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Abstract

Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density,
exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive
bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by
considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with
depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure
and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time.
Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is
accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system
to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is
examined.
- 2003 Elsevier B.V. All rights reserved.

1. Introduction

Observations from Soufrie're Hills volcano,
Montserrat, and many other volcanoes show
that low-frequency seismic events are important
tools for assessing volcanic activity. They occur
in swarms before volcanic eruptions and correlate
well with tilt signals (Voight et al., 1998). Single
events merge into harmonic tremor with peaked
spectral amplitudes (Fehler, 1983; Neuberg et al.,
1998) showing a fundamental frequency and a
varying number of integer harmonics. Peaked
spectra of this kind can be formed in two ways:

(1) The repetitive triggering of an identical
source wavelet. The fundamental frequency and
harmonics are controlled by the rate of triggering
of the wavelet (Schlindwein et al., 1995; Powell
and Neuberg, 2002).

(2) Eigenfrequencies of a resonating system (Be-
noit and McNutt, 1997).

The frequencies are sometimes seen to shift dur-
ing an episode of tremor giving rise to gliding
lines in spectrograms of the episodes (Neuberg,
2000). In the case of repetitive triggering, an in-
crease in the fundamental frequency is the result
of more rapid retriggering of the event. In the
second case, a shift in frequency is the result of
a change in the parameters controlling the oscil-
lation of the system.

The low-frequency content of the seismic sig-
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nals suggests that the events are generated as in-
terface waves at the £uid^solid boundary of a
conduit ¢lled with £uid and embedded in a solid
medium. Such waves can form if the width of the
conduit is narrow compared with the seismic
wavelength. The characteristics of this resonating
system are controlled by the ratios of the seismic
wavelength to the width of the conduit and the
impedance contrast between seismic parameters
across the conduit wall (Biot, 1952; Chouet,
1986; Ferrazzini and Aki, 1987). In these models
the frequency of oscillation would shift if there
were a change in the width of the conduit, or a
change in the seismic parameters inside or outside
the conduit. The gliding lines are seen on time-
scales of minutes to hours. This means that
changes in the geometry of the conduit or seismic
parameters in the country rock are unlikely. How-
ever, changes in the seismic parameters of the
magma are possible on this timescale.

Magmas contain a gaseous phase, and the
amount of gas that is exsolved depends on the
pressure. As the pressure decreases, gas dissolved
in the melt will be exsolved and form bubbles. If
there is a decompression caused by a dome col-
lapse or degassing, the size of the bubbles will
increase by di¡usion and decompressional expan-
sion. The gas already out of solution responds to
the decrease in pressure by expanding, further in-
creasing the volume of gas. Magma containing
exsolved gas has a lower density and a dramati-
cally lower seismic velocity (Neuberg and O’Gor-
man, 2002) than bubble-free magma.

Neuberg and O’Gorman (2002) show that a
decrease in excess pressure will result in a change
of the frequency of the resonance observed, due
to an increase in the volume fraction of gas. The
depth at which gas bubbles nucleate is considered
to be a seismic interface in the conduit (Neuberg,
2000). When the dome collapses, the decrease in
pressure results in gas exsolution deeper in the
conduit. The interface therefore travels deeper
into the conduit, lengthening the part of the con-
duit that shows a high impedance contrast with
respect to the surrounding country rock. This
changes the seismic wave¢eld. The nucleation
depth is controlled by the initial gas content of
the magma and the excess pressure (Neuberg,

2000), so these are important parameters in deter-
mining how much the frequency changes. The ef-
fect of changes in the initial gas content are not
modelled in this paper.

Neuberg and O’Gorman (2002) model the
change in excess pressure as a step function with
the conduit adjusting to the new pressure instan-
taneously. However, the timescale over which the
bubble growth takes place is important for mod-
elling such time dependent behaviour as the glid-
ing of the spectral lines. This will be examined in
this paper.

