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Abstract

The evolution of permeability and flow in a karst aquifer is studied by numerical simulations. The aquifer considered consists

of a large central fracture, a network of finer fissures, and a porous rock matrix. Enlargement of both the central fracture and the

fissures by chemical dissolution is possible, hence the conductivities in the fracture and the fissure system can increase with

time. No dissolution is allowed in the porous rock matrix, which has a constant conductivity. Flow is driven by a simple fixed

head boundary condition representative for the initial phase of karstification. A systematic parameter study is carried out by

varying the initial width of the fissure network and the conductivity of the rock matrix, while keeping the initial width of the

central fracture fixed. Key parameters such as flowrates, breakthrough times, and conductivities for the different models are

compared. If either the conductivity of the rock matrix is high enough or the initial width of the fissures is large enough to carry

flow, breakthrough times of the aquifer are significantly reduced, when compared to a model with low matrix conductivity and

small fissures. However, due to the dissolutional widening of fissures the evolution of the aquifer is distinctively different for

models with rock matrix simulated by a porous medium or a fissure network.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Flow and transport through a karst aquifer is

strongly depending on heterogeneities, as fractures

enlarged by chemical dissolution provide preferen-

tial flowpaths, which respond quickly to recharge

events in the catchment area. However, the

distribution and geometry of fractures in a karst

aquifer is difficult to access by direct observation.

Here, numerical modelling of the evolution of

flow in a karst aquifer is a useful tool to study

the impact of strong heterogeneities in per-

meability. Several models have been developed in

the last decade to simulate the evolution of

fractures and flow in karst aquifers (e.g. Groves

and Howard, 1994; Howard and Groves, 1995;

Clements et al., 1996, 1997; Siemers and Drey-

brodt, 1998; Kaufmann and Braun, 1999, 2000;

Gabrovšek et al., 2000). The basis of all of these

models is a network of interconnected fractures,

which are enlarged by chemical dissolution. Flow

is driven by boundary conditions simulating simple

aquifer models. However, differences in the models

arise from the treatment of flow in the rock matrix
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between the fractures. While the models of Groves

and Howard (1994) and Kaufmann and Braun

(1999) only consider the fracture network, the

matrix component is modelled as porous continuum

in the models of Clemens et al. (1996), Bauer et al.

(1999) (Tübingen model) and Kaufmann and Braun

(1999) (Göttingen model). In the latter models, the

dissolutional widening in the porous continuum is

not taken into account. The model from Siemers

and Dreybrodt (1998) and Gabrovšek et al. (2000)

(Bremen model) describes the rock matrix through

a dense network of narrow fissures, onto which the

fracture network is superimposed. This model

allows for dissolution both in the finer fissures

simulating the matrix and the more prominent

fractures.

For both the Tübingen model (Bauer et al.,

2000) and the Bremen model (Romanov et al.,

2002) a benchmark scenario has been published.

In this article, we apply the benchmark scenario to

the Göttingen model, and we simulate a karst

aquifer with three different components: a promi-

nent fracture embedded into a network of smaller

fissures and porous matrix. Hence our model has

three characteristic porosities. We are thus able to

simulate flow and evolution in the early phase of a

karst aquifer, with flow initially controlled by

the fracture and the porous matrix, and sub-

sequently by the enlargement of smaller fissures

in the system.

2. Theory

The benchmark scenario represents an idealised

karst aquifer, with a horizontal limestone layer

742.5 m in length and 375 m wide (Fig. 1).

The aquifer is discretised into 100 £ 51 nodes, and

the fine fissure system has fissures with a fissure

spacing of 7.5 m. A larger fracture is located in the

center of the karst aquifer. While the large fracture has

an initial diameter of 0.2 mm, the initial fissure

diameter is varied between 0.01 and 0.2 mm.

In between the fissures the matrix is simulated as

porous continuum, and the matrix conductivity is

varied from 10215 to 1023 m/s. Flow in the karst

aquifer is driven by a fixed head boundary condition,

with heads fixed to 100 m along the left side, and 0 m

along the right side. Both the upper and lower

boundaries are no-flow boundaries. Other model

parameter values are listed in Table 1.

