx; yÞZðx; yÞi; ð1Þ

where lOK
i is the kriging weight applied to the ith

surrounding Z datum. The kriging weights are

determined from solution of the kriging system

under a single unbiasedness constraint such that:

Xnðx;yÞ
i¼1

lOK
i ðx; yÞ ¼ 1:0: ð2Þ

The corresponding OK estimate of the variance of

the local cdf of Zp is

s2
OKðx; yÞ ¼ Cð0Þ2

Xnðx;yÞ
i¼1

lOK
i ðx; yÞCððx; yÞi 2 ðx; yÞÞ

2 mOKðx; yÞ; ð3Þ

where Cðx; yÞ is the covariance function defined by the

variogram and under the assumption of second-order

stationarity and the argument to the covariance

function is the separation distance between the

location being simulated and a surrounding data

location. The Lagrange parameter, mOK is included in

the kriging system to account for the unbiasedness

constraint. At each location, an independent random

number in [0,1] is drawn and the corresponding Z

value from the conditional cumulative distribution

function is assigned. The assigned Z then becomes

part of the dataset used for generation of Z at other

locations within the model domain. The process is

repeated until every location has been simulated and

the realization is complete. More details on the

formulation of the kriging equations and their

application in stochastic simulation can be found in

Goovaerts (1997) and Deutsch and Journel (1998).

It is noted that the assumption of an MG model for

a contaminant transport problem has been shown to be

a non-conservative choice of conceptual model

(Gómez-Hernández and Wen, 1998). However, for

the example application shown herein, the choice of

an MG model allows for ease of computation and also

allows us to focus on non-uniqueness in the estimated

T fields as a previously unexplored issue in con-

servative predictions of transport performance. Exten-

sion of the approaches shown herein to discrete fields

created through indicator geostatistical simulation is

relatively straightforward (Doherty, 1998).

2.2. Transmissivity field calibration

In solving the inverse problem, the transmissivity

fields created through geostatistical simulation are
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updated through calibration to the available obser-

vations of head made in observation wells. For this

work, we consider the case of the head observations

being collocated with the T measurements used to

condition the seed realizations. A number of pilot

points are located throughout the model domain and

the Z values at the pilot point locations are then

adjusted such that an ‘optimal Z field’ is determined.

The values of Z around the pilot points are also

updated through the spatial covariance function

defined by the variogram. The original measured

values of Z are not modified during the calibration

process. The optimal parameter set is defined as that

for which the sum of squared errors (SSE) between

model-generated observations and experimental

observations is reduced to a minimum. The objective

function, F; is defined as

F ¼ ðc0 2 XbÞtQðc 2 XbÞ; ð4Þ

where the vector b holds the model parameters (Z

values at the pilot points), the matrix X is an m

(number of observations) by n (number of parameters)

operator that contains equations for the solution of the

groundwater flow model as a function of the

parameters describing the model domain as well as

the discretization scheme and the boundary con-

ditions, c0 contains the set of field measurements and

Q is an observation weight matrix. The observations,

generally measurements of head, can be equally

weighted, as is done in this work, or different weights

can be assigned to capture varying levels of measure-

ment error in each observation. The ‘t’ superscript

indicates the matrix transpose operation. If X is a

linear model with respect to parameters, the vector b

that minimizes F of Eq. (4) is given by (Bard, 1974):

b ¼ ðXtQXÞ21XtQc0: ð5Þ

Solution of the inverse problem in the realm of

nonlinear models can be done with a simple extension

of Eq. (5) provided that the function, M; that maps n-

dimensional parameter space into m-dimensional

observation space is continuously differentiable with

respect to all estimated model parameters. First the

inverse problem must be linearized. To do this,

suppose that a set of parameters comprising the vector

b0 results in a set of ‘model-calculated observations’ c0

through the equation:

c0 ¼ Mðb0Þ: ð6Þ

Using Taylor’s theorem, a set of observations, c,

corresponding to a parameter vector, b, that differs

only slightly from b0 can be generated using the

approximate relationship

c ¼ c0 þ Jðb 2 b0Þ; ð7Þ

where J is the Jacobian matrix of M; i.e. the matrix

composed of m rows (one for each observation), the

n elements of each row being the derivatives of one

particular observation with respect to each of the n

parameters. Therefore, Eq. (7) is a linearization of

Eq. (6).

