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Abstract

A Bayesian approach to characterize the predictive uncertainty in the delineation of time-related well capture zones in

heterogeneous formations is presented and compared with the classical or non-Bayesian approach. The transmissivity field is

modelled as a random space function and conditioned on distributed measurements of the transmissivity. In conventional

geostatistical methods the mean value of the log transmissivity and the functional form of the covariance and its parameters are

estimated from the available measurements, and then entered into the prediction equations as if they are the true values.

However, this classical approach accounts only for the uncertainty that stems from the lack of ability to exactly predict the

transmissivity at unmeasured locations. In reality, the number of measurements used to infer the statistical properties of the

transmissvity field is often limited, which introduces error in the estimation of the structural parameters. The method presented

accounts for the uncertainty that originates from the imperfect knowledge of the parameters by treating them as random

variables. In particular, we use Bayesian methods of inference so as to make proper allowance for the uncertainty associated with

estimating the unknown values of the parameters. The classical and Bayesian approach to stochastic capture zone delineation are

detailed and applied to a hypothetical flow field. Two different sampling densities on a regular grid are considered to evaluate the

effect of data density in both methods. Results indicate that the predictions of the Bayesian approach are more conservative.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A time-related capture zone of an extraction

well delineates the area from which water is

captured by the well within the specified time

interval. Precise delineation of well capture zones

is a necessary step in the protection of water

supplies from accidental contamination. The size

and shape of a capture zone depend on the

hydrogeological conditions of the system and the

properties of the well. The latter are normally

well known but the system geometry, boundary

conditions and hydraulic properties of the aquifer

are usually difficult to determine and subject to

uncertainty.
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A number of analytical (e.g. Bear and Jacobs,

1965; Lerner, 1992; Kinzelbach et al., 1992; Jacob-

son, 2002) and numerical approaches (e.g. Varljen

and Shafer, 1991; Cole and Silliman, 1997; Vassolo

et al., 1998; Evers and Lerner, 1998; Guadagnini and

Franzetti, 1999; van Leeuwen, et al., 2000) have been

developed over the years to delineate capture zones in

various hydrogeological settings. Although analytical

methods provide an exact solution to the mathemat-

ical statement of the problem, they are often based on

strongly simplifying assumptions, which limit their

general use. Numerical approaches provide an

approximate solution to the mathematical statement

of the problem, but are able to simulate more complex

situations. Due to the unabated increase in computer

power, the detail and accuracy of these models will

further improve. Therefore, numerical simulation is

potentially the most accurate method for delineating

capture zones. In general, most numerical modelling

approaches provide a deterministic best estimate of

the time-related capture zone based on a calibrated

groundwater model combined with a particle-tracking

algorithm. However, it is more realistic to approach

the problem from a probabilistic point of view to

account for the uncertainty that stems from an

imperfect knowledge of the aquifer geometry, bound-

ary conditions and hydrogeological parameters. In

this paper we only consider the latter, and more

specific we focus on the uncertainty in the transmis-

sivity TðxÞ [L2T21]. Of the hydraulic properties

relevant to capture zones, transmissivity is considered

to be the most important. Its variability in space is

considerably higher than that of other properties and it

can vary by orders of magnitude over a few meters. In

the type of aquifers abstraction wells are usually

operative, the porosity is typically more homogeneous

and its range of variation is significantly less than that

of the transmissivity.

To characterize the spatial variability of the

transmissivity the theory of random space functions

(RSF), as outlined by Delhomme (1978), is adopted.

Varljen and Shafer (1991) were the first to use this

technique to delineate capture zones by generating

conditional simulations using the Monte Carlo (MC)

method. More recently, Franzetti and Guadagnini

(1996) and Guadagnini and Franzetti (1999) investi-

gated this approach in greater depth. These authors

used the MC approach in conjunction with fast

Fourier transform-based spectral methods to generate

unconditional simulations considering various

degrees of domain heterogeneity. The stability and

accuracy of the numerical procedure were examined

and an empirical stochastic expression for the location

of isochrones was developed. van Leeuwen et al.

(1998) investigated the influence of both transmissiv-

ity variance and correlation scale in a fully confined

and leaky-confined aquifer through statistical evalu-

ation of unconditional MC simulations. van Leeuwen

et al. (2000) extended this method to condition on

regular grids of transmissivity measurements. Riva

et al. (1999) determined time-related capture zones

for radial flow in two-dimensional randomly hetero-

geneous media.

