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Abstract

One of the main decisions to be made in operational hydrology is to estimate design floods for safety purposes. These

floods are generally much rare events that have already been systematically recorded and consequently the results of any

estimation process are subject to high levels of uncertainty. When adopting the frequentist framework of probability, the so

called ‘respect of scientific objectivity’ shall forbid the hydrologists to introduce prior knowledge such as quantified

hydrological expertise into the analysis. However, such an expertise can significantly improve the capability of a

probabilistic model to extrapolate extreme value events. The Bayesian paradigm offers coherent tools to quantify the prior

knowledge of experts. This paper develops an inference procedure for the peak over threshold (POT) model, using semi-

conjugate informative priors. Such prior structures are convenient to encode a wide variety of prior expertise. They avoid

recourse to Monte Carlo Markov Chain techniques which are presently the standard for Bayesian analyses, but such

algorithms may be uneasy to implement. We show that prior expertise can significantly reduce uncertainty on design

values.

Using the Garonne case study with a sample of systematic data spanning over the period 1913–1977, we point out that:

(1) the elicitation approach for subjective prior information can be based on quantities with a definite practical

hydrological meaning for the expert; (2) with respect to the usual Poisson–Generalized Pareto model, a semi-conjugate

prior offers a flexible structure to assess expert knowledge about extreme behavior of the river flows. In addition, it leads

to quasi-analytical formulations; (3) tractable algorithms can be implemented to approximate the prior uncertainty about

POT parameters into these semi conjugate distribution forms via simple Monte Carlo simulations and normal

approximations; (4) the design value and its credible interval are notably changed when incorporating prior knowledge into

the risk analysis.
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1. Prior knowledge is worth incorporating into

extreme value analysis

For estimating probabilities of rare events, the usual

way is to extrapolate distributions from common

ordinary events to low probability events as qualitat-

ively shown in Fig. 1. Such an extrapolation process is

necessarily subject to many uncertainties: the target

zone concerns the shape of the tail of the distribution

model (i.e. probability with order of magnitude 1023 to

1024) and can be reached only by extrapolation,

encompassing therefore large model uncertainties as

exemplified by Fig. 1: three distributions, not distingui-

shable by fitting them to ordinary events, may exhibit

very different tail behavior. Particularly in assessing

probability distribution functions of extremes in

hydrology, many different models have been proposed

without any clear and completely convincing justifica-

tions (see Bobée, 1999, for a review).

In addition to modeling uncertainties generated by

the scientist’s inability to assume correct or even

realistic hypotheses and model, many other uncer-

tainties are involved in the estimation of probabilities

of extreme events and can interfere with decisional

processes:

† natural physical randomness of phenomena under

study (natural uncertainty),

† measurement uncertainties of data which often

coexist with the sparsity of observations,

† sampling uncertainties on parameters, due the

limited information available.

A large body of literature has been devoted to the

study of these kinds of uncertainties in hydrology.

Most of these studies were conducted mainly accord-

ing the principles and criteria of classical statistics

emphasizing unbiasedness and mean square errors

(MSE) of percentiles or other parameters estimates. A

list of classical arguments against the use of statistical

extrapolation methods of extreme values distributions

can be found in Coles and Powell (1996). Of course

Fig. 1. Frequency curve extrapolation with a sample of 50 events.
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the frequency concept supporting the interpretation of

probability fails to be reasonably justified in the case

of such rare events. The subjective concept of

probability, as emphasized by the Bayesian paradigm

(Bernier, 1967, 1987) does not suffer from this

limitation because its background consists of decisio-

nal bets (Savage, 1972). The results of random draws

from conceptual urns are shown to be equivalent to

such decisional bets and the composition of the urn

can be fitted to the conditions of occurrence of any

rare events. However virtual this urn may be with

regards to the phenomenon under study, its opera-

tional interpretation can be easily cast into the context

of engineering decision making and needs no recourse

to a stationary property on a large time scale.

Conversely such a poor argument of stationarity is

usually invoked for the frequentist interpretation of

the probability concerning geophysical rare events.

1.1. Any source of information is worth bringing into

the analysis to reduce uncertainty

To obtain sufficiently reliable estimates, the

scientist must take all these uncertainties into account

and try to control and reduce their effects on

subsequent decisions. The rational way to achieve

this reduction of uncertainty is to take advantage of

available information of any kind. For extreme events,

the systematic data series used are usually very short

and do not allow reliable estimates of risks caused by

rare events. Fortunately these series, generally con-

sidered site by site, are not the only useful information:

Further systematic information. The most common

method for evaluating the risks associated with a

random intensity of extremes in a given site, is to

analyze the selected series of annual maximum values

(AMS). But this selection, advocated for the respect of

some independence assumptions, unduly reduces

significant information. Peak over threshold (POT)

methods on the contrary select all events above a

threshold, and assumes independence and identical

distribution of these high flows values. A thorough

introduction to the Bayesian approach combined with

the Poisson/exponential extreme value model can be

found in Rasmussen and Rosbjerg (1991) and was

generalized to the Poisson/Pareto extreme value

model by Rosbjerg et al. (1992). The POT models

have theoretical advantages (Pickands, 1975) such as

asymptotic coherence insuring rational generalized

Pareto parameters or percentile estimation whatever

the values of thresholds may be. Furthermore this

coherence usually reduces estimation errors. We shall

use this kind of model in the following.