Previous work on bubble growth has concen-
trated on bubble evolution at constant pressure
(e.g. Lyakhovsky et al., 1996; Proussevitch et
al., 1993) but only examining a limited number
of ¢nal pressures, not continuous depth pro¢les.
Proussevitch and Sahagian (1996) look at pro¢les
of bubble radius and oversaturation with depth
for gradual decompression at a constant rate ob-
taining a solution that is not time dependent.
In contrast to these models, the approach pre-
sented in this paper describes time-dependent
bubble growth for a continuous vertical pro¢le.
Approximate analytical solutions for time-depen-
dent bubble growth under constant pressure, giv-
en by Navon and Lyakhovsky (1998), are em-
ployed to calculate the size of the bubbles
present at any time and depth. The volume of
exsolved gas is then used to ¢nd the seismic ve-
locity and density of the magma, and how they
change with time as the system adjusts to the new
pressure.

The physical constants used are those for rhyo-
lite applicable to volcanoes such as Soufrie're Hills
volcano, Montserrat, where the total rock compo-
sition is andesite but due to crystallisation the
residual melt is more silicic (e.g. Devine et al.,
1998). In this paper we consider a two-phase sys-
tem of melt and gas and ignore the crystalline
phase.

2. Depth and time-dependent seismic velocities

The volume of gas in a magma changes with
magmastatic pressure. This pressure decreases if
there is a collapse of dome material from the
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top of the conduit as often seen at andesitic vol-
canoes such as the Soufrie're Hills volcano, Mont-
serrat.

When the pressure decreases suddenly, a melt at
equilibrium will become supersaturated and gas
will di¡use into bubbles. The rate of bubble
growth will depend on the concentration gradient
between the water dissolved in the melt and the
concentration of gas at the bubble wall, the length
of time they are left to grow, and the rate at
which the volatiles can be transferred along the
gradient, which is given by the di¡usivity and the
density of the gas within the bubbles.

In the following we present two models for de-
compression: the ¢rst assumes as a starting point
a magma under high pressure such that no gas is
exsolved. The second model represents a partial
decompression of a magma in which gas bubbles
are already present.

2.1. The ‘champagne bottle’ model

An accelerating magma model is used to obtain
the gas volume fraction and therefore the density
and seismic velocity with depth and time. Initially
the magma column is under very high pressure so
that no gas is exsolved. The pressure decreases
instantaneously and bubbles are allowed to grow
in parts of the conduit where the melt is oversat-
urated. The pressure change a¡ects every depth
instantaneously.

The growth of the bubbles causes the magma to
expand and this increase in volume is accommo-
dated by accelerating the magma upwards from
the nucleation depth where the bubbles ¢rst start
to grow. Material extrudes and forms the equiv-
alent of a spine or dome due to the high viscosity
of the magma. For simplicity the magma in our
model can escape freely from the top of the con-
duit so there is no additional pressure term to
describe the e¡ect of viscous magma £ow. How-
ever, as a result of the growth of the spine with no
erosion of the extruding material, the magma-
static pressure acting on a bubble will remain con-
stant.

The pressure immediately after the decompres-
sion is the integrated weight of the magma above
this depth:

PðzÞ ¼ Pex þ
Z z

0
g b ðh Þ dh ð1Þ

where Pex is the excess pressure, g is the acceler-
ation due to gravity and b(z) is the bulk density of
the gas^liquid mixture. The depth z is measured
downwards from the top of the spine where z=0.
Initially b(z) = bl , the density of the melt, because
there is no gas exsolved. The excess pressure is the
result of loading on top of the conduit, either a
preexisting lava dome or spine.

The solubility law gives the concentration Ci of
gas at the bubble wall and approximates the mini-
mum mass fraction of gas dissolved in the melt,
md

g , at a depth z (Shaw, 1974):

Ci ¼ KH

ffiffiffiffiffiffiffiffiffi
PðzÞ

p
Wmd

g ð2Þ

where KH , Henry’s constant, is calibrated exper-
imentally as 4.1U1036 Pa31=2 in a rhyolitic liquid
with water as the only volatile in the system.

