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Abstract

Generation of permeability field in a reservoir model that matchs historical dynamic production data requires an inverse

calculation. A gradient method is typically used to solve the inverse minimization problem and requires sensitivity coefficients

of reservoir responses, e.g. fractional flow rate or pressure, with respect to the change in the permeability. This paper presents a

novel semi-analytical streamline-based method for computing such sensitivity coefficients under the framework of two-phase

(oil–water) flow conditions. This method is shown to be significantly faster and generate permeability fields with lower

objective function than the traditional perturbation method. The method decomposes the multiple-dimensional full flow

problem into multiple 1D problems along streamlines. The sensitivity of fractional flow rate at the production well is directly

related to the sensitivity of time-of-flight (TOF) along each individual streamline and the sensitivity of pressure at grid cells

along the streamline. The sensitivity of TOF of a streamline can be obtained analytically. The sensitivity of pressure is obtained

as part of a fast single phase flow simulation. The proposed method is implemented in a geostatistically based inverse technique,

called the sequential self-calibration (SSC) method. Results for fractional flow rate sensitivities are presented and compared

with the traditional perturbation method. This new method can be easily extended to compute sensitivity coefficients of

saturation (concentration) data.

q 2003 Elsevier B.V. All rights reserved.
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1. Problem statement

Accurate reservoir simulation and performance

forecasting call for realistic geological reservoir

models that are consistent with all relevant data,

including static data (conceptual geological data, well

log and core data, and seismic data) and dynamic data

(well test data, pressure data from permanent gauges,

historical fractional flow rate data, and saturation

data) Geostatistical techniques have proved to be

powerful tools for constructing such complex
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geological reservoir models providing an assessment

of related uncertainty (Journel, 1989; Deutsch and

Journel, 1998). Honoring both hard and soft static data

is performed through well established co-simulation

techniques (Xu et al., 1992; Zhu and Journel, 1993;

Gómez-Hernández and Journel, 1993). However,

honoring dynamic data simultaneously remains a

challenge and is a very active area of research (Oliver,

1996; He et al., 1996; Wen, 1996; Gómez-Hernández

et al., 1997; Landa, 1997; Tjelmeland, 1997; Wen

et al., 1998; 2000; Hu et al., 1999).

The main difficulty in honoring dynamic pro-

duction data is the global and non-linear relationship

between dynamic data and reservoir petrophysical

properties, e.g. porosity and permeability, through the

flow equations. Matching dynamic production data in

geostatistical reservoir models is an inverse parameter

estimation problem in which flow equations must be

solved to establish the relationship between data and

model parameters (Tarantola, 1987; Sun, 1994). The

inverse problem is often ill-posed with no unique

solution.

A common way for solving an inverse problem is

to pose it as an optimization (minimization) problem

in which an objective function measuring the

mismatch between observed data and model

responses is minimized. The optimization method

searches for optimal model parameters that best match

the data, subject to constraints imposed by the flow

equations and various spatial statistics. The gradient-

based methods typically used to solve the optimiz-

ation problem require calculating the sensitivity

coefficients of the reservoir responses, e.g. pressure,

saturation and fractional flow rate, with respect to the

model parameters, e.g. porosity and permeability.

In this paper, we adapte an iterative geostatistically

based inverse technique, the sequential self-cali-

bration (SSC) method, developed originally by

Gómez-Hernández and co-workers (1997). The SSC

method has been shown to be flexible, robust and

computationally efficient in honoring single phase

dynamic pressure data from, e.g. permanent pressure

gauges, simultaneous multiple well interference tests,

or early production data before water/gas break-

through (Capilla et al., 1997; Wen et al., 1996, 1998,

1999). The unique aspects of the SSC method are

(1) the concept of master point that reduces the

parameter space to be estimated in the optimization,

(2) a perturbation mechanism based on kriging that

accounts for the spatial correlation of perturbations,

and (3) a fast method for computing sensitivity

coefficients that makes the inversion feasible. Readers

are referred to the above references for detailed

description of the SSC methodology.

In this paper, we present the SSC method for

inverting two-phase fractional flow rate data, such as

watercut (WCUT) or gas–oil ratio (GOR) at pro-

duction wells, in addition to the pressure. For the case

of tracer test in hydrogeology, fractional flow rate data

are equivalent to the tracer (cumulative) concentration

at observation wells. The objective function to be

minimized is of the following form:

O ¼
Xnwp

wp¼1

Xntp

tp¼1

Wpðwp; tpÞ½p̂ðwp; tpÞ2 pðwp; tpÞ�
2

þ
Xnwf

wf ¼1

Xntf

tf ¼1

Wf ðwf ; tf Þ½f̂ðwf ; tf Þ2 f ðwf ; tf Þ�
2 ð1Þ

where p̂ðwp; tpÞ and pðwp; tpÞ are the observed and

simulated pressure at well wp at time tp: f̂ðwf ; tf Þ and

f ðwf ; tf Þ are the observed and simulated fractional

flow rate at well wf at time tf : Wpðwp; tpÞ and

Wf ðwf ; tf Þ are weights assigned to pressure and

fractional flow rate data at different wells and at

different time. nwp and nwf are the number of wells that

have pressure and fractional flow data. ntp and ntf are

the number of time steps for pressure and fractional

flow measurements.