In implementing this relationship for the solution

of the inverse problem, the goal is to derive a set of

model parameters, b, for which the model-generated

observations, c, are as close as possible to the set of

experimental observations, c0, in the least squares

sense given the initial set of parameter estimates

encapsulated in the vector b0. The objective function

to be minimized is now defined as:

F ¼ ðc0 2 c0 2 Jðb 2 b0ÞÞ
tQðc0 2 c0 2 Jðb 2 b0ÞÞ:

ð8Þ

The above equations pertinent to linear parameter

estimation can then be used to calculate the parameter

upgrade vector (b 2 b0) on the basis of the vector

ðc0 2 c0Þ that defines the discrepancy between the

model-calculated observations c0 and their field-

measured counterparts observations, c0.

Based on Eq. (5), the parameter upgrade vector, u,

is the difference between the initial, or current,

parameter vector and the updated parameter vector

and is calculated as:

u ¼ ðJtQJÞ21JtQðc0 2 c0Þ: ð9Þ

For a nonlinear model, b, is defined by adding the

parameter upgrade vector u of Eq. (9) to the current

parameter values b0, and is not guaranteed to produce

the minimum value of the objective function. Hence

the new set of parameters contained in b must be used

as a starting point, b0, in determining a further

parameter upgrade vector. This updating continues

until either the global F minimum is reached or a

maximum number of updates is exceeded.
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The updating of u is also controlled by the use of a

Marquardt parameter, to render the optimization

process more stable, especially in cases where high

parameter correlation and low parameter sensitivity

make the optimization process more difficult to

accomplish (Doherty, 1998).

The iterative solution process described above

requires that an initial set of parameters b0 be supplied

to begin the optimization process. In this work, the

initial estimates of Z at the pilot points are taken from

the seed realizations created through geostatistical

simulation. The range of possible Z values at each

pilot point is constrained to be within the maximum

and minimum Z values as measured across all

observed Z values.

The objective function defining the mismatch

between model outputs and observed data, defined in

Eq. (4), is denoted as Fobs: If regularization

constraints are to be imposed, then in addition to

minimizing Fobs; it is also necessary to impose the

requirement that a ‘regularization objective func-

tion’, Fr be minimized by the estimated parameter

set. The regularization objective function is the SSE

of the differences of the Z values between pilot

points as weighted by the spatial covariance function

(complement of the variogram). These weighted

differences can be considered as regularization

measures, for which a regularization objective

function is defined as

Fr ¼ ðd0 2 NbÞtQrðd
0 2 NbÞ; ð10Þ

where Qr is a diagonal matrix comprised of the

squares of weights assigned to the various regular-

ization measures that collectively comprise the

vector d0. The relationships by which the model-

generated counterparts to these regularization

measures are calculated from the parameter values

(constituting the vector b) are encapsulated in the

matrix N. In the present case, N is a simple linear

matrix composed of respective parameter differ-

ences. The ‘preferred’ or ‘observed’ value of these

differences, d0, is set to zero for enforcement of the

‘maximally homogenous’ regularization constraints.

The goal of the regularization process is to

minimize Fr while ensuring that Fobs; is below a

threshold value. This threshold value is set slightly

above the minimum value for Fobs that could have

been achieved without regularization and is denoted

as Fl
obs (i.e. the ‘limiting measurement objective

function’). This value of Fl
obs is chosen by the user

and is generally 1.05–1.10 times the minimum

achievable value of Fobs where this minimum

achievable value can be estimated as the weighted

SSE of the measurement errors. To decrease Fobs

below the measurement errors would force the

calibration to fit noise in the data. The ability to

define Fl
obs in advance of the parameter estimation

makes the regularization methodology an extremely

powerful tool. The regularization process must

minimize Fr while enforcing the condition that

Fobs # Fl
obs (or, in practice, that Fobs ¼ Fl

obs because

a decrease in Fr will nearly always require an increase

in Fobs when parameter values are close to optimum).

