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Abstract

The St Venant equation is used to model the steady flow of water on a low slope through a grass buffer strip represented by

beds of nails of various densities. The analytical solution is obtained both for flow upstream and within the buffer strip. Solution

only requires the boundary conditions far upstream to be given and no curve fitting of parameters. The sensitivity of the solution

to uncertainty in the measured boundary conditions and the effect of the theoretical resistive flow equation used are explored.

Differences are observed between experimental observations and the theory but these are likely to be due to the presence of

turbulent waves at the surface of the flow which are not part of the model.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The use of vegetative buffer strips alongside

streams to reduce the amount of pollution carried

downstream through sediment and nutrient loading

has been of recent scientific interest (Kemper et al.,

1992; Landry and Thurow, 1997; Hairsine, 1996;

Magette et al., 1989; Dabney et al., 1995; Munoz-Ca-

pera et al., 1999). The buffer strips act as resistive

elements to overland flow and modify the hydrology

affecting the deposition of sediment and hence

nutrient movement (Barfield et al., 1979; Flanagan

et al., 1989; Dabney et al., 1995; Ghadiri et al., 2000,

2001).

Rose et al. (2002) developed a model of steady

flow through a buffer strip represented by nail beds of

various densities. The model divided the flow into

four regions. This is represented in Fig. 1. The two

regions of particular interest are firstly the zone

between the hydraulic jump and the flow resistive

element, and secondly the area within the nail bed.

The other two regions show horizontal flows of depth

D1. Experiments were undertaken over an imperme-

able surface with a range of low slopes, the results

were adequately modeled using several simplifying

assumptions and curve fitting. In the following a

purely analytical solution is presented both for flow

through the nail bed and in the region of hydraulic
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adjustment that is entirely based on the St Venant

equations and requires no curve fitting. Only the

boundary conditions far upstream of the strip must be

given.

This work assumes that the simulated buffer strip is

spatially uniform in size and density, and that it does

not change position or shape in response to flow. The

water flowing is also assumed free of sediment or

debris.

2. Model

In the following we follow closely Rose et al.

(2002) and so will refer to their equations. Derivation

of the equations can be found in their paper. The St

Venant equation within the buffer strip (or nail bed),

follows closely Eq. (22) in Rose et al. (2002) for small

slopes (with the cos of the slope replaced by 1) or,

here,

2

D

dD

dx
¼

2g SD2u2 q2dCdN=u2

gD3 2 q2=u
ð1Þ

where D is the depth of the water layer, x the distance

down the flume, e.g. x ¼ 0 at the entrance to the bed,

g ¼ 9:81 m=s2; S is the slope, Cd is the drag coefficient

around a cylindrical nail of diameter d; (Nm22) is

the density of nails, and

u ¼ 1 2 p d2
=4e2 ð2Þ

is the overall porosity of the bed, with e the nail

spacing in both horizontal directions i.e. x and

perpendicular to it. All symbols are listed in the

Appendix A. Here, rather than curve fitting Cd; we

take the standard value Cd , 1:1 for the present

Reynold’s number (Marks, 1951). Eq. (1) is easily

integrated as
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with

A2 ¼ q2dCdN=u3 2gS: ð4Þ

Fig. 1. Representation of the steady flow over an impermeable surface to and through a region of uniform resistive medium. Symbol definitions

are given in the text and Appendix A.
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D3 is the depth at x¼ L which is the end of the nail

bed. D3 cannot be lower than the critical depth given

by Eq. (1) as

D3
C ¼ q2

=ug ð5Þ

Far downstream of the strip the depth must return to

the normal depth D1 which is imposed far upstream of

the strip (once the turbulence generated by the nails

has dissipated). However, DC .D1; hence the lowest

possible value which the flow can reach at x¼ L (the

length of the nail bed) is

D3 ¼DC; ð6Þ

which is taken in the following. From Eq. (3) the

depth, D2; at x¼ 0; the entrance to the strip is

easily obtained. This value is then used to obtain D

upstream of the strip. The depth obeys the St Venant

equation

dD

dx
¼ gS

D3 2D3
1

gD3 2q2
ð7Þ

which is essentially Eq. (26) of Rose et al. (2002)

with the small correction of D3
1 ensuring that dD=

dx¼ 0 at D¼D1: Here D3
1 represents the drag on

the board. For D,D2; Eq. (7) describes the profile

until a shock appears at a depth DS given

approximately by

DS=D1 ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8q2=gD3

1

q
21

� �
; ð8Þ

as given in any modern hydrology textbook, e.g.