In order to find the optimal perturbations of

permeability at master locations that minimize the

objective function (1) using a gradient-based method,

the sensitivity coefficients (derivatives) of pressure

and fractional flow rate at the wells with respect to

perturbations of permeability at all master points at all

time steps are required, i.e.

Sp;jðwp; tpÞ ¼
›pðwp; tpÞ

›Dkj

; ;wp; tp; kj ð2Þ

and

Sf ;jðwf ; tf Þ ¼
›f ðwf ; tf Þ

›Dkj

; ;wp; tp; kj ð3Þ

with j ¼ 1;…; nm being the index of master points.

A method for computing sensitivity of pressure at

all locations ðSp;jðx; tpÞ; x [ all cells, not limited to
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the well locations) within the flow simulation has been

presented by Gómez-Hernández et al. (1997) and Wen

et al. (1998). Here, we present the fast calculation of

the sensitivity coefficient of fractional flow rate,

Sf ;jðwf ; tf Þ:

Computing sensitivity coefficients of reservoir

responses to reservoir petrophysical properties has

been an active research topic for decades and many

sophisticated methods have been developed in the

literature, Most of these approaches fall into one of

three categories: perturbation techniques, direct

methods, and adjoint state methods. A review of

methods for computing sensitivity coefficient is not

the subject of this paper. Interested readers can refer to

references (Yeh, 1986; Chu et al., 1995) for details. In

this paper, we recall the simplest method, the

perturbation method, which is also the most CPU

time demanding method, nevertheless remains popu-

lar algorithm due to its simplicity and wide range

applicability. We explain the shortcomings of the

perturbation method and then present a novel and

faster streamline-based semianalytical method.

The proposed method capitalizes on (1) the

analytical 1D solutions of fractional flow rate along

each streamline (Thiele et al., 1994; Batycky et al.,

1997), (2) the capability of obtaining sensitivity

coefficients of pressure over the entire field after

solving single phase flow equations, and (3) the

assumption that streamline geometry remains

unchanged when perturbing permeabilities, the sensi-

tivity coefficients of fractional flow rate are obtained

extremely fast by simple book-keeping the streamline

paths in space. In addition, the permeability pertur-

bations are jointly considered rather than one at a time

as in the perturbation method. This new method is

then implemented within the SSC framework for

generating geostatistical permeability realizations that

simultaneously honor transient pressure and fractional

flow rate data at producing wells. Streamlines are

updated in each outer iteration of the SSC inversion,

which, to some extent, self-corrects the assumption of

fixed streamline geometry during the calculation of

sensitivity coefficients. The assumption of streamline

geometry remaining unchanged during the pertur-

bation could be justified by comparing the SSC

inverse results based on both the perturbation method

and the proposed method. Finally the CPU advantage

of the proposed method is demonstrated.

This paper is organized as follows. Traditional

perturbation method of computing sensitivity coeffi-

cients under the SSC framework is given in Section 2.

This is followed in Section 3 by the detailed

description of the proposed streamline-based semi-

analytical method under the two-phase flow frame-

work. The two methods are compared directly or

indirectly through the SSC inversion results using

examples in Section 4. The accuracy and speed of the

proposed method are demonstrated. Finally, in

Section 5, we provide further discussion and

conclusions.

2. Perturbation method

Assuming we have measurements of reservoir

response d̂ðu; tÞ; e.g. pressure or fractional flow rate at

producing wells observed at location u [ A and time

t; A is the entire space. The reservoir data d are

nonlinear functions of the parameter vector a (e.g.

porosity or permeability): d ¼ gðaÞ: In our case, the

function g represents the multiphase flow equations.

The inverse problem consists of finding the optimal

parameter a so that the solution dðu; tÞ ¼ gðaÞ matches

the data d̂ðu; tÞ; i.e. the mis-match ðd 2 d̂Þ2 is

minimized. When a gradient-based method (e.g.

steepest descent, Gauss–Newton or conjugate gradi-

ent method) is used to find the optimal parameter a;

we need to compute the sensitivity coefficient of d; i.e.

the derivative of d with respect to the parameter a:

The simplest way of computing such sensitivity

coefficients is the so-called substitution or pertur-

bation method. It computes the first order approxi-

mation of the sensitivity coefficient using a finite

difference procedure. When adapting the SSC method

to find the optimal permeability fields that match the

fractional flow rate data f ðwf ; tf Þ the substitution

method can be summarized as follows.

1. Select an initial permeability field, k0 ¼ {k0ðuiÞ;

i ¼ 1;…;N}; N being the number of cells in the

model.