Thus the enforcement of regularization constraints is

not allowed to take place at the expense of obtaining a

good fit between model outputs and field

observations.

The constrained minimization problem that

implements the regularization can be formulated as

an unconstrained minimization problem through the

use of a Lagrange multiplier, l: With regularization

constraints imposed, the parameterization problem

consists of determining the parameter vector that

minimizes the total objective function, Ft; defined by

the equation

Ft ¼ Fr þ lFobs; ð11Þ

while simultaneously finding an appropriate value for

l that allows Fobs to equal Fl
obs: The Lagrange

multiplier can be thought of as a factor by which all of

the observation weights are multiplied to ensure that

Fobs ¼ Fl
obs during the minimization of Ft:

2.3. Predictive estimation

Predictive estimation is based on determination of

the true nonlinear range of predictive uncertainty by

calibrating a model so that a key model parameter

(prediction) is either maximized or minimized while

maintaining calibration constraints. The theory is

based on the work of Vecchia and Cooley (1987).

The traditional parameter estimation problem

consists of minimizing the objective function defined

by Eq. (4). For predictive estimation, let K represent

the same linear model as X in Eq. (4) when run under

predictive conditions (in the present case the key
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model prediction is the advective travel time to a

regulatory boundary). The action of the model when

used in predictive mode can be represented by the

equation

d ¼ Kb; ð12Þ

where d is a scalar representing a single model

outcome (i.e. prediction) and K is a 1 £ n matrix

where, once again, n is the number of parameters

requiring estimation. This is the same parameter

vector as that requiring estimation through imposition

of calibration constraints in the traditional parameter

estimation problem. The aim of predictive estimation

is to maximize, or minimize, d while maintaining a

calibration. Maintaining calibration is defined as

maintaining the value of the objective function, F

of Eq. (4) no higher than a value of Fl
0 (similar to the

upper measurement objective function constraint

discussed in relation to the regularization problem).

As shown in Fig. 1, d will be maximized (minimized)

when b lies on the Fl
0 contour and the equality F ¼

Fl
0 holds.

For a linear model, the predictive estimation

problem can be formulated as follows:

Find b such as to maximize (minimize) Kb

subject to

ðc0 2 XbÞtQðc0 2 XbÞ ¼ Fl
0;

where Fl
0 is slightly above the minimum objective

function. The value of Fl
0 is set by the user with

typical values being 1.05–1.10 times the value of the

minimum value of F (after Vecchia and Cooley,

1987). The minimum value of F can be determined

as the SSE of the weighted observation error as was

discussed for the regularization approach.

The solution to this problem (Vecchia and Cooley,

1987) is

b ¼ ðXtQXÞ21 XtQc 2
K

2l

� �
; ð13Þ

where the Lagrange parameter, l; is defined by the

equation:

1

2l

� �2

¼
F0 2 ctQc þ ctQXðXtQXÞ21XtQc

KtðXtQXÞ21K
: ð14Þ

This problem is similar to the regularization

problem discussed above, in that one function is

minimized while the objective function is held at

some upper limit. However, in the predictive analysis

case, an analytical solution to the Lagrange multiplier

is available through Eq. (14) (see details in Doherty

(2000)).

3. Example problem

A groundwater flow and transport problem on a

hypothetical aquifer demonstrates the changes in the

T fields and advective travel times that occur using

the three approaches to modeling described in the

previous section. An exhaustively known T field is

sampled at 89 locations (Fig. 2) to provide the T and

head measurements. In order to compare results

across the three different modeling approaches, the

same set of 100 seed realizations is used as the basis

for each approach. In the first approach, the seed

realizations are used as is, with no calibration to the

observed head values. In the second approach, the

seed realizations are calibrated to the observed heads

using 17 pilot points (Fig. 2). These pilot point

locations were chosen with a focus on placing them in

Fig. 1. Schematic diagram of minimizing a prediction (e.g. travel

time) while maintaining a calibration where the calibration is

defined as being within d of Fmin (shaded region). The black lines

indicate contours of F values (SSE) and the contour surrounding the

shaded region indicates where F ¼ Fl
0: The gray dotted lines are

contours of the prediction value (e.g. advective travel time). This

example diagram is shown for the simple case of only two

parameters, p1 and p2 (after Doherty, 2000).
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areas distant from existing T measurements. For this

example problem with 89 measurements and only 17

pilot points, it was not necessary to use the

regularization constraints to achieve a stable solution.