The MC approach to capture zone delineation is

based on generating a sample of equiprobable

realizations of the hydraulic conductivity or trans-

missivity field, which are all characterized by the

same mean and covariance function. These fields are

used as input to solve the groundwater flow equation,

resulting in a set of equiprobable head distributions.

Subsequently, for each head field the time-related

capture zones are calculated using a particle-tracking

algorithm. Statistical processing of the sample of

equally like capture zones results in a probability

distribution of the capture zone. Thus, the resulting

capture zone will also be a random space function.

However, this predictive capture zone distribution

only reflects the uncertainty that stems from the

inability to actually predict the transmissivity at

unmeasured locations. The method neglects the

uncertainty about the parameters used to generate

the realizations of the stochastic transmissivity field.

In general, these parameters are estimated from a

limited number of measurements, and used in the

prediction equations without accounting for the error

inherent in the estimation process.

We believe that in practice at least two components

contribute to the predictive uncertainty: (i) the

inherent uncertainty in the true value of the random

variable when the stochastic mechanism that generates

the data is known; and (ii) the additional uncertainty

when the mechanism is unknown. To account for the

uncertainty in the parameters of the stochastic model

of the log transmissivity, we adopt a Bayesian

approach in which the unknown parameters are

treated as random variables. We derive a predictive
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distribution for the capture zone that accounts for both

the natural variability of the transmissivity field and

the uncertainty in the parameters of the stochastic

model. Kitanidis (1986) was the first to examine in

theory the effect of parameter uncertainty on inference

of spatial functions in a Bayesian framework. The

availability of feasible MC sampling algorithms for a

very wide range of statistical models has been an

essential step in the development of practical Bayesian

inference. Parameter uncertainty was also accounted

for by Feyen et al. (2001), when determining

stochastic capture zones conditioning on head obser-

vations. In this paper we describe the Bayesian method

to stochastic capture zone delineation and compare it

with the more classical or non-Bayesian approach. We

apply both methods to a hypothetical flow field and

compare the results.

2. Methodology

2.1. Spatial stochastic approach

When facing the problem of predicting a variable

at unmeasured locations, a model must be adopted,

either deterministic or stochastic. Most of the

parameters and variables dealt with in hydrogeologi-

cal applications exhibit a large spatial variability and

cannot be measured exactly. As a result no determi-

nistic model exists that can accurately explain the

spatial variability of hydrogeological variables. The

RSF model is a convenient tool to model the spatial

variability of such variables. In the spatial stochastic

approach, the variable under study is considered as a

single realization of an infinite set of possible

realizations of a RSF.

Transmissivity values are generally found to be

log-normally distributed (Freeze, 1975; Hoeksema

and Kitanidis, 1985). Here the log transmissivity

YðxÞ ¼ log TðxÞ; where x ¼ ðx; zÞ are the two-dimen-

sional spatial coordinates, is modelled as a Gaussian

stationary RSF, which implies that it is fully

characterized by its first two statistical moments:

kYðxÞl ¼ m ð1Þ

VðuÞ ¼ kY 0ðx þ uÞY 0ðxÞl ¼ s2rðuÞ ð2Þ

where k l is the ensemble averaging operator, m

is the expected value, Y 0ðxÞ ¼ YðxÞ2 kYðxÞl is

the fluctuation, VðrÞ is the auto-covariance, u is the

lag separation vector, s2 ¼ Vðu ¼ 0Þ is the variance,

and rðuÞ is the correlation function. In order to apply

the assumed model for prediction, the mean and

covariance function and its parameters need to be

inferred from the measurements. In hydrological

applications the number of measurements is often

limited. This introduces error in the estimation of the

parameters that should be accounted for. The

uncertainty associated with the estimation of a sample

variogram and the selection of an appropriate model

has been addressed by several authors (e.g. Russo and

Jury, 1987; Shafer and Varljen, 1990). However, in

geostatistical applications to hydrogeology, and more

specific in the stochastic delineation of capture zones,

this source of uncertainty is still often neglected. In

this paper we assume that the mean of the log

transmissivity m is a constant, and that YðxÞ is

characterized by an isotropic exponential two-point

covariance function VðuÞ ¼ s2expð2lul=wÞ; with w

the integral scale of the spatial stochastic process and

u the Euclidean distance between spatial locations x1

and x2: At present we did not account for a nugget

effect in the analysis. We thus acknowledge uncer-

tainty in three parameters denoted by u ¼ ðm;s2;wÞ:

2.2. Approaches to inference

The most fundamental difference between classical

and Bayesian inference is that in classical inference

the parameter vector u; whilst not known, is treated as

a constant rather than random, as is the case in

Bayesian inference. The two approaches to capture

zone delineation are described here more in detail. Let

YðxÞ ¼ log TðxÞ denote the underlying stochastic

transmissivity field and y ¼ ðy1; y2;…; yny
ÞT the data.