The maximum mass fraction of gas that can be
exsolved, mMAX

g , is given by (Papale, 1998):

mMAX
g ¼

mt
g3md

g

13md
g

ð3Þ

where mt
g is the total mass fraction of gas initially

dissolved and is equivalent to the initial concen-
tration of water in the melt Cm.

The growth of bubbles is not instantaneous.
After the decompression there is an interval in
which bubbles grow before the exsolved gas con-
tent adjusts to the change in pressure. The bubble
growth can be described by a series of equations
(Navon and Lyakhovsky, 1998) each describing a
stage in the formation and growth of the bubble;
¢rst bubbles must nucleate, then they grow expo-
nentially, a result of the high surface to volume
ratio of the bubble. Later the growth is slower.
Finally bubble growth stops when the gas mass
fraction that is out of solution equals mMAX

g .
Immediately after the decompression event the

supersaturation pressure vP at each depth can be
calculated using (Lyakhovsky et al., 1996):

vP ¼
mt

g

KH

� �2

3PðzÞ ð4Þ

If vP is positive, gas will be available to come out
of solution and di¡usion will take place until the
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amount of gas still dissolved reaches the amount
given by the solubility law (Eq. 2).

The critical radius of the bubble rCR is at an
unstable equilibrium. If the bubble formed has a
radius smaller than the critical radius, capillary
pressure will close the bubble. If a nucleus is
formed with a radius greater than rCR, then the
bubble will start to expand. The critical radius is
given by (Lyakhovsky et al., 1996):

rCR ¼ 2 c

vP
ð5Þ

where c is the surface tension. Since vP depends
on depth (Eq. 4), the critical radius becomes larg-
er with increasing depth and decreasing oversatu-
ration. A small bubble has a high surface area to
volume ratio making di¡usion very rapid. This is
described by an exponential law (Lyakhovsky et
al., 1996):

r ¼ rCR þ ðr03rCRÞexp
vP t
4 R

� �
ð6Þ

where r is the radius at a time t after nucleation,
r0 is the initial size of the bubble, set to 1.01UrCR
(Navon and Lyakhovsky, 1998), and R is the vis-
cosity of the melt. At longer time periods bubble
growth is described by a square root law (Lya-
khovsky et al., 1996):

r2 ¼ 2 D b lðCm3CiÞ
b g

t3
2
3
D R

P
b l

b g
ð2Cmþ

CiÞ log
vP
R

t
� �

ð7Þ

where D is the di¡usivity, bg is the density of the
gas and bl is the density of the melt. The transi-
tion between the two curves occurs at the time
when they cross.

For any time t it is possible to calculate the
radius of a bubble at a depth z. The volume of
gas, Vg produced by 1 m3 of melt is given by:

Vg ¼
4
3
Z r3N ð8Þ

where N is the bubble number density at the time
of nucleation. Once the bubbles start to grow, the
total volume of the magma increases and the
number density of bubbles relative to the volume
of magma will decrease if no new bubbles nucle-

ate. Relative to the melt the number density is
constant. The volume fraction of gas vg will be:

vg ¼
Vg

13
Vgb g

b l

� �
þ Vg

ð9Þ

where the term in parentheses is the volume of
melt left after the bubbles have grown. This
term conserves mass. The density of gas within
the bubbles is given by:

b gðzÞ ¼
MH2O PðzÞ

R T
ð10Þ

where MH2O is the molecular mass of water, T is
the temperature of the magma in Kelvin and R is
the gas constant. This assumes an ideal gas and
equilibrium between pressure inside the bubble
and magmastatic pressure.

The density b of the mixture is given by:

b ¼ ð13vgÞ b l þ vg b gðzÞ ð11Þ

The mass fraction of gas exsolved is given by
(Neuberg, 2000):

me
g ¼

b g

b
vg ð12Þ

If just one bubble were to nucleate, it would
continue to grow, if very slowly, forever. In a
magma containing many bubbles, growth will
stop as the concentration of residual water dis-
solved in the melt approaches md

g (given by
Eq. 2). The equations are only applied until
me

g =mMAX
g at which point bubble growth stops

and the mass fraction of gas exsolved remains
constant at mMAX

g . Then the density of the mix-
ture is given by:

1
b ðzÞ ¼

13mMAX
g

b l
þ
mMAX

g

b gðzÞ
ð13Þ

If this value for the equilibrium density and
mMAX

g are substituted into Eq. 12, the volume
fraction of gas exsolved is obtained when equilib-
rium is reached.