Chow (1959) and Haan et al. (1994) for flow on

a horizontal surface. Note that in sloping

channels Chow (1959) suggested a corrected

relation. However for the weak jumps considered

here the values of Ds=D1 predicted by Eq. (8) are

in essential agreement with the experimental

relations also given on Chow (1959) in his Fig.

15–20.

Eq. (7) is easily integrated with the boundary

condition obtained from Eq. (3) namely

D ¼ D2 at x ¼ 0 ð9Þ

giving

Sx ¼ D 2 D2 þ
D1
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3. Results

Figs. 2–5 analyze experiments described in Rose

et al. (2002). The measured values of S; q; D1; d; e; N

are given in Table 1 of that paper. Experimental

observations and the theoretical results obtained from

Eqs. (3) and (10) are given. Several observations can

be made from these results.

The shapes of the observations are fairly well

described by Eqs. (3) and (10). However, the

predictions of water depth tend to be significantly

below the observations. The fact that the predictions

are below the observations should be expected.

Within the hydraulic jump zone the water is very

choppy due to the presence of turbulent waves or

‘rollers’ (Chow, 1959). The recording strip can only

show the envelope of the maximum crest of the rollers

over the time of the experiment, and as those are

highly turbulent (Rose et al., 2002) we should add the

amplitude of those rollers to the predictions of

average depth in order to compare with the obser-

vations. This addition of 3–5 mm (the larger value

being for the VHD experiments) makes the

predictions indistinguishable from the observations.

Of course as the rollers penetrate the nail bed their

amplitude decreases, more rapidly for a high nail

density, and so the choppy appearance of the surface is

less pronounced as we approach the exit at x ¼ L; as

observed. As a result near x ¼ L observations

are closer to the theoretical result of the average

depth.

The observed position where D increases over D1

is always close to the predicted shock position where,

D ¼ DS as given by Eq. (8). At that place instead of

a discontinuous jump the depth increases very

rapidly (this region is properly described as the

hydraulic jump). Experimental uncertainty in S and
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D1 has an effect on the position of the shock. In the

Discussion section which follows we assess the

sensitivity of the shock position to the uncertainty in

the measurement of S and D1:

4. Discussion

As in every experimental measurement there is

some degree of uncertainty in both S and D1: The

Fig. 3. Comparison of experimental and analytical results for steady water depth variation upstream and within a 0.2 m long, high density (3HD)

nail bed (in a similar way to Fig. 2).

Fig. 2. Comparison of experimental and analytical results for steady water depth variation upstream and within a 0.2 m long high-density (2HD)

nail bed. Flow is from left to right. Extent of nail bed is as shown. Parameter values are given in Table 1. Analytical curves are labeled according

to the calculated value of S or D1 from Manning’s or Chezy’s formula or the measured values of S and D1 given by Rose et al. (2002) (Table 1).
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Fig. 5. Comparison of experimental and analytical results for steady water depth variation upstream and within a 0.2 m long, high density (5V

HD) nail bed (in a similar way to Fig. 2).

Fig. 4. Comparison of experimental and analytical results for steady water depth variation upstream and within a 0.2 m long, high density (4V

HD) nail bed (in a similar way to Fig. 2).

W.L. Hogarth et al. / Journal of Hydrology 283 (2003) 218–224222



effect of such uncertainty can be investigated using

Manning’s and Chezy’s formula. Manning’s formula

gives

q ¼
D5=3

1 S1=2

n
¼

ðD1S3=10Þ5=3

n
ð11Þ

and Chezy’s formula gives

q ¼ CD3=2
1 S1=2 ¼ CðD1S1=3Þ3=2: ð12Þ

Since q is constant for all the experiments then in

Manning’s formula D1S0:3 should be constant as

Table 1

Experimental and calculated data for four experiments given in Rose et al. (2002)