2. Solve the flow equations for fractional flow rate

f0ðwf ; tf Þ; at all wells and at all time steps using the

initial permeability field. For all master locations

j ¼ 1;…; nm; (taking one at a time and usually

nm p N), proceed to the following steps:
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† Introduce a small perturbation of permeability Dkj

to the initial permeability at master location uj:

† Interpolate this small perturbation into the entire

field using a selected interpolating algorithm (SSC

uses kriging method). We thus get a perturbation

field Dkj ¼ {DkðuiÞ; i ¼ 1;…;N} due to the

perturbation at location uj; Dkj ¼ DkðujÞ:

† Add this perturbation field to the initial per-

meability field to obtain the updated permeability

field k0 ¼ k0 þ Dkj:

† Solve the flow equations using the updated field k0

to obtain the new fractional flow rate solution,

f 0jðw; tÞ induced by the perturbation at master

point uj:

† The sensitivity coefficient of fractional flow rate

with respect to the permeability change at master

location uj can then be computed as:

Sf ;jðwf ; tf Þ ¼
f ðwf ; tf Þ2 f0ðwf ; tf Þ

Dkj

ð4Þ

Thus, for each outer-iteration of the SSC method, a

total of nm þ 1 flow simulation solutions are

needed to obtain all sensitivity coefficients

required. This demands much CPU time. In

addition, the values of Sf ;jðwf ; tf Þ computed by

using this substitution method are sensitive to the

magnitude of the introduced perturbation, Dkj if the

solution is highly nonlinear to the parameter. More

importantly, the substitution method computes

sensitivity coefficients of each parameter indepen-

dently (i.e. one at a time), thus it does not account

for joint perturbations, i.e. the spatial relationship,

at all nm master locations. We will show later that

this is crucial for achieving good final models.

Many improvements have been proposed to speed

up the computation of sensitivity coefficients of

fractional flow rate under the finite difference frame-

work (Chu et al., 1995; Landa, 1997). Although faster

than the perturbation method, these methods all

remain computationally intensive and none accounts

for joint perturbations.

Xue and Datta-Gupta (1997) used a streamline-

based method to solve the flow equations and compute

the sensitivity coefficients. Their method speeds up

the perturbation approach by taking advantage of the

computational speed of streamline-based flow simu-

lation method as compared with a finite difference

method. Although streamline based flow simulation

can be orders of magnitude faster than finite

difference, it is still CPU intensive, requiring nm þ 1

flow solutions. It shares other shortcomings of the

substitution method. i.e. (1) the sensitivity coefficient

values depend on the value of Dkj used in the

calculation, and (2) it does not account for spatial

correlation of perturbations at multiple master

locations.

3. Streamline-based semi-analytical method

We propose a new method for computing sensi-

tivity coefficients based on the streamline algorithm

and the analytical relationship between fractional flow

rate and the time-of-flight (TOF) of streamlines

(Thiele et al., 1996; Batycky et al., 1997). The TOF

is equivalent to the travel time in particle tracking

widely used in hydrogeology. The key assumption is

that the streamline geometries are insensitive to the

relatively small perturbations of the permeability

field. This assumption is valid as long as the

perturbation is relatively small which we will show

to be the case in the inner iteractions of the SSC. All

streamline geometries are then updated after the

perturbation in the outer loop of the SSC inversion so

that the potential error due to the fixed streamline

geometry assumption during the sensitivity coefficient

computation could be corrected. The complete set of

sensitivity coefficients at all master points are

obtained simultaneously not one at a time as in the

perturbation method. The spatial correlation of

perturbations at multiple master locations is

accounted for by using kriging weights computed

from all master locations when propagating the per

turbations at master locations to the entire field. The

algorithm is developed in detail next. In the streamline

based method, the fractional flow rate for a given

producing well wf at time tf is expressed as (Batycky

et al., 1997):

f ðwf ; tf Þ ¼

Xnsl
wf

s¼1 qsl
s f sl

s ðtf ÞXnsl
wf

s¼1 qsl
s

ð5Þ

where qsl
s is the flow rate associated with streamline s;

and f sl
s ðtf Þ is the fractional flow rate of streamline s at
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time tf : nsl
wf

is the total number of streamlines arriving

to well wf : The derivative of f ðwf ; tf Þ with respect to

the permeability perturbation at master point j is then:

Sf ;jðwf ; tf Þ ¼
›f ðwf ; tf Þ

›Dkj

¼
1

Xnsl
wf

s¼1

qsl
i

Xnsl
wf

s¼1

qsl
s

›f sl
s ðtf Þ

›Dkj

ð6Þ

Depending on the flow regime, the fractional flow rate

f sl
s ðtf Þ of streamline s can be expressed as a function of

TOF, i.e. f sl
s ðtf Þ, ðts=tf Þ: As an example, the function

of f sl
s ðtf Þ for tracer flow and immiscible two phase

displacement are shown in Figure 1. These functions

can either be obtained analytically or numerically.