The seismic velocity, K, in a gas-liquid mixture
is derived by Neuberg and O’Gorman (2002) as:

K ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13vgÞb

Bl
þ vgb

P

r ð14Þ
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where vg is the volume fraction of gas and Bl is
the bulk modulus of the liquid. The bulk modulus
of the liquid (incompressibility) is large compared
with the pressure P, so the right hand term under
the square root sign dominates as soon as any gas
is exsolved.

The initial magmastatic pressure is used to cal-
culate the volume of gas exsolved for a continu-
ous depth pro¢le. There is an increase in the total
volume of the conduit and the extra volume cre-

ated is piled up above the conduit. A new depth is
calculated for any given initial depth which de-
pends on the change of volume of the magma
below that depth. In this way mass is conserved
due to upward movement of magma in the con-
duit.

The model is now used to describe the behav-
iour of a system using appropriate values taken
from the literature. The following parameters are
used: the density of the melt is 2300 kg m33 (Neu-

Fig. 1. Physical parameter pro¢les for the ‘champagne bottle’ model, with time, in a conduit after a large decompression event.
Dotted lines are plotted at 5-min intervals and the solid line is the ¢nal equilibrium. Initially, there is no gas exsolved in the con-
duit so the density is 2300 kg m33 at all depths, the pressure is greater than 28 MPa at the surface and increases linearly with
depth and the seismic velocity is 2300 m s31 at all depths. These initial conditions at t=0 are marked with a solid line.
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berg, 2000) and the seismic velocity of the melt is
2300 m s31 (Rivers and Carmichael, 1987). This
gives the melt a bulk modulus of 1.21U1010 Pa s.
The temperature of the melt is 1120 K (Devine et
al., 1998). The di¡usivity and the surface tension
are 3U10311 m2 s31 (Lyakhovsky et al., 1996)
and 0.05 N m31 (Lyakhovsky et al., 1996), respec-
tively. The mass fraction of water initially dis-
solved in the melt is 2.5 wt% resulting in a vis-
cosity of 106 Pa s (Spera, 2000). A bubble number
density of 1010 is used which is within the range of
number densities observed in nucleation experi-
ments (Navon and Lyakhovsky, 1998). This value
is much smaller than the typical values of 1014^
1016 in silicic pumice (Cashman et al., 2000).

Fig. 1 shows how the volume fractions of gas,
density, pressure and seismic velocity evolve with
time after a decompression event. The initial ex-
cess pressure before the decompression is so high
that all gas is completely dissolved at all depths in
the conduit. After the decompression event excess
pressure is assumed to be 10 MPa. Initially there
is no gas exsolved anywhere in the conduit, so the
density and seismic velocities are constant for the
melt at all depths. The dotted lines are plotted at
5-min intervals and the solid line is the equilibri-
um solution reached when tCr. The ¢nal excess
pressure acting on the system when equilibrium is
reached is 15.2 MPa. This pressure increase is the
result of the extruded lava piled up on top of the
conduit as a dome or spine.

The bubbles grow, increasing the volume frac-
tion of gas until a new equilibrium is reached.
Then the bubbles stop growing (Fig. 1a). The
bubbles grow more rapidly higher in the conduit
and reach equilibrium in a shorter time despite
having to reach a greater size.

Once the bubbles stop growing there is a de-
crease in the volume fraction of gas exsolved at
any given depth and this decrease continues until
equilibrium has been reached at all depths. This
decrease is not caused by bubbles becoming small-
er but by the upward motion of the magma in the
conduit as the bubbles expand. Then smaller bub-
bles from greater depths ascend taking the place
of the larger bubbles which have in turn moved
further up the conduit.