Regional information. No local geophysical event

(hydometeorological or not) can be separated from its

regional environment. The generating phenomena of

these events (such as storms) generally act at a larger

space scale. Furthermore similarities between sites

can allow transposition of information from site to

site. Describing such similarities is the purpose of

popular regional models (GREHYS, 1996) such as the

index flood method based on a frequentist approach.

The so called ‘empirical Bayes methods’ were used by

many authors following Madsen and Rosbjerg (1997).

From a more complete Bayesian point of view,

hierarchical models such as the ones given by Gelman

et al. (1995) afford an interesting and reliable

alternative and have been applied by Tawn (1993)

to spatial modeling of extreme sea levels and by

Madsen et al. (1995) to the regional analysis of

extreme rainfalls.

Historical information. In countries inhabited for a

long time, historical data are often available. Even if

these data are sparse and often imprecise they can give

valuable information about the behavior of distri-

butions in the extreme domain. Using various specific

models for representing these particular data brings a

significant reduction of credible intervals of par-

ameters of interest. This kind of approach has been

developed in classical statistics terms by Stedinger

and Cohn (1986). Interesting extensions concern the

use of paleohydrologic data. Bayesian data augmenta-

tion algorithms were shown to solve in elegant way

the incorporation of historical information into a POT

analysis (Parent and Bernier, 2003).

Expert knowledge. Finally, it is worth taking

advantage of expert knowledge as pointed out by

O’Hagan (1998). Expert beliefs are perhaps the most

common available source of information but also the

most frequently neglected because frequentist studies

consider their use as an act against scientific

objectivity. Why should an engineer that has already

built 20 dams deliberately wipe off his past experience

and consider the hydraulic structure he is working on

as the first one he has ever designed? In a Bayesian

framework however, rational use of subjective prior
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expertise can be made and this paper shows how to

incorporate such information into the statistical

analysis by elicitation of priors bets on the parameters

of a POT model.

1.2. Why is prior expertise most often neglected?

Statistical frequentist analysis is recommended

usually as the only objective procedure allowing to

assess probabilities of events. They are considered as

true quantities belonging to the real objective world

which should be the only object of study of a scientist.

With respect to this philosophical attitude together

with difficulties to assess prior probabilities, the

Bayesian approach is considered useless and rejected

as contrary to scientific objectivity. However in the

Bayesian rationale, any conceptual and modeled

object, and probability is such an object, has only a

subjective meaning, that is a construct of the mind of

the scientist. Concerning for instance uncertainty

about a parameter u; considered as a random quantity,

the classical principle of objectivity is here replaced

with the coherence principle between prior ideas

about u and posterior judgment, given the data, based

on posterior probability. The ‘information processor’

between prior and posterior judgments is the Bayes

theorem (Krzysztofowicz, 1983) using the likelihood

of the phenomenological model as shown in Fig. 2.

The attention of Bayesian statisticians and prac-

titioners has been recently renewed on the problem of

elicitation of priors that is the translation in quanti-

tative terms of opinion of experts, often qualitatively

expressed, with due consideration of their own

uncertainties. A deep discussion about this subject

has been presented in ‘The Statistician’ (O’Hagan,

1998). Let us note that this discussion now has given

up the philosophical issues (assuming the use of prior

estimates as scientifically granted) to focus on the

practical aspects of priors elicitation. This avenue of

thought has been opened in meteorology in the 70s

with the numerous pioneering works of Murphy and

Winkler (1974a,b) on experimental (and practical)

assessment of subjective distributions of meteoro-

logical variables. Probabilistic quantification of

uncertainties is also a cornerstone of the concepts

and methods that Krzysztofowicz (2001) developed to

produce probabilistic quantitative prediction forecasts

and probabilistic riverstage forecasts for the US

National Weather Service. In the field of water

resources planning, a recent landmark is the work

Fig. 2. Outline of the Bayesian paradigm.
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by Coles and Tawn (1996) using prior expertise to

assess percentiles of extreme daily precipitation

distributions. Difficulties can appear in the elicitation

process. Palmerini (1995), analyzing experiments in

psychology, gives everyday examples of risky

situations for which any individual, even a scientifi-

cally trained expert relies on psychological heuristics,

very different from the usual probability rules and

concepts. As a result, shortcuts appear in the line of

reasoning, yielding cognitive biases about the prior

judgments of experts and possible lack of coherence

with the mathematical and probabilistic assessments.

Such difficulties do not impede elicitation but must be

given due consideration. At first the elicitation

procedure must be clearly understood and accepted

by the expert to yield reliable results. The direct

elicitation of statistical parameters of models must be

avoided when these do not have a direct under-

standable meaning. The parameters of POT models of

extremes belong to this category. But easy under-

standable parameters like medians, means or quantiles

are submitted to the expert for elicitation before

deriving more complicated parameters. For a hydro-

logy expert the concepts of quantiles, associated with

not too large return periods (up to the 100 year event

for instance) can be easily perceived as mentioned by

O’Hagan (1998).

The paper exemplifies how such an elicitation

method can be applied to prior beliefs involved in a

POT model for the Garonne case study.