Assuming the streamline geometry fixed, i.e. the

perturbation of permeability only changes the TOF, ts

along streamline, thus to compute

›f sl
s ðtf Þ

›Dkj

in Eq. (6), we only need to compute

›ts

›Dkj

Considering a non-diffusive tracer flow with unit

mobility ratio and matched fluid density, we thus have

(see Fig. 1a):

f sl
s ðtf Þ ¼

1; if ts # tf

0; if ts . tf

(
ð7Þ

Since Eq. (7) is not differentiable at ts=tf ¼ 1; we use

an Error function Erf ðts=tf 2 1Þ with a small variance

to approximate the 1D tracer solution (dashed line in

Fig. 1a):

f sl
s ðtf Þ< 12Erf

ts

tf

2 1

 !
ð8Þ

hence

›f sl
s ðtf Þ

›Dkj

¼2
1

tf

G
ts

tf

 !
›ts

›Dkj

ð9Þ

where

G
ts

tf

 !
¼

1ffiffiffiffi
2p

p
s

exp 2
ðts 2 tf Þ

2

2t2
f s

2

 !

is a Gaussian distribution function with unit mean and

variance s2: The variance of s2 should be small so

that the approximation is close to the true function; we

will demonstrate later the influence of the variance on

the sensitivity coefficients.

Note that for two phase immiscible flow, the

derivative of fractional flow with respect to TOF can

be obtained from the Buckley–Leverett solution

(Fig. 1b).

Again the TOF of streamline s is a function of total

flow velocity which is a function of permeability and

total pressure along the streamline:

ts ¼
ðs

0

1

vs

ds

In a discretized numerical model (Fig. 2), the TOF of

streamline s from injector to producer is the sum of

the TOF in each cell that streamline s passes through,

Fig. 1. (a) Analytical 1D solution of tracer flow and its

approximation using a Gaussian cumulative function (dashed

line), and (b) analytical 1D Buckley–Leverett solution of two-

phase immiscible displacement.

X.-H. Wen et al. / Journal of Hydrology 281 (2003) 296–312300



i.e.

ts ¼
Xns;c

c¼1

Dts;c ð10Þ

ns;c being the number of cells crossed by streamline s

from injector to producer, and Dts;c is the associated

TOF for streamline s to pass through cell c:

In Fig. 2, for example, the total number of cells

crossed by the streamline from injector to producer is

13 (i.e. ns;c ¼ 13). Based on the semi-analytical

solution (Pollock, 1989), i.e. assuming linear variation

of velocity in all directions within a numerical cell we

have:

† if the streamline exits the cell c in the X-direction,

Dts;c ¼ Dts;c;x ¼
1

Jx

ln
vx;0 þ Jxðxe 2 x0Þ

vx;0 þ Jxðxi 2 x0Þ

( )
ð11Þ

Fig. 2. Schematic illustration of tracking a streamline through a discretized numerical model.
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† if the streamline exits the cell c in the Y-direction,

Dts;c ¼ Dts;c;y ¼
1

Jy

ln
vy;0 þ Jyðye 2 y0Þ

vy;0 þ Jyðyi 2 y0Þ

( )
ð12Þ

where

Jx ¼
vx;Dx 2 vx;0

Dx

Jy ¼
vy;Dy 2 vy;0

Dy

ð13Þ

vx;0 ¼2T01

p0 2 p1

Dxfm
; T01 ¼

2k0k1

k0 þ k1

vx;Dx ¼2T02

p2 2 p0

Dxfm
; T02 ¼

2k0k2

k0 þ k2

vy;0 ¼2T03

p0 2 p3

Dyfm
; T03 ¼

2k0k3

k0 þ k3

vy;Dy ¼2T04

p4 2 p0

Dyfm
; T04 ¼

2k0k4

k0 þ k4

where Dx and Dy are the cell size in X and Y

directions, f is porosity, m is viscosity, T01 to T04

are the transmissibilities for the four interfaces of

the cell intersected by the streamline (cell 0 in

Fig. 2), p0 to p4 and k0 to k4 are the pressure and

permeability values at the current (0) and the

surrounding (1–4) cells, see Fig. 2. ðxi;yiÞ and

ðxe; yeÞ are the inlet and exit coordinates of the

streamline in current cell 0, and ðx0; y0Þ is the

coordinate of the lower left corner of current cell 0.

From Eqs (10)–(13), we have:

›ts

›Dkj

¼
Xns;c

c¼1

X4

g¼1

›Dts;c

›T0g

›T0g

›Dkj

þ
X4

l¼0

›Dts;c

›pl

›pl

›Dkj

8<
:

9=
;
ð14Þ

where ð›Dts;cÞ=ð›T0gÞ and ð›Dts;cÞ=ð›plÞ can be

computed from Eqs. (11) and (12), their expressions

are given in Appendix A. ð›pl=›DkjÞ are the sensitivity

coefficients of pressure with respect to permeability

change, their computation is given in the previous

paper (Gómez-Hernández et al., 1997; Wen et al.,

1998). Finally from Gómez-Hernández et al. (1997),

we have (using harmonic average to compute

transmissibility between two cells):

›T0g

›Dkj

¼
T2

0g

2

l0
j

k0

þ
l

g
j

kg

( )
ð15Þ

where l0
j and l

g
j are the kriging weights attributed to

master point j; cells 0 and g ðg ¼ 1;…; 4Þ: Since the

kriging weights are computed accounting for all

master points, the resulting sensitivity coefficients do

account for the spatial correlation among all master

points i.e., the permeability perturbations at all master

locations are now considered jointly rather that one at

a time. The completed set of sensitivity coefficients at

all master points are obtained simultaneously. In

addition, there is no need to choose a specific value of

Dkj before computing sensitivity coefficients.