Flow in the fractured, porous karst aquifer is

modelled by the steady-state continuity equation

without recharge
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Table 1

Reference model parameters

Parameter Description Unit Value

Km Matrix conductivity m/s 10215 2 1023

df Fissure width mm 0:01 2 0:2

dc Fracture width mm 0:2

d Fracture spacing m 7:5

r Calcite density kg/m3 2700

mr Calcite atomic mass g/mol 100:1

g Gravitational acceleration m/s2 9:81

n Kinematic viscosity m2/s 1.14 £ 1026

n1 Linear exponent – 1

n2 Non-linear exponent – 4

k0 Dissolution-rate constant mol/m2/s 4 £ 1027

D Diffusion constant m2/s 1029

ci Initial calcium

concentration

mol/m3 0

cs Threshold calcium

concentration

mol/m3 0:9ceq

ceq Equilibrium calcium

concentration

mol/m3 2

t Time step yr 1

Fig. 1. Geometry of the model domain. Fissures are shown as thin

lines, the prominent fracture as thick line. The dashed contour lines

depict the initial head distribution. Inverted triangles indicate the

100 m fixed head along the left side, normal triangles the 0 m head

along the right side. Other boundaries are no-flow boundaries.
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Here, x and y are the northward and eastward

coordinate directions, h is the hydraulic head in

the model domain, K and b are the conductivity and

the aquifer thickness. The transmissivity T ¼ bK

controls the flow, hence for simplicity we choose a

nominal aquifer thickness of b ¼ 1 m: For a total of N

nodes in the model domain, (1) represents a set of N

equations for the N unknown heads hi at nodes i:

The conductivity in the porous matrix Km remains

constant throughout the evolution, while the conduc-

tivities in the fracture and the fissures Kc ¼ KcðtÞ

increases with time due to the enlargement of the

elements by chemical dissolution:

KcðtÞ ¼
g

32n
dðtÞ2: ð2Þ

Here, g is gravitational acceleration, n the kinematic

viscosity of water, t is time, and dðtÞ the time-

dependent diameter of the fractures and fissures.

The diameter increases with time, depending on

the calcium fluxrate FCa2þ in the element

dðtiÞ ¼ dðti21Þ þ
FCa2þmr

r
ðti 2 ti21Þ; ð3Þ

with mr and r the atomic mass and the density of

calcite. The calcium fluxrate depends on the actual

concentration c of calcium in the solution with respect

to the equilibrium concentration ceq (e.g. Buhmann

and Dreybrodt, 1985a,b; Dreybrodt, 1988; Svensson

and Dreybrodt, 1992; Eisenlohr et al., 1999),

FCa2þ ¼ ki 1 2
c

ceq

 !ni

; i ¼ 1; 2; ð4Þ

where ceq ¼ 2 mol m23 is the equilibrium concen-

tration. Below a threshold ðc # csÞ; the fluxrate is a

linear function of the calcium concentration:

n1 ¼ 1; k1 ¼ k0 1 þ
k0dðtÞ

6Dceq

 !21

; ð5Þ

with the rate coefficient k0 ¼ 4 £ 1027 mol m22 s21;

and the diffusion coefficient D ¼ 1029 m2 s21:

For small film thicknesses below 1 mm, the

calcium fluxrate is mainly controlled by the surface

processes at the solution– limestone boundary.

For larger film thicknesses, the second term on

the right-hand side of Eq. (5) becomes important,

as transport processes become rate limiting. Above

the threshold ðc . csÞ; a fourth-order power-law

applies

n2 . 4; k2 ¼ k1 1 2
cs

ceq

 !ðn12n2Þ

: ð6Þ

Note that k2 , 4 £ 1024 mol m22 s21 is several orders

of magnitude larger than k1; but the high-order fluxrate

above the threshold remains much smaller than the

low-order fluxrate valid for smaller calcium concen-

trations due to the power-law introduced by n2 ¼ 4 in

Eq. (4). Water entering the model domain along the left

side is aggressive ðc ¼ 0 mol m23Þ; water leaving the

porous matrix is saturated ðc ¼ ceqÞ: At the intersec-

tions of fractures and fissures, instantaneous and

complete mixing of incoming water is assumed.