In what follows we use the notation [·] for the

distribution of the quantity within the square brackets,

the notation pð·Þ for the probability of the quantity

within the brackets, and a vertical bar to indicate

conditioning.

2.2.1. Non-Bayesian inference

Classical or non-Bayesian inference about the

transmissivity is based on the distribution ½YðxÞly;
u�; i.e. conditioning on the data y and the parameters u
of the stochastic model. In practice the parameter

vector u is unknown and replaced by an estimate û

L. Feyen et al. / Journal of Hydrology 281 (2003) 313–324 315



obtained using a curve-fitting technique based on the

variogram or a likelihood based methodology.

The curve-fitting methods are based on matching the

sample variogram to a theoretical variogram family to

find the value of the parameters in u that optimise

some curve-fitting criterion. This curve fitting can be

done ‘by eye’, or by ordinary (OLS) or weighted

(WLS) least squares estimation. Within a Gaussian

distributional framework efficient estimation methods

based on the likelihood function, e.g. the maximum

(ML) or restricted maximum likelihood (RML)

estimation method, are available that benefit from

the well established and widely applicable optimality

properties of likelihood-based methods of parameter

estimation.

In classical inference the estimated model par-

ameters are then entered into the prediction equations

as if they are the true parameters. In this way,

realizations of the transmissivity field YðxÞ can be

obtained directly from the conditional distribution ½Y

ðxÞly; û�: For each realization of the transmissivity

field the time-related capture zones CAPðx; tÞ are

calculated. Statistical processing of the ensemble of

capture zones results in the predictive distribution for

the capture zones, defined as ½CAPðx; tÞly; û�; i.e.

conditional on the data and the parameter estimates. It

reflects the uncertainty due to the natural variability of

the transmissivity field but neglects the parameter

uncertainty. As a result, the predictive distribution of

the capture zone does not reflect the true predictive

uncertainty. In the above-mentioned applications of

the MC approach to capture zone delineation (Varljen

and Shafer, 1991; Franzetti and Guadagnini, 1996;

Guadagnini and Franzetti, 1999; van Leeuwen, et al.,

1998, 2000), samples are taken from ½CAPðx; tÞly; û�
to assess the uncertainty in the delineation of capture

zones, thus ignoring parameter uncertainty. These

authors did however emphasis that the estimation of

the parameters, and as a consequence also the

uncertainty in these estimates, was not subject of

their study.

2.2.2. Bayesian inference

In the Bayesian approach, both the transmissivity

and the model parameters are considered to be random

quantities characterized by a distribution. Bayesian

inference starts with formulating a model that is

thought to be adequate to describe the situation of

interest. As stated above, we define a Gaussian

stationary RSF for the underlying log transmissivity

field. A prior distribution is specified for the unknown

parameters of the stochastic model, ½u�; which

expresses the belief about the parameters before the

data are introduced. Possible sources of prior

information are borehole descriptions, previous

studies in similar aquifers, expert judgement, etc.

After observing the data y ¼ ðy1; y2;…; yny
ÞT; Bayes’

rule (3) is applied to obtain the posterior distribution

½uly� for the unknown parameters by combining the

prior information with the information in the data, the

latter through the likelihood function L½uly� ; ½ylu�:
½uly� / ½u�½ylu� ð3Þ

The posterior distribution of the parameters reflects

the uncertainty about the parameters after the data

have been observed and generally does not correspond

to a standard probability distribution. Therefore,

inference by numerical simulation using a MC

sampling algorithm is adopted. Hereby, correlation

between the unknown parameters is accounted for, as

discussed in detail in Feyen et al. (2002)