2. Risk analysis of extreme events via POT

modeling

Consider a sequence of variables X1;X2;…;Xn

independently distributed with the same distribution

F: Pickands (1975) proved that, under general

conditions, the limiting behavior for large u of the

sequence X1;X2;… on the interval ½u;1½ is a Poisson

process with a generalized Pareto intensity function.

The approach was developed in hydrology (Smith,

1984) as follows: we consider that u is fixed at a

sufficiently high level so that this asymptotic approxi-

mation is realistic (Davison and Smith, 1990) and

adopt it as a hydrological model for the peaks over the

threshold u (POT). Guidelines for the choice of the

threshold level can be found in Lang et al. (1999).

Introducing the parameters (m; r; b), the POT

model can be written as follows:

PrðX # xlX $ uÞ ¼ Gðxlr;b; uÞ

¼
1 2 ð1 2 bðx 2 uÞÞr=b for b – 0

1 2 expð2rðx 2 uÞÞ for b ¼ 0

(
ð1Þ

Prð#{Xi $ u} ¼ klover T yearsÞ

¼
ðmTÞk expð2mTÞ

k!
ð2Þ

b and r are the scaling parameters of the generalized

Pareto distribution. r is strictly positive. #{Xi $ u} is

the random number of floods exceeding the threshold

u: m is the Poisson intensity parameter so that mT is

the mean value of this random variable on T : Note that

in theory, the model does not assume that the time

period T is necessarily an integer nor greater than one

year. As an immediate consequence,

PrðmaxðX1;X2;…Þ # xlT years; x $ uÞ

¼
expðð2mTÞð1 2 bðx 2 uÞÞr=bÞ for b – 0

expðð2mTÞexpð2rðx 2 uÞÞÞ for b ¼ 0

(

This distribution is truncated downwards at x ¼ u: It

appears to be directly expressed under one of the three

asymptotic limiting forms (Gumbel, Frechet, Wei-

bull) for Max values: a suitable change of parameters,

k ¼ b=r and a ¼ 1=r reveals the classical form of the

well-known truncated GEV distribution:

PrðmaxðX1;X2;…Þ # xÞ

¼

exp 2 1 2
k

a
ðx 2 uÞ

� �1=k
 !

for k – 0

exp 2exp 2
1

a
ðx 2 uÞ

� �� �
for k ¼ 0

ð3Þ

Although numerous hydrological applications of GEV

model have taken k and a as working parameters, we

will remain focused in the following development on

m; r; b : the ‘natural’ statistical parameters of POT

model will be used here because there exists a more

statistically tractable semi-conjugate prior model for

m; r; i.e. a conjugate prior given b known (Berger,

1985). The likelihood for u ¼ ðm; r;bÞ based on an

observed series x of n data x1; x2;…; xn over

E. Parent, J. Bernier / Journal of Hydrology 283 (2003) 1–18 5



the threshold u during T years is given by:

Luðx;m; r;bÞ

¼
ðmTÞn expð2mTÞ

n!

� �
½rn expððr2 bÞSnðx;bÞÞ�

ð4Þ

with

Snðx;bÞ ¼
1

b

Xn

i¼1

logðð1 2 bðxi 2 uÞÞÞ ð5Þ

The special case b ¼ 0 can be derived by continuity

and gives Snðx; 0Þ ¼ 2
Pn

i¼1 ðxi 2 uÞÞ:

Eq. (4) shows the lack of sufficient statistics, but,

were b known, the POT model would merely belong

to the exponential family.

2.1. Semi analytical prior model

A prior model must achieve a compromise between

a specific structure for an easy computation of the

posterior and a generic structure, large enough to

encode a wide range of prior knowledge.

Assume for the moment that prior beliefs about (m;

r; b) can be represented by the following pdf:

pðm; r;bÞ ¼
b

am
m

GðamÞ
mam21 expð2m=bmÞ

b2a

GðaÞ
ra21

expð2r=bÞp0ðbÞ ð6Þ

In other words, the marginal prior for b is p0ðbÞ:

p0ðbÞ is arbitrary and its functional shape is left for

the expert to encode his prior knowledge. Con-

ditionally to these prior beliefs for b; the pdf for r is

approximated by a gamma distribution with hyper-

parameters (aðbÞ; bðbÞ). If ða; bÞ are not functions of

b; r and b are a priori independent. Throughout the

paper, it will be assumed that the priors for m and

ðb; rÞ are independent. Prior belief about m is taken in

the conjugate Poisson family, that is a gamma

distribution with hyper-parameters (am; bm) to be

estimated when encoding prior expert’s knowledge

about the mean number of peaks over threshold by

time unit.

Practical arguments for using such a prior model

rely on the very large class of prior distributions

covered with this structure: as functions p0ðbÞ; aðbÞ;

bðbÞ need not to be defined parametrically, their

shapes will be freely chosen to match a great variety

of prior beliefs.

On the theoretical side, however, advantage is kept

from partial conjugacy; as the likelihood (4) belongs

to a partly exponential family (conditioned upon b),

prior and posterior pdf’s for u will exhibit conjugate

(given b) properties for r and m:

This semi-conjugate prior can be used to incor-

porate further information such as historical (Parent

and Bernier, 2003) and regional data. Furthermore, as

shown in Section 2.2, a simple Monte Carlo procedure

can be implemented to derive the posterior pdf.