Eq. (1) is solved with a Galerkin finite element

method, with triangular elements for the porous

matrix and linear elements for fractures and fissures.

As flow in the fractures and fissures increases with

time, the flow regime can change from laminar to

turbulent conditions. In that case, flow needs to be

recalculated for the turbulent elements. Details of

the numerical implementation and the modelling of

the dissolutional widening can be found in Kaufmann

and Braun (1999, 2000), and key parameters are

summarised in Table 1.

3. Results

We first discuss results for three representative

model runs. In Fig. 2, the widening corresponding to

fracture and fissure enlargement and the hydrostatic

head distribution is shown for two times. The times

are chosen shortly before the breakthrough and after

breakthrough. With breakthrough we define the

dramatic increase in flowrate out of the right model

boundary, which occurs after the establishment of

linear kinetics in the entire karst aquifer. In all models

discussed the central fracture has widened to around

1 m after 1000 years of evolution.

3.1. Fracture and fissure enlargement

The first model chosen is essentially a single

fracture model: The central fracture with its initial

width of dc ¼ 0:2 mm has an initial conductivity of

G. Kaufmann / Journal of Hydrology 283 (2003) 281–289 283



Kc . 1 £ 1022 m=s; the fissures with their small initial

width of df ¼ 0:01 mm have conductivities around

Kf . 3 £ 1025 m=s; which is several orders of magni-

tude lower. The matrix conductivity with Km ¼

10215 m=s is even lower. The high hydraulic head

initiates enlargement of the fracture on the left side,

and the enlargement propagates along the central

fracture towards the right (Fig. 2(a)). As the hydraulic

gradient along the enlarged part of the fracture is low,

pressure contour lines are shifted to the right,

Fig. 2. Width of fissures and fractures in the karst aquifer (in m) and hydraulic head distribution (contour lines, in m) for three models. Shown is

always a scenario shortly before breakthrough (left columns) and after breakthrough (right columns). Top: dc ¼ 0:2 mm; df ¼ 0:01 mm;

Km ¼ 10215 m=s: Middle: dc ¼ 0:2 mm; df ¼ 0:10 mm; Km ¼ 10215 m=s: Bottom: dc ¼ 0:2 mm; df ¼ 0:01 mm; Km ¼ 1024 m=s:
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increasing the gradient along the right side. Shortly

after 1600 years the breakthrough of the central

fracture occurs, and the pressure lines rebound

(Fig. 2(b)), as flow is now confined to the central

fracture. Due to the very small fissure width, no

significant enlargement in the fissure system is

observed.

In the second model the initial fissure width is

increased to df ¼ 0:10 mm; which results in conduc-

tivities of the fissure system of around Kf . 3 £ 1023

m=s: Both initial fracture and matrix conductivities are

as in the first run. Again, enlargement is initiated

along the left side (Fig. 2(c)), but breakthrough occurs

much earlier after only 400 years. This is a result of

the increased conductivity within the aquifer due to

the fine fissure system. Already before breakthrough,

fissures close to the central fracture are enlarged, as

close to the pressure front undersaturated water is now

injected into the fissure system. After breakthrough

(Fig. 2(d)), the pressure lines rebound again, and a

fringe of fissures around the central fracture is

enlarged, creating a highly permeable zone in the

center part of the aquifer.

In the third model, we set the conductivity of the

fissure system low again (df ¼ 0:01 mm;

Kf . 3 £ 1025 m=sÞ; but this time we increase the

matrix conductivity to Km ¼ 1024 m=s: Hence the

permeability of the aquifer is similar to the second

model, but now no enlargement takes place in the

matrix. Again, the central fracture enlarges, starting

on the left side (Fig. 2(e)), and pressure lines are

shifted to the right. However, already after 740 years

the breakthrough of the central fracture occurs,

pressure lines rebound (Fig. 2(f)), and at the end of

the calculation they are almost perpendicular to the

central fracture. Hence the flow injected into the

porous matrix results in an increase of undersaturated

water flowing through the central fracture, and thus a

faster enlargement.