Therefore, the only constraint on the Z values at the

pilot point locations is that they remain within the

minimum and maximum of the 89 measured Z values.

In the third approach, predictive estimation is used to

calibrate to the observed heads, as in the second

approach, using the same 17 pilot points with the

added constraint of minimizing the fifth percentile

particle travel time. The predictive estimation is

conducted such that for each realization the objective

function is held to 1.10 times the minimum value of

Fig. 2. Groundwater model domain, data locations and pilot points for the example problem. The high T buffer zones at the top and bottom of the

model are cross-hatched. The source zone for the 400 particles is shown by the solid black line near the top of the model and the regulatory

boundary is shown as a dashed black line near the bottom of the model.
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the objective function determined in the second

(‘calibration’) approach (Eq. (4) for this work). The

PEST parameter estimation software (Doherty, 1998)

was used to accomplish the calibration and predictive

estimation modeling.

The mean and standard deviation of the 89 Z ¼

log10 T data are 27.48 and 0.67, respectively. An

anisotropic spherical variogram model with a nugget

of 0.08 and a sill of 0.36 was used to model the spatial

variation of Z: The range in the N–S direction is

5000 m and the range in the E–W direction is 2800 m.

It is noted that the spatial structure of the exhaustive

(true) T field is not obtained from a random field

simulator, but is taken from a centimeter-scale digital

X-ray transmission image of the porosity of a

dolomite sample. Any uncertainty inherent in the

estimation of the true variogram and its effect on the

final predictive estimation is not considered in this

example problem.

A total of 100 unique seed T fields created by a MG

geostatistical simulation algorithm are used as input to

a steady-state, 5-point, finite difference groundwater

flow simulator. For this work, we use the MODFLOW

(MacDonald and Harbaugh, 1988) groundwater flow

model with the preconditioned conjugate gradient

solver to solve the steady-state flow problem. The

interblock transmissivities are calculated as harmonic

averages of the T values in any two adjacent cells. The

model has fixed heads on the upstream and down-

stream boundaries and zero-flux boundaries along the

sides of the model. As the present study is focused

specifically on T field generation, the boundary

conditions are assumed to be known quantities.

For the geostatistical modeling, the grid blocks are

50 £ 50 m and the domain is 4000 by 5600 m. The

same gridblock discretization is used in the ground

water flow model, but the size of the groundwater flow

model domain is increased to 4000 by 6000 m with

the addition of 4 rows of high T (1.0 £ 1025 m2/s)

buffer zones at both the upstream and downstream

ends of the model (Fig. 2). These buffer zones allow

the uniform fixed head applied across these bound-

aries to equilibrate with the heterogeneous T field.

A total of 400 particles were tracked from a

3000 m wide source region at a Northing coordinate

of 5500 m to a regulatory boundary at a Northing

coordinate of 500 m (Fig. 2). These particles are

tracked along streamlines using the MODPATH

software developed by the US Geological Survey

(Pollock, 1989). For this hypothetical problem, the

travel time of the fifth percentile arrival (the 20th

fastest particle) is of particular regulatory interest.

To efficiently solve the groundwater flow and

inverse problem for 100 realizations using each of

three different modeling approaches, a parallel

computing platform was employed. The hetero-

geneous platform, constructed for this project,

comprises 17 PC’s linked together and running the

Linux operating system. Each PC contained at least

one 200 MHz, or faster, Pentium Pro processor and

128Mb of RAM. The PEST software used to

implement all three modeling approaches is capable

of parallelizing the calculation for each T field by

determining the Jacobian at every iteration in a

parallel manner; however, we opted to parallelize the

calibration process for all realizations by letting each

processor solve all aspects of the estimation problem

for a single realization. Custom shell scripts were

written to maintain processor use across the PCs. The

100 runs took between 12 and 31 h depending on the

modeling approach.