Experiment S q D1 D1S0:3 D1S1=3 Sm D1m Sc D1c

2HD 0.0100 2.27 £ 1023 7.18 £ 1023 1.804 £ 1023 1.547 £ 1023 0.01124 7.436 £ 1023 0.01208 7.647 £ 1023

3HD 0.0154 2.27 £ 1023 6.73 £ 1023 1.924 £ 1023 1.674 £ 1023 0.01395 6.533 £ 1023 0.01467 6.622 £ 1023

4V HD 0.0354 2.27 £ 1023 5.10 £ 1023 1.850 £ 1023 1.652 £ 1023 0.03516 5.090 £ 1023 0.03371 5.018 £ 1023

5V HD 0.0520 2.27 £ 1023 4.60 £ 1023 1.895 £ 1023 1.717 £ 1023 0.04950 4.535 £ 1023 0.04594 4.414 £ 1023

S: flume slope; q discharge rate per unit width; D1: flow depth upstream of hydraulic jump; Sm: flume slope obtained from Manning’s

formula taking D1 as measured; D1m: D1 obtained from Manning’s formula taking S as measured; Sc and D1c are similarly obtained using

Chezy’s formula.

Table A1

List of symbols

Symbol Description Defining equations/figures

Roman

B Length of zone of hydraulic adjustment

Cd Drag coefficient of a single nail

d Nail diameter

D Depth of water flow

D1 Depth of normal flow Fig. 1

D2 Depth of water at entry to the nail bed Fig. 1

D3 Depth of water of exit from the nail bed Fig. 1

Da Average water depth over distance ðL 2 xÞ or y Fig. 1

Dc Critical depth of water at exit of nail bed Eq. (5)

Ds Depth of water at position of shock Eq. (8)

e Nail spacing

g Acceleration due to gravity

H Hydraulic head Fig. 1

L Length of nail bed Fig. 1

N Nail density (no. nails m22)

q Unit discharge

S Bed slope ¼ sin a

V2 Flow velocity with flow depth D2

Va Average flow velocity over distance ðL 2 xÞ or y Fig. 1

x Downslope distance measured from upstream face of the nail bed Fig. 1

x0 Downslope distance measured from the commencement of the

hydraulic jump

Fig. 1

y Distance measured upslope from the downslope of the nail bed Fig. 1

Greek

a Slope angle of the flow bed Fig. 1

u Volumetric water content of flow within the nail bed Eq. (2)

n Kinematic viscosity of water

r Water density
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should D1S1=3 in Chezy’s formula irrespective of the

values of n or C: Table 1 shows the results.

As shown in Table 1, D1S0:3 and D1S1=3 are not

quite constant, indicating either the effect of error in

measurements of D1 and S; or some deficiency in

the formulae. The effect of this uncertainty is

investigated by using averaged values taken across

the experiments, i.e. for D1S0:3; 1.868 £ 1023 and for

D1S1=3; 1.6475 £ 1023 to obtain the last four columns

in Table 1. For example, D1c for experiment 2HD is

obtained using D1S1=3; with average value

1.6475 £ 1023 and the value of S; 0.01 while Sm for

experiment 2HD is obtained from D1S0:3; with

average value 1.868 £ 1023 and the value of D1;

7.18 £ 1023.

Figs. 2–5 show the sensitivity of the position of

the shock to the values of S and D1: We note the

following. Firstly, considering the overall variability

in the shock position there is relatively little

difference between the use of Chezy or Manning’s

equation. Secondly, taking S and D; as measured

tends to predict an ‘average’ shock position. Finally,

estimating S from either Chezy or Manning and the

measured D1; is somewhat better in predicting the

position of the shock, especially for the lowest

slope.

5. Conclusion

This addendum presents a theoretical approach to

describing the steady flow of clear water through a

buffer strip represented by nail beds of various

densities. The theory clearly represents the physical

features shown in the experiments. The position of the

shock is sensitive to the choice of the slope S and

original water depth far upstream D1: At least one

reason why the measured envelope of the maximum

water depth exceeds prediction could be the presence

of turbulent rollers.

The presence of sediment and debris in flowing

water, and the non-uniformity and lack of rigidity

characteristic of real world buffer strips adds further

complications to experiment and theory.

Appendix A

Table A1.
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