In summary, the calculation of the sensitivity

coefficients Eqs. (9) and (14) is reduced to a simple

book-keeping of streamlines in the simulation model:

this is both mathematically simple and computation-

ally fast. The extension of this method to other types

of flow (such as immiscible two phase flow) or to

other type of data (such as distributed saturation) and

to 3D should be straightforward.

It is noted that new streamline geometry is

recomputed in each outer iteration of the SSC

inversion, i.e. after updating by reruning the simu-

lation. Thus any potential error in sensitivity coeffi-

cients by assuming fixed streamline geometry is

limited within one iteration and then self corrected in

the next iteration. The net impact for the SSC

inversion is that for highly heterogeneous model it

may slow down the convergence rate during the

inversion and a smaller damping (relaxing) parameter

for model updating should be used (Gómez-Hernández

et al., 1997; Wen et al., 1999).

4. Examples

In this section, we compare the accuracy and

efficiency of the streamline-based perturbation

method and the proposed streamline based semi-

analytical method in computing sensitivity coeffi-

cients for the SSC inversion.

4.1. Single master point

We first compare the sensitivity coefficients with

only one master point. Because the perturbation

method does not account for the spatial distribution

of all master points whereas the proposed method

does, the sensitivity coefficient values computed by
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the two methods are comparable only when there is

single master point. Fig. 3 provides this comparison

Fig. 3a is the 2D LnðkÞ field with constant

permeability LnðkÞ ¼ 2: k has unit of millidarcy

(md, 1 md ¼ 9.869 £ 10216 m2). There are four

producers at the four corners and one water injector

at the center of the field with injection rate ¼ 3000 bbl

(Barrel)/day (1 bbl ¼ 0.1589873 m3), assuming unit

mobility ratio and matched fluid density which is

equivalent to tracer flow. The production rates are

held constant for each producer: 500 bbl/day for wells

1 and 4, 1000 bbl/day for wells 2 and 3. Other

reservoir parameters are thickness h ¼ 100 feet,

porosity f ¼ 0:2; viscosity m ¼ 0:3 cp; and compres-

sibility c ¼ 10251=psi: The streamline geometry for

this field is also given in Fig. 3a. The fractional flow

rate at well 1, f 0
w1ðtÞ; is shown in Fig. 3b.

A single master point is selected close to well 1 with

a perturbation of DðlnðkÞÞ1 ¼ 0:2; this perturbation is

then propagated through the entire field by kriging to

obtain a perturbation field (Fig. 3c), resulting in the

updated field shown in Fig. 3d. An anisotropic

variogram with major range in direction 458 is used

for this propagation. Next, the flow equation is solved

again based on the updated permeability field to obtain

the perturbed fractional flow rate f 1
w1ðtÞ at well 1 due to

the original perturbation at the master point see

(Fig. 3e). The new streamline geometry for the

updated permeability field is also shown in Fig. 3d:

there is very little change in streamline geometry.

Using the perturbation method, the sensitivity

coefficients are computed as:

Sf ðw1; tÞ ¼
f 1
w1ðtÞ2 f 0

w1ðtÞ

Dk1

The corresponding values are shown by the solid

bullets in Fig. 3g. The sensitivity coefficients of

pressure for the entire field with respect to the

permeability perturbation at the master point required

by the proposed method are shown in Fig. 3f, these are

computed as part of single phase flow simulation. The

solid line in Fig. 3g are the results obtained by the

proposed method: the results from the two methods

are quite close. This indicates the accuracy of the

proposed method.

As mentioned previously, the sensitivity coeffi-

cients computed by the perturbation method are

sensitive to the magnitude of the perturbation Dk

used in the calculation. Fig. 4 shows the sensitivity

coefficients at well 1 using different perturbation

values for Dk at the master point. A 10% perturbation

of the initial value provides reasonably stable results

Considering the fact that the appropriate Dk will

change for different master points and at different

wells because of their relative configurations, the

accuracy of sensitivity coefficients using the pertur-

bation method will vary for different master points

and for different wells when using the same Dk value.

As for the proposed method, an Error function is

used to approximate the analytical 1D tracer flow

solution (see Fig. 1a). The derivative of the Error

function is a Gaussian function. The values of

sensitivity coefficient using the proposed method

will be influenced by the selected variance value

used in the Gaussian function. This is shown in Fig. 5

using the same field as shown in Fig. 3. The larger this

variance value, the smoother the sensitivity coefficient

results. Therefore the variance should be small and the

results are quite stable with range of 0.01–0.001. Note

that the accuracy of the sensitivity coefficients

calculated at different master points and for different

wells does not change if we use the same variance

value.