2.2. Posterior evaluation of (m, r, b)

The joint posterior pdf pðm; r;blxÞ is given via

Bayes theorem by combining Eqs. (4) and (6). It has

the same conditional structure as the prior pdf:

† m remains a posteriori independent from (b; r). It

follows a gamma distribution with (updated)

parameters am þ n and 1=bm þ T :

† Conditionally upon b; r is also gamma distributed

with parameters aðbÞ þ n and 1=bðbÞ2 Snðx;bÞ:

† The marginal posterior density of b is known up to

a constant of normalization:

pðblxÞ

/
GðaðbÞþnÞ

GðaðbÞÞ
bðbÞ2ðaþnÞ

� �
p0ðbÞexpð2bSnðx;bÞÞ

ð1=bðbÞ2Snðx;bÞÞ
gþn

ð7Þ

As b is a unidimensional quantity, this constant can be

evaluated once for all by numerical integration by

dividing the domain of variation of b into sub-

intervals.

Note that, when ða; bÞ are not functions of b ( i.e.

prior independence between b and r), the first term in

brackets of Eq. (7) vanishes. Even in this case, b and r

are a posteriori dependent as shown by the posterior

pdf of b conditioned on r :

pðblr; xÞ /
bðbÞ2aðbÞ

GðaðbÞÞ

" #
raðbÞ21 exp 2

r

bðbÞ

� �

� expððr2 bÞSnðx;bÞÞp0ðbÞ
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Consequently, posterior samples for (m; r; b) are easy

to generate directly, avoiding recourse to Monte Carlo

Markov Chain (MCMC) techniques (Kuczera and

Parent, 1998). Although MCMC techniques are now

the standard in Bayesian analysis, practitioners may

encounter some unpleasant implementation troubles:

very slow convergence, bad choice of tuning para-

meters for the Metropolis Hastings algorithm. Such

trapping difficulties are avoided with our prior model

(6): b can be drawn with a uniform number generator

by inverting the univariate cumulative distribution

function derived from Eq. (7), and m as well as r given

b can be obtained via gamma distributed random

numbers. The main efforts of the modeler are now to

be focused on how to derive functions p0ðbÞ; aðbÞ;

bðbÞ from prior expertise.

3. Prior elicitation of POT parameters (m; r; b)

3.1. Hydrological interpretation of m, q2, r

The elicitation process should be easily under-

standable by the hydrologist (expert in his own field

does not necessarily mean expert in statistics). The

direct elicitation of natural parameters (m; r; b) of

POT model or even (m; k; a) for the GEV one, does

not make much sense for the expert in hydrology. A

practically tractable method must distinguish between

the phenomenological model (Poisson–Pareto POT)

on one hand, and the simpler assumptions (elicitation)

used to encode the expert opinion on the other hand.

The following assumptions are of importance.

The directly assessed parameters are meaningful

hydrological quantities such as quantiles or mean

values. A first natural choice could be the 10, 100, 1000

year return floods Q10; Q100; Q1000: In practice, these

quantities are rather uneasy to assess directly: the

hydrologist will give probabilistic statements for Q10

and Q100 but would feel rather reluctant to quantify his

uncertainty about Q1000: In addition, probabilistic

judgments about possible values of the return quantiles

(Q10; Q100; Q1000Þ will not be made independently. In

this paper we shall assume prior independence between

the three following quantities: (1) m; the annual

expectation of the number of peaks over the threshold,

(2) the difference of ordinary flood percentiles ~q2 ¼

Q100 2 Q10 and (3) the difference of high flood

percentiles ~q3 ¼ Q1000 2 Q100: The independence

hypothesis between m and (~q2; ~q3Þ is made because

prior knowledge on the temporal process of flood

generation is not connected with the intensity of the

observed floods. Independence between the increases

in quantiles ~q2 and ~q3 seems a much more reasonable

assumption than independence between the return

quantiles themselves. In addition the operational

interpretation of m and ~q2 is straightforward: m is

linked with the hydrologist’s past experience for the

annual numbers of damaging floods on similar

watersheds, ~q2 ¼ Q100 2 Q10 stems from hydraulical

knowledge arising from extensive analysis of flood

data. Q1000 (and hence ~q3 ¼ Q1000 2 Q100 ) lies well

beyond gaged experience and the probabilistic judg-

ments cannot be based on direct analogies. They have

to include knowledge about drainage basin or meteor-

ological characteristics as well. In Coles and Tawn

(1996) the expert was able to make such judgments

about difference of extreme quantile of precipitations.

In our case, the expert felt better working with the ratio

of quantiles differences r ¼ ~q3=~q2 than with ~q3 because

r appears as a dimensionless relative order of

magnitude between ordinary and high flood situations.

It also bears a hydrological significance because it

is functionally linked with parameter k inside the

Poisson–Pareto POT or GEV family of distributions

as shown in Fig. 3:

r ¼
~q3

~q2

¼
ð2logð0:99ÞÞk 2 ð2logð0:999ÞÞk

ð2logð0:9ÞÞk 2 ð2logð0:99ÞÞk
ð8Þ

Fig. 3. Ratio r as a function of k:
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The particular value r ¼ 1 corresponds to k ¼ 0; i.e.

the Gumbel limiting distribution for the annual

maxima. When r . 1 the distribution belongs to the

Weibull domain and the relative flood magnitudes

increase to a greater extend when passing from the

100 year return flood to the 1000 year return one than

when passing from the 10 year to the one year return

floods.