The density of the magma decreases with the

increasing gas content (Fig. 1b). The maximum
value of density is 2300 kg m33 when no gas is
exsolved. At the top of the conduit the ¢nal den-
sity is 1300 kg m33. Lower in the conduit the
di¡erence between the initial and ¢nal densities
is not as big because less gas has been exsolved.

After an initial large decrease the pressure in-
creases gradually with time as the extruded lava
piles up on top of the conduit (Fig. 1c). This
change is small at the top of the conduit, increas-
ing by 5.2 MPa, since only a small volume of melt
has been extruded. The pressure only changes in
parts of the conduit where bubbles have grown.
Below the nucleation depth there is no change in
pressure at any depth because there is still the
same weight of magma resting on top.

The seismic velocity decreases with time as gas
exsolves (Fig. 1d). It also increases with depth
re£ecting the increasing pressure which holds the
gas in solution. The seismic velocity decreases
very rapidly as soon as bubbles form (Eq. 14)
and once the volume fraction of gas exceeds 0.1,
seismic velocities are as small as 100^500 m s31.
This means the velocity remains small after an
initial rapid decrease. At the top of the conduit
the velocity decreases almost to the equilibrium
value in the ¢rst ¢ve minutes after decompression
because the gas exsolves very rapidly. Lower in
the conduit the equilibrium solution is reached
more slowly. The decrease in seismic velocity at
the nucleation level becomes more dramatic with
time and eventually reaches the equilibrium value.

Fig. 2 shows the volume fraction of gas, den-
sity, pressure and seismic velocity as a function of
time for two depths, 0.5 km and 1 km. At 0.5 km
the bubbles grow more rapidly because of the
larger supersaturation and so the volume fraction
of gas correspondingly increases more rapidly.
More gas is exsolved at 0.5 km than at 1 km
because the pressure is lower. The density de-
creases gradually with time at both depths re£ect-
ing the increasing volume of gas. The pressure
increases due to material piling up. The seismic
velocity at 0.5 km decreases dramatically until
500 s and then only decreases gradually as the
remainder of the gas is exsolved. At 1 km the
change is more gentle because the volume of gas
is much smaller.
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The method described in this paper converges
on the same equilibrium conditions as the melt-
bubble equilibrium described by Neuberg and
O’Gorman (2002), where an iterative approach
is used: starting with the magmastatic pressure,
the equilibrium gas content and densities are cal-
culated as a function of depth. These are then
used to determine a new pressure pro¢le. These
steps are repeated until the system converges. The
iterative approach by Neuberg and O’Gorman
(2002) is replaced in the present method by the
evolution of the magma properties with time.

2.2. Dome collapse

The ‘champagne bottle’ model allows us to ex-
amine the e¡ect of increasing bubble size on seis-
mic velocity and density. However, a very large
initial pressure is required to keep all the water in
solution. For a water concentration of 2.5 wt% all
the water is in solution at pressures greater than
28 MPa. This pressure corresponds to a magma
column of 1.3 km height, the sudden removal of
which presents an unlikely scenario.

Smaller dome collapses are more common and

a collapse of, for example, 200 m would result in a
decrease in the excess pressure of 4^5 MPa. If the
initial pressure is 20 MPa, then the conduit will
already contain some bubbles which will grow
after the decompression event. If the melt be-
comes supersaturated, new bubbles will nucleate
and grow below the initial vesiculation level.
Again, as the concentration of gas in the melt
reaches equilibrium at the new pressure, bubble
growth will decrease and stop.

Using this initial condition we have recalculated
the model. The initial conditions before the de-
compression are found using the method of Neu-
berg and O’Gorman (2002) and are set up for the
required initial pressure. The exsolved gas is dis-
tributed so that the bubble number density, N, is
constant throughout the conduit. After the de-
compression, the bubbles nucleate and grow be-
low the nucleation depth for the initial pressure,
as described using Eqs. 4^8. Above this depth the
equations describing the growth of the bubble
must be modi¢ed so that they describe the growth
of a bubble with initial radius r= r(z)g0.