Our experience has been that the positive or

negative signs of the sensitivity coefficients, which

guide the direction of perturbation in the optimization,

as well as the relative values at different locations are

more important than their absolute values for the SSC

inversion.

4.2. Multiple master points

For the case of multiple master points, the

sensitivity coefficients calculated by the two methods

are not directly comparable since the proposed

method accounts for the spatial correlation of

perturbations at the multiple master points, whereas

the perturbation method does not. Nevertheless, we

can judge their accuracy indirectly by comparing the

final inversion results and the behavior of the

corresponding objective functions.

Fig. 6 shows a 2D geostatistical reference field

(50 £ 50 grid with cell size 80 feet £ 80 feet) and the

corresponding fractional flow rate data at four wells.

The reference field is generated by using
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Fig. 3. Comparison of sensitivity coefficients computed by the two methods for the case of a single master point.
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the Sequential Gaussian Simulation (Deutsch and

Journel, 1998). The main features observed from this

field are: (1) a high permeability zone and a low

permeability zone in the middle of the field, (2) high

interconnectivity between wells W5 and W3, and (3)

low interconnectivity between wells W5 and W4.

These features are the main characteristics when

comparing results from different methods in this

example. The injection rate at the central well (W5) is

1600 bbl/day, and the production rate for the four

producing wells (W1–W4) is 400 bbl/day/well. Frac-

tional flow rates at four producing wells are computed

with streamline simulation.

All other flow parameters (thickness, porosity

and viscosity) used in the simulation are the same

as in the previous example. One thousand stream-

lines are used in this streamline simulation. The

SSC method is then used to construct permeability

realizations matching the fractional flow rate data

at the four producing wells. No pressure data is

used in this example. Initial unconditional realiz-

ations required by the SSC are generated using the

same method with the same parameters (histogram

and variogram) as used to generate the reference

model.

Fig. 7 shows three initial permeability fields (top

row) and the resulting fields updated by SSC using the

two different methods for computing sensitivity

coefficients (second row: perturbation method, third

row: proposed method). The bottom row shows the

decreases of the objective function with number of

iterations. The same 25 randomly selected master

points are used for all realizations.

From this figure, we can see that, visually, the

proposed method provides more accurate per-

meability fields with lower objective function and

with representation of spatial variation patterns closer

to the reference field. Also, using the proposed method,

the objective function behaves better during the

inversion process, i.e. the objective function decreases

Fig. 4. Sensitivity coefficients computed by the perturbation method using different perturbation values at the master point.

Fig. 5. Sensitivity coefficients computed by the proposed method using different variance values to approximate the 1D analytical solution.
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monotonically, whereas, using the perturbation

method, the value of objective function fluctuates.

The comparison of individual realizations as

shown in Fig. 7 is somewhat difficult. A better

comparison of the inverse results from the two

methods is given by the ensemble results calculated

from 200 realizations, see Fig. 8. The ensemble

average field provides information about common

large scale variation patterns among different

realizations, while the standard deviation field dis-

plays the degree of variation (uncertainty) among

realizations.

Comparing with the reference field given at the

bottom of the figure, the inverse results using

the proposed method are clearly superior in that the

results (1) better reproduce the reference spatial

patterns and are thus more accurate, and (2) have

smaller standard deviations and are thus less

uncertain.

In summary, compared to the perturbation method,

the inverse results from the proposed method in the

SSC inversion have the following characteristics:

† better behavior of objective function: monotoni-

cally decreasing for almost all realizations,

† lower objective function,

† better reproduction of the reference spatial

patterns with less uncertainty.

These indirectly indicate that the proposed method

provide more accurate sensitivity coefficients that are

better suited for the SSC inversion.

4.3. CPU time comparison

The computational efficiency of the proposed

method is now compared with the perturbation

method. The CPU time for computing sensitivity

coefficients of fractional flow rate using the two

methods depends mainly on the following three

parameters:

1. size of the simulation model (number of cells),

2. number of master points, and

3. total number of streamlines used.

Other minor factors include Eq. (1) the number

of producers and (2) the number of time steps in

the simulation. Among these factors, the model size

is the dominant factor due to the flow simulation.

Fig. 9 shows CPU time (SGI Indigo workstation) of

10 SSC iterations versus the number of cells in the

model with 25 master points and 1000 streamlines.

The number of streamlines required for the simulation

is problem dependent. In general, we can try different

number of streamlines until obtaining stable simu-

lation results.

From Fig. 9, we can see that, for a small (e.g.

25 £ 25) model, the perturbation method is slightly

faster than the proposed method because solving a

few flow equations using the streamline method is

quicker than the proposed book-keeping of stream-

lines. The book-keeping of streamline includes (1)

all intersections of each streamline with grid cells,

(2) TOF of each streamline across each cell, (3)

Fig. 6. A synthetic geostatistical reference field and the fractional flow rate data from the four corner wells.
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integration of all required information according to

Eqs. (9) and (14) to get sensitivity coefficients for

all master points. As the model becomes larger,

the CPU time increases dramatically using

the perturbation method because the flow equations

must be solved many more times (total number of

flow simulation ¼ iteration number £ (number of

master points þ 1) for the perturbation method).