The expert will also be asked about his or her prior

beliefs about r; and therefore this subjective infor-

mation will in turn give credibilities about the

domains to which the limiting distribution for the

Max may belong to.

The elicitation model contains the complementary

assumptions allowing to encode the knowledge of

the expert into a pdf. It is rather easy to ask the

expert’s opinion about each parameter m; ~q2 and r

separately, but it is more difficult to go beyond

marginal distributions and make him assess a

complete prior shape of distributions including

prior dependence properties between these par-

ameters. Therefore complementary assumptions

have to be made concerning interrelations between

parameters. For no reason but mathematical conven-

ience, the gamma pdf is generally adopted as a

model for the variation of a positive unimodal

variable. Following Coles and Tawn (1996) we shall

assume that m; ~q2 and ~q3 are prior independent and

gamma distributed. As there is a one to one mapping

between (m; ~q2; ~q3 ¼ ~q2=rÞ and (m; r; b), the

elicitation model (m; ~q2; r) could be transferred in

term of an elicitated prior model for (m; r; b) using

Jacobian transformations.

The family of modeled prior functions, i.e. the set

of semi-conjugate priors pðm; r;bÞ associated with

the phenomenological model (POT) and chosen for

theoretical and ease of computation reasons is given

by the specific structure (6). In general, it will not

contain the exact elicitation model that was

previously described. But as many degrees of

freedom are given by the wide choice left for non-

parametric functions p0ðbÞ; aðbÞ; bðbÞ in Eq. (6),

there exist members from this family which are

close enough to the elicitation model for practical

purposes. In what follows, a simulation-based

technique is described to select such a semi-

conjugate prior from Eq. (6).

3.2. Encoding prior knowledge

The Garonne river near Agen (drainage basin area

of 52,000 km2) is used as a case study. No records of

data is presented to the expert but the main rivers of

the region and their tributaries were well documented

in Pardé (1935, 1963). These works published in the

beginning of the 1900s are famous among French

hydrologists. The hydrological background of the

second author was used as expert’s knowledge; the

practical assumptions of the elicitation process were

chosen as simple as possible and the expert was asked

to assess prior judgments as reasonably simple as it

could be made in such a context. Using the elicitation

assumptions, expert’s knowledge is encoded into a

semi-conjugate prior by a seven-step procedure. The

units for all flows given in the subsequent graphs and

tables are in m3/s.

3.2.1. Decisional bets to encode uncertainty about

meaningful hydrological quantities

In the Bayesian paradigm, the quantitative esti-

mation of the expert belief relies on direct probabil-

istic judgments. There exist many procedures as

described in the special issue of ‘The Statistician’

(Kadane et al., 1998) devoted to prior elicitation.

These procedures generally begin with the calibration

of expert’s judgments by means of hydrological

guesses compared by the expert with ‘objective’

guesses (lotteries) (see Berger, 1985; Bernier et al.,

2000).

The interest of the Bayesian analyst does not lie in

the psychological or logical connections in the mind

of expert, nor in the means to make his conceptual

short cuts acceptable for others hydrologists. The

Bayesian conception of probability is subjective and

personal and only under asymptotical circumstances

(when the information stemming from the data

dominates the prior knowledge), two experts with

different priors will end up sharing the same posterior.

Therefore, the first step of the elicitation process is

to ask the expert to give two degrees of belief up;

concerning each elicitated parameter, obtained by

subjective bets with p ¼ 0:5 (i.e. with odds 1 against 1

to be larger than the assessed value) and p ¼ 0:9 (with

odds 1 against 9), for each parameter u ¼ m; ~q2 and r:

Table 1 shows expert’s answers for our case study

E. Parent, J. Bernier / Journal of Hydrology 283 (2003) 1–188



(annual maximum floods of the Garonne river near

Agen with a threshold u ¼ 2500 m3/s).

During the assessment process, the expert carefully

considered the differences between the 90% percentile

and the median for the all quantities to be elicitated.

He was not really feeling at ease with the values he

gave for r; arguing that he was somewhat too

overconfident when thinking indirectly. Indeed, he

mentally considered a rather small collection of

possible values for ~q2 and ~q3; and informally

‘evaluate’ their ratios in order to pick a ‘median’

and a ‘high’ percentile for r: However, consideration

of Fig. 3 brought some relief since he got aware that

his upper value r ¼ 3:5 fairly corresponds to k ¼ 0:5

that is traditionally assumed as a rare upper value for k

in many floods studies. Finally all these assessed

values were accepted for the present elicitation

exercise.

3.2.2. From hydrological assessments to a tentative

prior distribution for intermediate parameters

m, q̃2, q̃3

m; ~q2; r are considered as hydrological model

parameters of which expert assesses a prior distri-

bution described with ‘estimated hyperparameters’

based on his previous judgments. Hence assuming m;

~q2; ~q3; independently distributed according to

gamma distributions with hyperparameters ðam; bmÞ;

ða2; b2Þ and ða3; b3Þ; the corresponding couples of

parameters are determined to satisfy the previous

constraints. With these assumptions, z ¼ 1=ð1 þ

ðb2=b3ÞrÞ is distributed according to a beta distri-

bution with parameters ða2; a3Þ allowing to calculate

a3; b3 from the prior beliefs on r knowing a2; b2:

The numerical values for these hyperparameters are

given in Table 2.