The basis of Bayesian prediction is the resulting

predictive distribution for the log transmissivity,

which is given by

½YðxÞly� ¼
ð
½YðxÞly;u�½uly�du: ð4Þ

Samples from this distribution, i.e. conditional

realizations of the log transmissivity field, are

obtained through ‘conditioning by kriging’ using the

MC sampled parameter sets from the posterior

distribution. From Eq. (4) it can be seen that the

Bayesian predictive distribution takes into account

the parameter uncertainty by averaging over the

parameter space the conditional distribution ½YðxÞly;
u�; with the weights given by the posterior distribution

for the model parameters. Thus, the Bayesian

predictive distribution is an average of classical

predictive distributions for particular values of u;
weighted according to the posterior distribution ½uly�:
The effect of the averaging in Eq. (4) is typically that

the predictions will be more conservative, in the

sense that the variance of ½YðxÞly� will usually be

larger than that of the distribution ½YðxÞly; û�;
obtained by using an estimate û of u in the classical

predictive distribution ½YðxÞly; u�: In comparison with

likelihood-based methods, the Bayesian predictive
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distribution takes into account the complete like-

lihood surface rather than focusing on the maximum

likelihood estimates of the parameters.

In the Bayesian approach the predictive capture

zone distribution is given by ½CAPðx; tÞly�; i.e.

conditional on the data only, and thus the uncertainty

about the model parameters is incorporated in the

predictions. The Bayesian predictive capture zone

distribution can be seen as the transformation of the

predictive transmissivity distribution, with the trans-

formation given by the groundwater flow equation and

the particle-tracking algorithm.

3. Application

When performing an uncertainty analysis it is

desirable to have a reference of which the true

conditions are known. Therefore, to represent ‘rea-

lity’, a hypothetical flow field is constructed numeri-

cally (Feyen et al., 2001) In the remainder of the paper

the capture zones will be presented in dimensionless

space ðx0; z0Þ and time ðt0Þ coordinates that result from

the following transformations (Bear and Jacobs,

1965):

x0 ¼
2pq0

Q
x; z0 ¼

2pq0

Q
z; t0 ¼

2pq2
0

neQ
t; ð5Þ

where Q [L2T21] is the extraction rate per unit

thickness of aquifer, q0 ¼ 2TGj0=D [LT21] is the

Darcy background flow velocity, TG [L2T21] is the

geometric mean transmissivity, D [L] is the aquifer

thickness, j0 is the background hydraulic gradient, and

ne is the effective porosity. The integral scale of the

process w is also expressed in dimensionless terms

and is given by w0 ¼ 2pq0w=Q:

The flow domain is presented in Fig. 1. The

abstraction well is located at the origin of a Cartesian

coordinate system ðx0; z0Þ ¼ ð0; 0Þ: At the north ðz0 ¼

119; x0 ¼ 2117; 126Þ and south boundaries ðz0 ¼

2119; x0 ¼ 2117; 126Þ Neumann conditions are

imposed, the specified flux being zero. Dirichlet

conditions are specified at the east ðx0 ¼ 2117; z0 ¼

2119; 119Þ and west ðx0 ¼ 126; z0 ¼ 2119; 119Þ sides

of the domain, inducing a mean background gradient

j0: For the central part of the domain ð26 , x0 ,

15;28 , z0 , 8Þ; consisting of a regular grid with

dimensions Dx0 ¼ 0:1; the stochastic transmissivity

fields are generated. In order to minimize interference

of the boundaries in the inference of probabilistic

capture zones, the surrounding part of the domain

consists of 3 rows with increasing dimensions

(Dx0 ¼ 100; 101 and 102) and one additional row

(Dx0 ¼ 0:1) to impose the boundary conditions. The

transmissivity in this part of the flow domain is equal

to the geometric mean transmissivity TG of the central

part. A discussion on the effect of grid discretisation

and boundary conditions on the convergence of the

numerical solution can be found in the work of

Franzetti and Guadagnini (1996).

The hypothetical log T field is generated using the

sequential Gaussian simulation (sgsim) algorithm of

GSLIB (Deutsch and Journel, 1998), and is depicted in

Fig. 2. From the area of interest ð23 , x0 , 15;28 ,

z0 , 8Þ of the hypothetical field, sets of log

T measurements are taken positioned in a regular

pattern over the area. Two sets of measurements with a

different sampling density are taken to serve as

measurements in the analysis. The number of

measurements in the sets is 13 and 81. The sets are

defined such that the smaller set is a subset of the

larger one to circumvent the effect of varying

measurement locations between the two sampling

densities. In a first step, the measurements are used to

update the prior distribution for the parameters using

Bayes’ theorem, yielding the posterior distribution for

the parameters. This step is performed using the public

domain software geoR (Ribeiro and Diggle, 1999).