In summary, we have shown that both modelling

concepts for the matrix flow system, considering

fissures as the matrix (as in the Bremen model), or

modelling the matrix as a porous continuum (as in the

Tübingen model), will reduce the breakthrough time

of the aquifer significantly. The reason in both cases is

the increased permeability of the matrix component,

which will carry flow during the very early evolution

of the aquifer and thus enhance dissolution in the

central fracture.

3.2. Flowrates

Next, we discuss flowrates out of the right side of

the aquifer more in detail. In Fig. 3(a), flowrates as a

function of time are shown for models with a central

fracture of dc ¼ 0:2 mm initial width, a negligible

porous matrix ðKm ¼ 10215 m=sÞ; and a fissure

system, for which the initial widths are varied.

For very low initial fissure widths ðdf ¼ 0:01 mmÞ;

flowrates increase only slowly for most of the time

shown, and breakthrough occurs late around 1600

years. At breakthrough, flowrates then increase

dramatically by several orders of magnitude. Increas-

ing the initial fissure width to df ¼ 0:1 mm; more flow

can be channelled through the fissure system, and

breakthrough time is reduced to 400 years. For even

wider initial fissure width ðdf ¼ 0:15–0:17 mmÞ;

flow through the fissure system becomes comparable

to flow through the central fracture. Consequently,

breakthrough occurs much earlier (300 years), and

due to the enlargement of the fissure system flowrates

become larger than in the single fracture case. Making

the initial fissure width equal to the initial width of the

central fracture ðdc ¼ df ¼ 0:2 mmÞ increases the

flowrate through the aquifer from the beginning,

but breakthrough in this case is delayed to around

1600 years, which is comparable to the models with

very small initial fissure widths. The reason for this

behaviour has already been discussed by Romanov

et al. (2002): if both the fissures and the fractures have

the same initial width, they essentially evolve as

parallel single fractures. Exchange between horizontal

fissures and fractures is negligible, and thus

the breakthrough time increases to values close to

the single fracture case!

In Fig. 3(b), the evolution of flowrates is shown for

models with a central fracture of dc ¼ 0:2 mm initial

width, a negligible fissure system ðdf ¼ 0:01 mmÞ;

and different porous matrix conductivities.

We observe a similar shift to lower breakthrough

times, if the matrix conductivity is increased from

Km ¼ 10215 to 1023 m=s; which is a consequence of

the increased flow through the aquifer. Significant

reductions in breakthrough time are, however, limited

to matrix conductivities above Km . 1026 m=s:
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The reason for this behaviour can be found by

comparing matrix and fissure conductivities: For df ¼

0:01 mm a fissure conductivity of around

Kf ¼ 3 £ 1025 m=s arises, hence the conductivity of

the porous matrix needs to be at least of equal

magnitude to capture a significant amount of flow.

In the Tübingen model, Bauer et al. (2000) have

found that varying the exchange coefficient used to

control flow between the conduit and the matrix

system over a large range does not affect the

breakthrough times significantly. This result is in

agreement with our porous matrix models, when the

matrix conductivity is below Km # 1026 m=s: The

reason for this is the difficulty to transfer water from

the fractures into the porous continuum. However, we

have shown that for more permeable matrices,

breakthrough times are reduced, because then the

porous continuum acts as a sink.