With these parameters in hand, we proceed to

classical Monte Carlo simulation of 20,000 indepen-

dent sample values of m; ~q2; ~q3 and r (according to the

estimated a2; b2; a3; b3). Computations of the corres-

ponding values of parameters m; b; r are straightfor-

ward performed with the idea to fit a semi-conjugate

structure as given by Eq. (6). m has the desired form of

the semi-conjugate model and his posterior inference

can be dealt separately from (b; r). Unfortunately

when plotting the marginal distribution of b as in

Fig. 4, no candidate model for the marginal p0ðbÞ

comes to the analyst’s mind: the high skewness would

prevent from fitting a traditional normal pdf, the shape

with the quick decreasing right tail does not agree

with a possible gamma or inverse gamma behavior.

3.2.3. Monte Carlo simulations to by-pass Jacobian

transformation from m; ~q2; ~q3 into ; ;

The traditional GEV parameters k ¼ b=r and a ¼

1=r can also be simulated from the previous 20,000

independent sample values of m; ~q2 and r: Luckily,

their prior pdfs exhibit smooth normal-like behavior.

3.2.4. Normal approximation of intermediate

parameters k ¼
b

r
and l ¼ logðrÞ

Fig. 5 shows the histogram of k and its normal fit

Nðmk;s
2
kÞ: It is also possible to take into account

skewness and kurtosis with a normal mixture model

(not used in this case). In the following, we will assume:

k ¼ Nðmk;s
2
kÞ ð9Þ

Values of mk; s
2
k are, respectively, 0.298 and 0.032

when estimated by max-likelihood.

Fig. 6 shows that the conditional model of l ¼

logðrÞ given k is pretty well fitted by a linear

regression with residuals distributed according to a

normal mixture, i.e.

l ¼ l0 þ l1k þ e

e ¼ ðdÞNð0;s2
1Þ þ ð1 2 dÞNð0;s2

2Þ

ð10Þ

Table 1

Expert’s beliefs for meaningful hydrological quantities m; ~q2 and r

Hydrological meaning Elicitated u Median

ðp ¼ 0:5Þ

90%

Quantile

Annual mean number

of floods .2500 m3/s

m 1.7 2.1

Difference between

100 and 10 year

return floods

~q2 ¼ Q100 2 Q10 1000 m3/s 1600 m3/s

Ratio of quantile

differences

r ¼Q1000 2Q100

Q100 2Q10

2 3.5

Table 2

Hyper-parameters for prior gamma distributions of m; ~q2 and ~q3

am bm a2 b2 a3 b3

34 0.05 6.50 162.08 100 20
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Fig. 4. The distribution of 20,000 simulated values of b is neither normal nor gamma.

Fig. 5. Distribution of 20,000 simulated values of k:
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These formulae are the more general expressions used

in our study. For our case study, the simpler model

with d ¼ 0:5 works well. The parameter values are

given in Table 3.

This approximation, namely ‘k—normally distrib-

uted, llk; conditionally distributed according a

normal mixture with linear dependence in mean

with k, introduces seven additional hyper-parameters

(mk; sk; l0; l1; d; s1; s2) allowing to write the density

function of k; l under an analytical form based on

normal expressions. Moreover Eq. (10) shows that

only Bernoulli and Normal random generators are

used to sample (k; l) from:

pðk;llmk;sk; l0; l1; d;s1;s2Þ

¼ pðllk; l0; l1; d;s1;s2Þpðklmk;skÞ

The elicitation model for the joint distribution of b

and r can be analytically derived via Jacobian

transformations. Formally it reads as pðk;llmk;sk;

l0; l1; d;s1;s2Þ l›ðb; rÞ=›ðk;lÞl: As long as sampling

issues are addressed, there is no need to evaluate this

expression in closed form. Samples for (r; b) can be

derived from the previous samples ðk; lÞ since r ¼

expðlÞ and b ¼ k expðlÞ:

3.2.5. Picking a semi-conjugate prior

Formally the prior for b is a function of the seven

hyper-parameters (mk; sk; l0; l1; d; s1; s2) which

reads:

p0ðbÞ ¼
ð
r

pðk;llmk;sk; l0; l1; d;s1;s2Þ
›ðb; rÞ

›ðk; lÞ


dr

The reader wishing to struggle with formal calculus of

integrals may take some pleasure in searching for

the analytic expression of p0ðbÞ; but as before, such a

task is useless since prior samples of any size for b

can be derived via the previous sampling scheme

using Eqs. (9) and (10).

Fig. 6. The two parameters of the gamma pdf for pðrlbÞ as a function of b:

Table 3

Hyper-parameters for normal distributions describing (k; logðlÞ)

mk s2
k d l0 l1 s2

1 s2
2

0.298 0.032 0.5 26.7029 21.6029 0.01989 0.00663

E. Parent, J. Bernier / Journal of Hydrology 283 (2003) 1–18 11



The following sub-step consists in the approxi-

mation of the conditional pðrlbÞ with the modeled

conditional prior following a gamma distribution with

parameters aðbÞ; bðbÞ: The range of b is divided into

sub-intervals and for each of these sub-intervals,

estimates for conditional expectations ~EðrlbÞ and

variances ~VðrlbÞ are computed from the (r; b) sample.