4. Results

The results across all three stages of modeling are

compared to each other and to the true values obtained

from the true T field from which the observed T and

head values were obtained. The comparisons focus on

the ability of each of the three ensembles of 100 T

fields to match the observed heads while predicting

advective travel times. Additionally, the reasons for

the different calibration and travel time results are

examined with respect to changes in the Z fields and

changes in the arrival times and arrival locations of

the particles.

4.1. Head calibration and travel times

The objective function defined in Eq. (4) is the SSE

of the 89 head observations. The cumulative distri-

bution, across 100 realizations, of the objective

function is shown in Fig. 3A for all three modeling

stages. Fig. 3A demonstrates the effect of condition-

ing to both T and heads relative to only conditioning

to T values (seed T fields). The decrease in the median
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objective function value from the seed T fields to the

calibrated fields is roughly 10 m2. Fig. 3A also shows

the similarity of the objective function distributions

between the calibrated T fields and the T fields created

with predictive estimation. The objective function

distribution from the predictive estimation T fields is

only slightly higher than the distribution from the

calibrated T fields. A Kolmogorov–Smirnov (K–S)

test shows that these two distributions are not different

from one another at the 5% significance level.

Fig. 3. Comparison of the cumulative distributions of objective function (SSE) values between the three different modeling stages (A) and a

scatterplot comparison of the individual T field SSE values between the calibration and predictive estimation stages (B). The 1:1 line is also

shown in the scatterplot comparison.
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A comparison of the change in the objective

function, Eq. (4), from the calibration stage to the

predictive estimation stage for each initial seed T field

is shown in Fig. 3B. The comparison in Fig. 3B shows

that for a given seed T field, the predictive estimation

SSE is generally 10% higher than the SSE obtained

under calibration mode. While most of the points in

Fig. 3B lie above the 1:1 line, there are several points

that fall below this line. For these T fields, it

was possible to determine a better calibration to

Fig. 4. Comparison of the fifth percentile arrival time, (A) and median arrival time (B) cumulative distributions for the three different modeling

stages. The true values of the fifth percentile and median arrival times are shown by the black ellipses along the X-axis in each figure and are

given in Table 1.
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the observed heads under the minimum travel time

constraint relative to the calibration mode. There are

also four realizations that result in a very large value

of the objective function under predictive esti-

mation—those points lie well above the 1:1 line. For

these predictive estimation runs, PEST was unable to

find a solution with an SSE that was 10% above the

minimum SSE value. This result may be due to these

solutions getting trapped in local minima. Even

though these four solutions were not better than the

initial calibration, their results are included in the final

travel time and exit location summaries.

Fig. 3A and the results of the K–S test show that

across 100 T fields the match to the observed heads is

not significantly different when the T fields are

created under the calibration and the predictive

estimation modes. The question remains as to whether

or not it is possible to get significantly more

conservative fifth percentile travel times out of the T

fields created in the predictive estimation mode.

Fig. 4A shows the distributions of fifth percentile

travel times created under all three stages of the

modeling. The parameters of these distributions and

the value of the actual (true) fifth percentile travel

time are shown in the top of Table 1.

Fig. 4A, shows that all three modeling stages

produce an accurate distribution of fifth percentile

travel times—all three distributions capture the true

value. The distribution of fifth percentile travel

times created with the seed T fields is the widest,

least precise, distribution. Table 1 shows that the

predictive estimation stage decreases the mean fifth

percentile travel time by approximately 4700 years

(12%) relative to the calibration stage. The minimum

travel time determined by the predictive estimation

is 19,420 years (22%) less than the minimum

determined by the calibration stage of modeling.

A K–S test on the distributions of fifth percentile

travel times created by the calibration and pre-

dictive estimation modeling stages shows that the

distributions are different at the 5% significance

level.