Fig. 3. Flowrates leaving the model domain through the right side. (a) Flowrates for models with prominent fractures (0.2 mm) and a fissure

system width varying between 0.01 and 0.2 mm. The matrix conductivity is fixed to 10215 m/s and thus negligible. (b) Flowrates for models

with prominent fractures (0.2 mm) and a fixed fissure system (0.01 mm). The matrix conductivity varies between 10215 and 1023 m/s.
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3.3. Breakthrough times

In Fig. 4, we discuss the dependence of

breakthrough times of the initial fissure widths

and the porous matrix conductivity. We first focus

on the models with negligible matrix conductivity

ðKm ¼ 10215 m=sÞ: In these cases, breakthrough

times vary from around 1600 years for models

with small initial fissure width ðdf ¼ 0:01 mmÞ to

less than 300 years, if the initial fissure width is in

the order of df ¼ 0:15–0:17 mm: If df . dc; the

breakthrough time increases again, as the model

essentially behaves as a set of single conduits. If we

allow for more permeable matrix conductivities in

the range of Km ¼ 1027 –1023 m=s; breakthrough

times are significantly reduced for small initial

fissure widths, as in these cases the porous matrix

is competitive enough to capture flow. For fissure

widths around df , 0:10 2 0:15 mm; the fissured

matrix is always more effective the the porous

matrix and hence controls breakthrough behaviour.

3.4. Flow velocities

We finally discuss flow velocities in the aquifer

shortly before breakthrough for two models.

In Fig. 5(a), the matrix conductivity ðKm ¼ 10215

m=sÞ is negligible, but the fissure width is with

df ¼ 0:10 mm large enough to capture flow. As it

can be seen in the figure, flow from the central

fracture is injected into the fissured system.

Injection rates are largest where the central fracture

width is changing from already enlarged to still

small (middle section). Flow in the fissured system

is then diverted through the finer fissures towards

the base level. In Fig. 5(b), matrix conductivity is

large (Km ¼ 1024 m=sÞ and competitive to the

fissure system ðdf ¼ 0:01 mmÞ: In this case flow

is also injected from the central fracture into the

porous matrix, which then drains towards the base

level.

4. Discussion

We have modelled the breakthrough behaviour of a

simple karst aquifer with imposed fixed head

boundary conditions on two sides. The aquifer has

three distinct parts: a large central fracture, a finer

fissure system, and a porous matrix. These three parts

combine the numerical models of Tübingen (fracture

and porous matrix) and Bremen (fracture and finer

fissure system). As the hydraulic head difference

driving the flow is fairly high (100 m on the left side,

0 m of the right side), porosity within the aquifer

increases quickly, and the central fracture enlarges

from its initial width of dc ¼ 0:2 mm to around 1 m in

less then 1000 years. We have shown that the rate of

enlargement is controlled by the matrix. The more

Fig. 4. Breakthrough times of fractures in the karst aquifer as a function of initial fissure width and matrix conductivity. Breakthrough times are

contoured, white dots indicate models calculated.
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permeable the matrix is, the shorter the time until

breakthrough occurs will be. For the breakthrough

time, it is irrelevant if the matrix consists of a dense

network of finer fissures or a porous medium.

Both model scenarios will increase flow in the central

fracture and thus initiate an early breakthrough.

However, modelling the matrix as either a dense

network of finer fissures or a porous medium will

Fig. 5. Velocities in the central part of the karst aquifer shortly before breakthrough time for two models. The underlying grey and black lines are

not enlarged and enlarged fractures and fissures, and contour lines depict the hydraulic head distribution. Note that flow velocities in the

central fracture are so large (.10 km/yr) that no arrowheads are visible. (a) dc ¼ 0:2 mm; df ¼ 0:10 mm; Km ¼ 10215 m=s: (b) dc ¼ 0:2 mm;

df ¼ 0:01 mm; Km ¼ 1024 m=s:
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result in different aquifer types: the porous matrix

only accelerates the breakthrough of the central

fracture, while keeping a constant permeability

elsewhere. The network of finer fissures, on the

other hand, reduces breakthrough times, but also

increases porosity in the matrix by several orders of

magnitude due to the dissolutional widening in the

fine fissure network.

We have shown that our model can reproduce the

breakthrough times and the aquifer permeability of

the Bremen model (Romanov et al., 2002). In the case

of the Tübingen model (Bauer et al., 2000), the results

match only qualitatively, as breakthrough in the

Tübingen model is significantly later due to an

outdated formulation of the chemical parameter

values controlling evolution.
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