Then the center of the sub-intervals is related to the

corresponding values of the gamma hyperparameters

a and b :

aðbÞ ¼
ð ~EðrlbÞÞ2
~VðrlbÞ

bðbÞ ¼
~VðrlbÞ
~EðrlbÞ

ð11Þ

Fig. 7 is based on a file keeping triplets of (b; aðbÞ;

bðbÞ) for further applications. A low order polynomial

approximation could also have been fitted. The weird

shape of the functions aðbÞ; bðbÞ is not surprising: the

semi conjugate prior Eq. (6) inherits from the

functional structure of the likelihood (4). aðbÞ

corresponds to the sample size n in Eq. (4) and bðbÞ

corresponds to the function Snðx;bÞ given by Eq. (5).

At this step, the independent gamma distribution

for m (with parameters ðam; bmÞ), the marginal p0ðbÞ

and the conditional gamma distribution for r (with

parameters aðbÞ; bðbÞ) are taken as a modeled joint

prior belonging to the desired semi conjugate family

of priors.

3.2.6. Checking that elicitated prior and modeled

priors are close enough

Finally for testing purposes, 5000 values of the

parameters are sampled in this modeled prior and the

results compared with those of the previous values

obtained with the elicitation model. Fig. 8 gives three

histograms for the prior marginals of (k;b; rÞ and one

scatter plot to represent covariations between r and b

based on the 20,000 simulations of POT parameters

obtained with the ‘elicitation model’ (functions of

quantiles parameters independently distributed as

gamma). This set must be compared with the same

graphs given in Fig. 9 resulting from simulations

obtained with the semi conjugate modeled prior.

Similarities between the two sets appear to be very

strong both qualitatively and quantitatively.

Furthermore Table 4 gives results about medians

of the sample values performed for the elicitated

Fig. 7. Conditional mean of log p given k and residuals.
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and modeled parameters. Table 3 shows the 90%

empirical quantiles for m; ~q2; ~q3 and r from the

samples. Tables 5 and 6 exhibit similar information

for 10, 100 and 1000 year return floods.

Tables 4–7 show elicitated versus modeled results

which seem to be quite comparable (relative

differences less than 10%) except for �q3 for which

the differences are important. This result concerning

�q3 illustrates some incompatibility between the

analytical assumptions (prior gamma distribution

and setting independence of quantiles variations on

one hand, the Poisson–Pareto POT model on the other

hand). However the differences are much weaker in

terms of absolute quantiles themselves.

3.2.7. Overall checking of the method

A sensitivity analysis is performed on quantiles

assessed from the expert. This semi-analytical, semi

Monte Carlo method for determining prior distri-

bution of b; r; marginal prior p0ðbÞ and conditional

pðrlbÞ is checked to be stable and robust.

4. Posterior analysis of the Garonne case study

with informative prior

The flood data of the Garonne river near Agen at

the same site (Mas d’Agenais) have been recorded for

the period 1913 – 1977. The peak flows above

2500 m3/s were selected. 151 peaks were obtained

in 65 years. All posterior estimates with informative

prior and non-informative prior modeling prior

ignorance have been evaluated via MATLAB scripts

that call to ready-made random number generators

(Normal, Bernoulli, Beta, Gamma). The posterior

analysis is based on direct Monte Carlo sampling after

Fig. 8. Results on the elicitation model prior.
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Eq. (7) has been evaluated at the centers of

subintervals partitioning the range of b: A sample of

size 200 was used for the statistical analysis.

Fig. 10 shows density estimates of 10, 100, 1000

year floods with observed data taking in account:

† non-informative prior,

† the previously informative elicitated prior,

Fig. 11 presents posterior mean of quantiles

together with 5 and 95% credible limits as a function

of return periods.

The POT model constrains quantiles to be linked

together and the expert’s opinion plays some role on

the location of design quantiles, bringing them

towards his or her prior expertise. More clearly it

Fig. 9. Results on the modeled prior.

Table 5

Comparison of prior 90% credible bounds for elicitated and

modeled m; ~q2; ~q3 and r

90% Credible bound for m ~q2 ~q3 r

Elicitated 2.10 1609 2265 3.51

Modeled 2.11 1654 1349 3.30

Table 4

Comparison of sample prior medians for elicitated and modeled m;

~q2; ~q3 and r

Medians for m ~q2 ~q3 r

Elicitated 1.69 1001 2009 2.00

Modeled 1.71 987 490 2.02
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appears, on all these curves, the uncertainty reduction

effect of taking into account prior knowledge with

reference to the usual non informative prior.

Table 8 considers the one hundred year return flood

Q100; with its 90% credible interval (Bayesian

counterpart of classical confidence intervals). The

range D of this 90% credible interval (D ¼ 95%

credible bound 2 5% credible bound) is cut in two

when incorporating prior expertise.