These results show that using the predictive

estimation model yields significantly shorter ground-

water travel times without significantly changing the

calibration as measured across an ensemble of 100 T

fields. To check the effect of minimizing the fifth

percentile travel time on the rest of the groundwater

travel times, the results for the median travel time

through each T field are also examined (Fig. 4B and

the bottom of Table 1). Fig. 4B shows that all three

distributions capture the true value of the median

travel time and similar to the fifth percentile travel

time results, the seed realizations produce the least

precise estimate of the median travel time and the

predictive estimation produces the fastest estimates of

the median travel time. Also similar to the fifth

percentile travel time results, the K–S test of the

distributions of median travel time produced by the

calibration and predictive estimation modes show that

they are significantly different.

4.2. Changes in T fields, arrival locations

and arrival times

The changes in the T fields and particle tracks that

are necessary for the calibration and travel time

results shown in the previous section are examined

here. Fig. 5A shows the true Z field along with the

expectation maps from the 100 realizations created at

each stage of modeling: seed fields (B), calibration

(C) and predictive estimation (D). The expectation

Table 1

Parameters of fifth percentile and median travel time distributions (all values given in years)

Model stage Mean Median Std. dev. Min. Max.

Fifth percentile travel time (years) Seed 40,939 39,895 9401 24,200 66,100

Calibrated 38,206 38,440 3274 24,790 44,430

Predictive 33,527 34,315 5115 19,420 43,130

True 35,740 N/A N/A N/A N/A

Median travel time (years) Seed 92,152 91,025 19,592 52,650 152,100

Calibrated 72,944 72,460 9177 48,290 114,600

Predictive 66,623 66,750 12,384 33,040 100,400

True 81,950 N/A N/A N/A N/A
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Fig. 5. Comparison of the true log10 transmissivity, Z; field (A) with the expectation maps created from the seed realizations (B), the calibrated

realizations (C) and the realizations created through the predictive estimation approach (D). The color scale defines the Z value.
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maps shown in Fig. 5B–D are all noticeably smoother

than the true field, as would be expected from

averaging Z over 100 realizations. However, the

general shape of the high T zone down the left-center

of the domain is reproduced by all three modeling

stages including the higher T values at the top and the

narrowing and decreasing values of the high T region

towards the bottom of the domain.

There are several noticeable differences between

the expectation maps in Fig. 5B–D. The expectation

map from the seed realizations shows disconnected

zones of high T ; (white areas) from the top of the

domain to near the bottom. The expectation maps

from the calibration and predictive estimation stages

(Fig. 5C and D) show a smoother and more

continuous area of high T from the top to near the

bottom of the domain relative to the expectation map

from the seed realizations. This high T zone is also

somewhat wider (east–west) in the expectation map

created through predictive estimation relative to the

calibration stage expectation map.

The differences between the T fields created in the

calibration and the predictive estimation stages are

further examined in Fig. 6. Fig. 6 shows the

difference map created by subtracting Fig. 5C from

Fig. 5D (predictive estimation minus calibration).

The majority of the domain is unchanged between

the two modeling approaches—difference values

near zero. The major difference between the

expectation maps is that the predictive estimation

increases the transmissivity in the area surrounding

the pilot points at ð1225; 2725Þ and, to a lesser extent,

at ð1125; 625Þ relative to the calibration approach.

These increases in T are in the path of the fastest

particle tracks.

The effect of the different modeling stages on the

location and travel time of individual particles

(streamlines) is examined in Fig. 7. The particles are

uniformly distributed along the source line and are

numbered from 1 to 400 from west to east (left to right

in Fig. 7). Fig. 7 shows the mean and two standard

deviations of the arrival coordinate (Easting coordi-

nate in meters where each particle crosses the

regulatory boundary) compared to the true arrival

coordinate (Fig. 7A, C and E). This figure also shows

the mean and þ /2 two standard deviations of the

travel time compared to the true arrival time for every

particle (Fig. 7B, D and F). Fig. 7 shows that the seed

realizations are the least precise, largest standard

deviations, for both the arrival coordinates and the

travel times. The calibration stage of modeling

provides the most precise estimates of both arrival

location and travel times for the particles.