Next, the measurements are used as conditioning data

Fig. 1. Plan view of the hypothetical field (not to scale).
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when generating the conditional simulations, i.e. the

realizations of the transmissivity fields honour the data

at the measurement locations. The method applied to

generate the conditional transmissivity fields is

‘conditioning by kriging’ (Chilès and Delfiner, 1999)

using a combination of the kb2d (two-dimensional

kriging Program) and sgsim algorithms of GSLIB

(Deutsch and Journel, 1998).

Each realization of the transmissivity field is

subsequently used to solve the steady-state ground-

water flow equation:

›

›x
Tðx; zÞ

›h

›x

� �
þ

›

›z
Tðx; zÞ

›h

›z

� �
þ R ¼ 0; ð6Þ

where h is the hydraulic head [L], and R a general

sink/source term [L2T21], which is limited here to

pumping. Eq. (6) is solved with MODFLOW

(Mcdonald and Harbaugh, 1989) using a precondi-

tioned conjugate gradient solver. Based on the

resulting head field a particle-tracking analysis is

performed for the inner area ð23 , x0 , 12;25 ,

z0 , 5Þ of the central part using the semi-analytical

particle-tracking algorithm of MODPATH (Pollock,

1989). For any realization the isochrone Gðx0; z0; t01Þ is

defined as the boundary of the capture zone

CAPðx0; z0; t01Þ: It envelops all the starting locations

ðx0; z0Þ for which t0 # t01, t0 being the travel time of a

particle towards the well.

Finally, statistical processing of the ensemble of

capture zones results in the predictive distribution of

the capture zone ½CAPðx0; t0ly�: The predictive capture

zone distribution defines in a point x0
1 ¼ ðx01; z

0
1Þ at

time step t01 the probability pðCAPðx0; t0ÞlyÞ that an

inert particle released at this point will reach the well

within the specified time span. The numerical

approximation of this distribution is given by:

½CAPðx0
; t0Þly� ¼

1

m

Xm
i¼1

ðIðx0
; t0ÞlyÞi; ð7Þ

where m is the number of transmissitivity fields

generated. The term ðIðx; t0ÞlyÞi inside the summation

on the right hand side of Eq. (7) is the probability of

intake I by the well and equals one if the particle

released in the point x ¼ x1 is captured by the well

within t0 ¼ t01; and zero otherwise.

4. Results and discussion

4.1. Non-Bayesian inference

Fig. 3 shows the theoretical variogram used to

generate the hypothetical field, the sample variogram,

and the fitted variograms for the OLS, WLS, ML and

RML estimation methods, for ny ¼ 13 (a) and ny ¼ 81

(b). The values of the estimated parameters are given

in Table 1. The graphs in Fig. 3 and the values in

Table 1 show that, for the field considered, differences

exist between the ‘true’ parameter values of the field

and the estimated values, and also between the values

of the various estimation methods. This effect is more

pronounced when only a few data are available, which

is often the case in practice. For the hypothetical field

and the selected transmissivity values considered,

good estimates for the parameters are obtained for 81

measurements. It must be stated that the mean log

transmissivity of the area of interest ð23 , x0 ,

12;25 , z0 , 5Þ of the hypothetical field is 1.2. This

is smaller than the mean of the central part of the

domain ð26 , x0 , 15;28 , z0 , 8Þ; which is equal

to 1.48 and close to the mean 1.50 specified when

generating the field (see Fig. 2). Since measurements

are taken only from the area of interest, this explains

the lower estimates of the mean for 81 log T

measurements.

In classical inference about capture zones the

parameter estimates are used to generate the sample of

conditional transmissivity fields and subsequently the

capture zones, resulting in the predictive capture zone

distribution ½CAPðx; tÞly; û�; with û the vector of

parameter estimates. Fig. 4 shows contours of ½CAP

ðx; tÞly; ûavg�; with ûavg the parameter vector with

Fig. 2. Hypothetical transmissivity field.
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the averages of the estimated parameters given in

Table 1. Capture zones are determined for 8 time

steps, from t0 ¼ 0:5 to t0 ¼ 4; with time steps of 0.5.