This is a large reduction due to the prior statements

of the expert. In a frequentist-based hydrological

study on the same data, Miquel (1984) showed similar

results using non-informative prior but taking into

account 12 historical records observed in the previous

150 years. The present reduction in D is almost equal

to the one obtained with such historical information.

4.1. Discussion

Coles and Tawn (1996) presented a similar

elicitation exercise (with Professor Duncan Reed as

the expert) in the connected field of meteorology. They

did not use the distinction between elicitation and

modeled priors and directly introduced the elicitation

model into the Bayes rule to compute the posteriors.

Their method may appear much easier since it avoids

approximation and transformation. But recourse is to

be made to the Metropolis Hasting algorithm (Kuczera

and Parent, 1998) the latest brute force development

from the MCMC toolbox of statistical estimation

techniques. The use of the semi-conjugate structure of

the modeled prior has many advantages.

The first advantages are computational. The method

presented in the elicitation process relies on direct

simulation of posterior distributions, not MCMC ones

for which caution must be taken. MCMC runs only

asymptotically provide samples from the posterior pdf,

and the initial non-ergodic period may take long. In

addition, convergence tests for MCMC techniques still

belong to the open fields of statistical research.

Conditional posterior distributions of parameters are

partly analytically known so that Rao Blackwell

Table 6

Comparison of prior sample medians for elicitated and modeled 10,

100 and 1000 year return floods Q10; Q100; Q1000

Medians for Q10 Q100 Q1000

Elicitated 4987 6062 6596

Modeled 5001 6028 6515

Fig. 10. Density estimates for Q10; Q100; Q1000:

Table 7

Comparison of prior 90% credible bounds for elicitated and

modeled 10, 100 and 1000 year return floods Q10; Q100; Q1000

90% Credible bound for Q10 Q100 Q1000

Elicitated 5550 6708 7842

Modeled 5473 6755 7962
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variance reduction techniques are used here to provide

smooth estimates, a trick that could not be obtained

when using Metropolis Hastings algorithms. Further

important developments of the POT model (introduc-

tion of historical data, predictive analysis of decision,

regional analysis offloods) will increase its complexity

and may necessitate recourse to MCMC techniques.

But as, even in this case, conditional posterior

distributions will remain partly known, so that most

posterior analysis would be performed via Gibbs

sampling, a much more efficient MCMC technique

than the Metropolis Hasting algorithm.

There are also conceptual advantages stemming

from the semi-conjugate prior pdf structure. Of course

Fig. 11. Posterior mean and percentiles of QT as functions of return period T :

Table 8

Precision about the one hundred year return flood Q100; has doubled

when incorporating expertise

Design

value Q100

Post-

median

5%

Credible

lim.

95%

Credible

lim.

D

Q100 (with non-informa-

tive prior)

7000 6290 8500 2210

Q100 (with informative

prior)

6590 6190 7240 1050
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picking a prior from the POT semi-conjugate family

restricts the modeler’s choice: for instance, the POT

model structure imposes that, at last a posteriori,

quantiles are rather strongly correlated. Nevertheless

we believe that the semi-conjugate modeled prior is

versatile enough to take into account most quantified

opinions of experts.

An elicitation model is just a way of encoding prior

expertise. Coles and Tawn (1996) assumed that Q10; ~q2

and ~q3 are independently gamma distributed. We

adopted and adapted these assumptions because they

are convenient but other elicitation models can be

made. What is the effect of these assumptions? An

other elicitation model, or another expert’s opinion

could have been encoded following the same way

detailed here into a semi-conjugate prior. Two different

elicitation models are equivalent if they lead to similar

posterior inference and operational results for flood

design. The last word is left to the expert to say whether

the distance between two priors or between an

elicitated prior and its semi-conjugate approximation

is acceptable or not: simulations are easy to perform,

allowing to compute various meaningful hydrological

quantities to be checked by the hydrologist.

5. Conclusions

The following conclusions can be made:

† The Garonne case study exemplifies how valuable

information carried by prior expertise can reduce

flood design uncertainty. On the Garonne example,

the design value and its credible interval are

notably changed when incorporating prior evi-

dence into the study, whatever the way of encoding

this information.

† A complete way of encoding prior expertise is

proposed via the semi conjugate structure for POT

prior. This prior structure is flexible enough to

encode a wide variety of prior degrees of belief. It

also contributes to a quick and easy direct posterior

inference.

† Fruitful results are obtained by adopting the

Bayesian perspective for risk analysis of extreme

events: professional expertise, even qualitative and

subjective can be associated with quantitative

experimental data. From an engineer’s point of

view, new practical issues opened by the Bayesian

approach for hydraulic structure design will

overcome old philosophical controversies about

the subjective nature of probabilities.
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Bernier, J., 1967. Les méthodes Bayesiennes en hydrologie.

International Hydrology Symposium, Fort Collins.

Bernier, J., 1987. Elements of Bayesian analysis of uncertainties in

hydrology reliability and risk models. In: Duckstein, L., Plate,

E.J. (Eds.), Engineering Reliability and Risk in Water

Resources, NATO ASI series, Tucson, pp. 405–422.

Bernier, J., Parent, E., Boreux, J.J., 2000. Statistique pour

l’environnement. Traitement bayésien de l’incertitude. Lavoi-

sier, Tec § Doc

Bobée, B., 1999. Estimation des événements extrêmes de crue par
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