Fig. 7. Three realizations of initial (top row) and inverse results from the SSC method using the perturbation (second row) and the proposal

(third row) methods for computing sensitivity coefficients, and the variations of objective functions after each iteration (bottom row).
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Whereas the CPU time for the proposed method

increases much more slowly than the perturbation

method (total number of flow simulation ¼ iteration

number for the proposed method). With a 100 £ 100

grid model, the CPU time using the perturbation

method is more than five times that using the

proposed method.

Other non-SSC based methods for inverting

production data that require flow simulations at

every iteration for every cell or zone (i.e. full matrix)

without using streamline-based simulator could be

orders of magnitude slower than the proposed method

(Chu et al., 1995; He et al., 1996; Landa, 1997). The

CPU time of one such inversion is also given in Fig. 9

Fig. 8. Ensemble fields (average and standard deviation) from 200 inverted realizations using the two methods for computing sensitivity

coefficients.
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for comparison. Note that the full matrix based direct

method used can not run model with cells number

larger than 30 £ 30 due to its extreme memory

demanding.

5. Summary and discussion

We have presented a new methodology for

computing sensitivity coefficients of fractional flow

rate with respect to permeability, based on an

analytical solution from streamlines. This method

has been implemented within the SSC framework for

inverting permeability models from fractional flow

rate data. We have verified the proposed method by

comparing the sensitivity coefficient results using the

perturbation method for only one master point. For

multiple master points, we have demonstrated that the

proposed method is more accurate and better suited

for the SSC inversion than the perturbation method.

The SSC inversion with the proposed method

provides a better inverse permeability field with a

lower objective function, less uncertainty, and better

spatial variation patterns than with the perturbation

method. We have also shown that the proposed

method is computationally more efficient than the

perturbation method.

The proposed streamline-based method of sensi-

tivity coefficient calculation has the following charac-

teristics:

† The fractional flow rate is the sum of fractional

flow rate of all contributing streamlines, see

Eq. (5).

† The sensitivity coefficient of fractional flow rate

for each streamline is a function of sensitivity of

TOF and a derivative of the 1D solution, see

Eq. (9).

† The sensitivity coefficient of TOF is separated

into a pressure part and a permeability part along

the streamline, see Eq. (14).

† The pressure part is computed directly from a

single-phase flow solution, (Gómez-Hernández

et al., 1997; Wen et al., 1998).

† The permeability part comes from the same

kriging algorithm that is used to propagate the

permeability perturbation, see Eq. (15).

† The derivatives of TOF with respect to trans-

missibility and pressure are obtained from the

analytical expression of TOF, see Appendix A.

The computation of sensitivity coefficients with

respect to permeability perturbation is reduced to

solving a single-phase flow equation only once and

then keeping track of the streamlines from injectors

to producers. The completed set of sensitivity

coefficients at all master locations are obtained

simultaneously, and the spatial correlation of

perturbations at multiple master locations is

accounted for. It is fast and more accurate than the

perturbation method.

We believe that the improved accuracy of the

proposed method results are due to the following

reasons:

† It jointly accounts for the perturbations of multiple

master locations through the kriging weights. Thus

the spatial correlation of perturbation values

among all master points is intrinsically built in.

Accounting such spatial correlation is essential in

the SSC inversion, while the traditional pertur-

bation method can not build in such important

spatial correlation.

† It does not depend on the magnitude of the specific

perturbation values.

† The absolute values of the sensitivity coefficients

are not as important to the inversion as their relative

values at different locations, as well as their

positive or negative sign for the SSC inversion.

Fig. 9. Comparison of CPU times for 10 SSC iterations using the

two methods of computing sensitivity coefficients, as well as the

CPU time for one full matrix (non-ssc) based direct method.
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† The assumption that streamline geometry is

relatively insensitive to the permeability pertur-

bation within a single inner iteration of the SSC

does not limit the application of the proposed

method due to the updating of streamlines after

each outer loop of SSC inversion. Also, this

assumption is reasonable as long as the per-

meability perturbation is small, which is the case

within each inner iteration.

The proposed method requires the sensitivity

coefficients of single-phase pressure to the per-

meability change for all cells intersected by stream-

lines and their surrounding cells (essentially all cells

of the model). We take advantage of the earlier

method of computing sensitivity coefficients of

pressure for all simulation cells within a single-

phase flow simulation (Gómez-Hernández et al.,

1997; Wen et al., 1998).

In this paper, we have used tracer flow to represent

an unit mobility ratio and matched fluid density

displacement, for which the exact 1D analytical

solution along the streamline is available and the

pressure field does not change during the course of

injection. For other flow regimes or boundary

conditions, e.g. with nonunit mobility ratio and

different fluid densities, with changes in well con-

figuration, or with changes in injection or production

well rates, the pressure field and the streamline

geometries would have to be updated within any one

flow simulation (Batycky et al., 1997). In such cases,

we need to retain all information about the locations

and geometries of all streamlines and their associated

TOF, as well as the associated pressure fields. When

the analytical 1D solution along the streamline is not

available, other methods, e.g. semi-analytical or

numerical methods can be used to compute the 1D

fractional flow rate solution. We may then obtain

nonsmooth 1D solutions which would require smooth-

ing, so that they are differentiable.