The predictive capture zone distributions for t0 ¼

1; 2; 3 and 4 are given in Fig. 4, for 13 (a–d) and 81

(e–h) log T measurements. The zone of uncertainty is

the area where 0 , pðCAPðx; tÞly; ûavgÞ , 1; and the

95% uncertainty interval is the area enclosed by the

isochrones coinciding with the 2.5 and 97.5 percen-

tiles. The dashed line in the plots of Fig. 4 indicates

the location of the reference capture zone for the

different time steps.

The contour plots in Fig. 4 show that the zone of

uncertainty expands as time increases. Also, the

uncertainty is more pronounced in the direction of

the regional flow, upstream of the abstraction well.

This is a result of the larger travel distances of the

particles toward the well in this part of the flow

field and as time increases. When more measure-

ments are included in the analysis, the zone of

uncertainty decreases and the shape of the distri-

bution approaches the reference capture zone. This

is a result of a decrease of the prediction or kriging

variance as more conditioning data are available

when generating the realizations. The predictive

capture zone distribution ½CAPðx; tÞly; û� does not

reflect the true predictive uncertainty, as it does

only accounts for the uncertainty due to the natural

variability of the field, while neglecting the

parameter uncertainty. For the case considered, the

hypothetical isochrone falls within the uncertainty

bounds at all time steps. However, it could happen

that for the case where all the parameters

are underestimated, i.e. when a smaller mean flow,

less variability and little correlation in the field are

estimated, this could result in a situation where in

distinct areas of the field the reference capture

zone is not enveloped by the 95% uncertainty

bounds of [CAPðx; tÞly; û�; leading to under-protec-

tion of the well.

4.2. Bayesian inference

In the Bayesian approach we must define a prior

distribution for the random parameters. For the mean

an improper uniform distribution, corresponding to a

conjugate Gaussian prior with arbitrarily large var-

iance, is specified. The prior for the variance is also

improper and is proportional to 1=s2: For the

dimensionless correlation parameter a uniform dis-

crete prior between 0 and 10 is specified, with the

upper limit defined in order to limit the effects of

Fig. 3. Theoretical, sample and fitted variograms for the different estimation methods; (a) ny ¼ 13; (b) ny ¼ 81:

Table 1

Parameter values for the hypothetical field and estimated

parameters

m s2 w0

HYPO 1.50 1.00 1.50

OLS 1.31 1.18 1.41 0.95 2.09 1.11

WLS 1.34 1.17 1.54 1.02 2.56 1.30

ML 1.30 1.18 1.20 0.93 1.86 1.21

RML 1.37 1.17 1.59 0.99 3.23 1.35

ny ¼ 13 ny ¼ 81 ny ¼ 13 ny ¼ 81 ny ¼ 13 ny ¼ 81
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ergodicity. The choice of priors in Bayesian inference

is subjective and the main objection to Bayesian

inference is that the conclusions will depend on the

specific choice of prior. The choices specified here can

be interpreted as an expression of prior ignorance, as

we assumed that no information about the hydro-

geological parameters was present before the data are

collected. In real applications, however, prior infor-

mation about the parameters may be available and

more informative priors can be specified.

Fig. 4. Stochastic capture zones for the average estimated parameters: (a–d) ny ¼ 13; (e–h) ny ¼ 81: The dashed lines indicate the hypothetical

capture zone.
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Using Bayes’ theorem, the posterior distribution

for the parameters is obtained. This distribution does

not resemble a standard probability distribution and

MC sampling is used to generate parameter sets from

this distribution (Tanner, 1996). Fig. 5 shows samples

from the marginal posterior distributions for the mean,

sill and integral scale parameter, for ny ¼ 13 (a–c)

and ny ¼ 81 (d–f). The histograms show that when

more data are incorporated in the conditioning process

the variance of the distributions decreases and the

central tendency approaches the ‘true’ values of the

model parameters. However, even for relatively large

data sets, a considerable degree of uncertainty about

the parameters remains, which should be taken into

account when delineating capture zones or predicting

any other variable of interest.