The graph of the true arrival coordinates shows

very few particles passing the regulatory boundary

between the easting coordinates of 1700 and 2050 m

and a large number of particles exiting the boundary

between 2050 and 2200 m. This result is not well

captured by any of the modeling approaches and

appears to be controlled by a local high T zone in the

true field (Fig. 5A) between the Easting coordinates of

2050 and 2200 m at a Northing coordinate of 500 m.

This local high T zone is not captured, on average, by

the simulated T fields (Fig. 5B–D). Examination of

Fig. 2 shows that there are no data or pilot points that

sample this local high T zone.

The mean and standard deviation of the travel times

change with both the particle number and the modeling

approach (Fig. 7B, D and F). In general, the seed

realizations overestimate the true travel time for all

particles. This may be due to the less connected high

Fig. 6. The difference map showing the difference in Z ¼ log10 T

values as calculated by subtracting the calibration expectation map

(Fig. 5C) from the predictive estimation expectation map (Fig. 5D).

The color scale defines the difference in Z ¼ log10 T :
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Fig. 7. Results of the particle arrival locations (images on left-hand side) and the particle travel times (images on right-hand side). The particles

are numbered from 1 to 400 from left to right. The results of the seed realizations are shown in (A) and (B), the calibration results in (C) and (D)

and the predictive estimation results in (E) and (F). The results are shown as the mean and þ /2 two standard deviations as calculated across the

100 realizations for each particle (gray lines) and are compared to the true arrival location and travel time values (black circles). For readability,

the mean and standard deviation of only every fifth particle are shown.
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T zones seen in the seed realization expectation map

(Fig. 5B) relative to the expectation maps produced by

the calibration and predictive estimation approaches.

The predictive estimation approach creates the fastest

set of travel times across all particles.

Table 2 summarizes the ability of the different

modeling approaches to accurately predict the true

travel times. Table 2 shows the average absolute

difference between the mean of the simulated arrival

coordinates and the true arrival coordinate and the

average absolute difference between the mean simu-

lated travel time and the true travel time for each

particle. The results in Table 2 show that across all

particles the calibration stage of modeling produces

the most accurate estimates (smallest absolute differ-

ences) of the arrival coordinate and the travel times.

However, the focus of the predictive estimation is not

the entire suite of travel times, but the fastest travel

times. From the results on the true field, the fastest

particles are number 50–160 (Fig. 7). Table 2 also

shows the absolute average deviation between the

mean simulated and the true travel time for particles

50–160. These results show that the predictive

estimation modeling approach produces the most

accurate travel times for the fastest particles. These

results indicate that the predictive estimation

approach not only maximizes conservatism while

maintaining a calibration, but, for this example

problem, it also produces the most accurate results

in the area where the optimization was focused (fifth

percentile arrival times).

5. Conclusions

Many authors have recognized the non-uniqueness

of parameter estimates in stochastic inverse modeling

of T fields. However, the impact of this non-

uniqueness on the prediction of groundwater transport

has not previously been addressed in a quantitative

manner. This paper presents the predictive estimation

technique to address non-uniqueness in T field

generation by adding a constraint of maximizing

conservatism in the predictive model while maintain-

ing a near optimal calibration to the observed data.

In the advective transport example problem

shown here, the results demonstrate that using the

predictive estimation approach can produce signifi-

cantly shorter groundwater travel times without

significantly changing the calibration as measured

across an ensemble of 100 T fields. Not only were

the predictions of advective travel time more

conservative, but they were also more accurate in

the area where the optimization was focused (fifth

percentile arrival times) relative to a more tra-

ditional T field generation technique. It is noted

that results of any T field calibration, including the

predictive estimation presented herein, are depen-

dent on the number and distribution of pilot points.

Future work will investigate this dependency and

examine the robustness of the predictive estimation

approach on additional test cases.

Predictive estimation is a powerful technique for

addressing non-uniqueness in parameter estimates by

focusing results on maximizing the conservatism of

model predictions. This approach is not limited to

ground water travel time problems and may provide

solutions to problems where other risk or even

financial-based prediction must be viewed from the

perspective of conservatism.
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