This paper presented only the sensitivity coeffi-

cients of fractional flow rate to permeability. The

same method can easily be extended to compute

sensitivity coefficients of fractional flow to porosity or

sensitivity coefficients of saturation at any locations

that might be available from well data or even 4D

seismic in the future. In future papers, we will show

results for more complex reservoir examples and

additional boundary conditions.

Finally, it is noted that the proposed method is

directly applicable to integrate tracer test data for

aquifer formation characterization in hydrogeology.
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Appendix A. Derivation of time-of-flight

derivatives

From Eqs (11)–(13) we have:

Dts;c;x ¼
2Dx2fm

Ax

ln
DxT01ðp0 2p1ÞþAxðxe 2 x0Þ

DxT01ðp0 2p1ÞþAxðxi 2 x0Þ

� �

Dts;c;y ¼
2Dy2fm

Ay

ln
DyT03ðp0 2p3ÞþAyðye 2 y0Þ

DyT03ðp0 2p3ÞþAyðyi 2 y0Þ

( )

where Ax ¼T01ðp1 2p0ÞþT02ðp2 2p0Þ; and Ay ¼

T03ðp3 2p0ÞþT04ðp4 2p0Þ:

The derivatives required in Eq. (14) are the

following (Fig. 2):

›Dts;c;x

›T01

¼
2Dx2fmðp0 2 p1Þ

A2
x

ln
Dx

Cx

þ Ax

½Dx 2 ðxe 2 x0Þ�Cx 2 ½Dx 2 ðxi 2 x0Þ�Dx

CxDx

� �
›Dts;c;x

›T02

¼
2Dx2fmðp0 2 p2Þ

A2
x

ln
Dx

Cx

þ Ax

2ðxe 2 x0ÞCx þ ðxi 2 x0ÞDx

CxDx

� �
›Dts;c;x

›T03

¼
›Dts;c;x

›T04

¼ 0
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›Dts;c;x

›p0

¼
2Dx2fm

A2
x

ðT01þT02Þln
Dx

Cx

� �
þAx

½DxT012 ðT01þT02Þðxe2x0Þ�Cx2 ½DxT012 ðT01þT02Þðxi2x0Þ�Dx

CxDx

� �

›Dts;c;x

›p1

¼
2Dx2fm

A2
x

2T01ln
Dx

Cx

� �
þAx

½2DxT01þT01ðxe2x0Þ�Cx2 ½DxT01þT01ðxi2x0Þ�Dx

CxDx

� �

›Dts;c;x

›p2

¼
2Dx2fm

A2
x

2T02ln
Dx

Cx

� �
þAx

T02ðxe2x0ÞCx2T02ðxi2x0Þ�Dx

CxDx

� �
›Dts;c;x

›p3

¼
›Dti;s;x

›p4

¼0

where Cx ¼DxT01ðp02p1ÞþAxðxi2x0Þ and Dx ¼DxT01ðp02p1ÞþAxðxe2x0Þ:

Similarly,

›Dts;c;y

›T03

¼
2Dy2fmðp0 2 p3Þ

A2
y

ln
Dy

Cy

þ Ay

½Dy 2 ðye 2 y0Þ�Cy 2 ½Dy 2 ðyi 2 y0Þ�Dy

CyDy

( )

›Dts;c;y

›T04

¼
2Dy2fmðp0 2 p4Þ

A2
y

ln
Dy

Cy

þ Ay

2ðye 2 y0ÞCy 2 ðyi 2 y0ÞDy

CyDy

( )

›Dts;c;y

›T01

¼
›Dts;c;y

›T02

¼ 0

›Dts;c;y

›p0

¼
2Dy2fm

A2
y

	 ðT03 þT04Þln
Dy

Cy

 !
þAy

½2DyT03 2 ðT03 þT04Þðye 2 y0Þ�Cy 2 ½DyT03 2 ðT03 þT04Þðyi 2 y0Þ�Dy

CyDy

( )

›Dts;c;y

›p3

¼
2Dy2fm

A2
y

2T03ln
Dy

Cy

 !
þAy

½2DyT03 þT03ðye 2 y0Þ�Cy 2 ½2DyT03 þT03ðyi 2 y0Þ�Dy

CyDy

( )

›Dts;c;y

›p4

¼
2Dy2fm

A2
y

2T04ln
Dy

Cy

 !
þAy

T04ðye 2 y0ÞCy 2T04ðyi 2 y0ÞDy

CyDy

( )

›Dts;c;y

›p1

¼
›Dts;c;y

›p2

¼ 0

where Cy ¼DyT03ðp0 2p3ÞþAyðyi 2 y0Þ and Dy ¼DyT03ðp0 2p3ÞþAyðye 2 y0Þ:
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