The sampled parameter sets are used to generate

conditional realizations of the transmissivity field for

which the capture zones are calculated using the

groundwater flow model and particle-tracking algor-

ithm. Statistical analysis of the ensemble of time-

related capture zones results in the predictive capture

zone distribution ½CAPðx; tÞly�: The Bayesian pre-

dictive distributions for t0 ¼ 1; 2; 3 and 4 are given in

Fig. 5. Samples from the marginal posterior distributions for m; s2 and w0 : (a–c) ny ¼ 13; (d–f) ny ¼ 81:
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Fig. 6, for ny ¼ 13 (a–d) and ny ¼ 81 (e–h). Similar

as for the classical predictive distribution, the contour

plots show that for an increasing number of

conditioning data the zone of uncertainty shrinks

and the shape of the distribution approaches

the reference capture zone. However, in Bayesian

inference this is the result of both the reduction in

the variance of the posterior distribution for the model

parameters, and the reduction of the kriging variance

when more data are used to generate conditional

Fig. 6. Stochastic capture zones using Bayesian inference: (a–d) ny ¼ 13; (e–h) ny ¼ 81:The dashed lines indicate the hypothetical capture zone.
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transmissivity fields. Thus, when more data are

incorporated in the analysis, both the effects of

parameter uncertainty and natural variability

decrease.

Comparing the contour plots in Figs. 4 and 6 shows

that, for all time steps and for the two sampling

densities considered, there is an increase in the zone of

uncertainty and the 95% uncertainty interval when

parameter uncertainty is accounted for. However, it is

difficult to draw conclusions about the relative

contribution of parameter uncertainty to the overall

predictive uncertainty, as it depends on the number,

location and magnitude of the measurements, and the

priors specified. Although a bigger variance of the

predictive uncertainty would be expected in the case

where the parameters are unknown compared to when

the covariance parameters are estimated from the

empirical variogram, this is not always true. For a

particular data set and priors specified the covariance

parameter estimates based on the empirical variogram

can be substantially different from the Bayesian

estimates, in either direction. This is more likely to

occur when the number of measurements is limited.

However, the example shows that, even when the

variance is overestimated in the classical approach

(see Fig. 3a), the Bayesian predictive uncertainty can

be larger than the classical predictive uncertainty.

5. Summary and conclusions

In this paper a Bayesian methodology to stochastic

capture zone delineation in heterogeneous aquifers

was outlined and compared with the classical or non-

Bayesian approach. In the latter, the parameters of the

stochastic model are usually estimated from a limited

number of measurements and then plugged into the

prediction equations as if they are the truth. The

Bayesian method acknowledges that in practice there

are at least two components to predictive uncertainty

when using the spatial stochastic approach in predic-

tion: the uncertainty that stems from the inability to

exactly predict the transmissivity at unmeasured

locations when the stochastic model is known, and

the additional uncertainty when the parameters of the

stochastic model are unknown. In the Bayesian

approach, both the variable of interest and the

structural parameters are treated as unknown. Using

Bayes’ theorem the specified prior distribution for the

parameters is updated with the information in the data,

yielding the posterior distribution for the parameters.

Using a MC sampling strategy parameter sets are

obtained from the posterior distribution, which are

used to generate conditional simulations of the

transmissivity field. Capture zones are determined

for each realization by solving the groundwater flow

equation and performing a particle-tracking analysis

for the flow domain. Statistical analysis of the

ensemble of capture zones results in the predictive

capture zone distribution, which accounts for both the

natural variability and the uncertainty in the par-

ameters of the stochastic model of the hydraulic

conductivity. The Bayesian predictive distribution can

be seen as an average over the parameter space of the

classical predictive distributions, with the weights

given by the posterior distribution of the parameters.

Both methodologies have been applied to a

hypothetical field. For both methods the predictive

uncertainty of the capture zones expands with time.

The results also show a reduction of the uncertainty

as more measurements are included in the analysis.

For the classical approach this is a result of a

reduction of the kriging variance when more data

are used to generate the conditional transmissivity

fields. The reduction in the Bayesian predictive

uncertainty results from the smaller variance of the

posterior distribution of the model parameters when

more data are incorporated, and from the reduction

of the kriging variance. Thus, when more data are

available in the Bayesian approach, both the effects

of parameter uncertainty and natural spatial

variability decrease.

Results show that, for all time steps and for the two

sampling densities considered, there is an increase in

the zone of uncertainty when parameter uncertainty is

accounted for. However, it is difficult to draw

conclusions about the relative contribution of par-

ameter uncertainty to the overall predictive uncer-

tainty, as it depends on the number, location and

magnitude of the measurements, and the priors

specified. We argue that predictions based on the

fitted parameters do not reflect the true predictive

variance. Although we would expect a bigger variance

for the Bayesian predictive uncertainty in comparison

with the case where the covariance parameters are

estimated, this is not always true. For a particular data
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set the estimated covariance parameters can be

substantially different from the Bayesian estimates,

in either direction.
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