At depths where bubbles are already present,
the supersaturation pressure vP is rede¢ned as:

Fig. 2. Physical parameters plotted with respect to time for depths of 0.5 km (dotted line) and 1 km (solid line) for the ‘cham-
pagne bottle’ model.
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vP ¼ Pt0ðzÞ3PtðzÞ ð15Þ

where Pt0 (z) and Pt(z) are the pressure at a given
depth z before and after the decompression event,
respectively. The supersaturation pressure is
smaller when there are already bubbles present
because the initial concentration of water in the
melt is lower.

Again the initial growth of the bubbles is ex-
ponential and is described by the equation (Len-
sky et al., 2002):

r ¼ r0 exp
vP t
4 W

� �
ð16Þ

where r0 is the initial radius. At longer times we
use the following approximation:

r2 ¼ r20 þ
2 D b lðCmðzÞ3CiÞ

b g
t ð17Þ

where Cm(z) is the concentration of gas in the
melt before decompression. Cm(z) is depth-depen-
dent because it depends on the initial mass frac-

Fig. 3. Physical parameter pro¢les for the ‘dome collapse’ model, with time, in a conduit after a decompression event from 10 to
5 MPa. The initial equilibrium at 10 MPa is plotted with a solid line, dotted lines are plotted at 10-min intervals after decom-
pression, and the ¢nal equilibrium at lower pressure is also plotted as a solid line.
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tion of gas exsolved at each depth. Once the bub-
ble radius has been calculated the method for ob-
taining the volume of exsolved gas, density and
seismic velocity of the magma is the same as for
the previous model (Eqs. 9^14).

Fig. 3 shows the result for a pressure decrease
from 10 to 5 mMPa. All other parameters are the
same as for the ‘champagne bottle’ model. The
initial conditions are plotted. The parameters are
then plotted at 10-min time intervals, and for the
¢nal equilibrium. Once the bubbles have stopped
growing, the ¢nal pressure acting at the top of the
conduit is 8.2 MPa. Again, the increase is the
result of extruded magma piled on top of the
conduit.

The volume fraction of exsolved gas increases
with time before the system reaches equilibrium
(Fig. 3a). The nucleation depth increases by

200 m. The bubbles between the initial and ¢nal
nucleation depths form after the decompression
event and grow according to Eqs. 4 and 7. As
in the ‘champagne bottle’ model, bubble growth
is initially more rapid, slowing with time as equi-
librium is reached. Above the initial nucleation
depth the change in volume is much smaller be-
cause there is already some exsolved gas and equi-
librium is reached more rapidly because the bub-
bles do not have to grow as much. Below the
initial nucleation depth equilibrium is reached
more slowly.

The density decreases with time (Fig. 3b), con-
sistent with the increasing volume of gas. The
change in the densities before and after the de-
compression are not as big as for the ‘champagne
bottle’ model because gas is already exsolved.

Initially the pressure decreases sharply by

Fig. 4. Physical parameters plotted with respect to time for depths of 1 km (solid line) and 1.7 km (dotted line) for the ‘dome
collapse’ model.
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5 MPa at all depths (Fig. 3d), as a result of the
decompression event. It then increases steadily as
extra material is extruded until equilibrium is
reached at all depths. The increase in pressure is
not as big as for the ‘champagne bottle’ model
because the change in volume is smaller.

Above 1 km depth there is no substantial
change in the seismic velocity (Fig. 3d) because
there is already a large volume of exsolved gas.
Below this depth the e¡ects of the increased bub-
ble size are more noticeable. The seismic velocity
decreases down to the new nucleation level.
At ¢rst the decrease in seismic velocity is large
immediately below the initial nucleation level.
The bubbles grow faster here than deeper in
the conduit because the oversaturation is higher.
This is the same as the trend in the previous mod-
el where the decrease at the top of the conduit
was large immediately after the decompression
event. At the nucleation depth the seismic velocity
continues to fall until the new equilibrium is
reached.

Fig. 4 shows the volume fraction of gas, den-
sity, pressure and seismic velocity against time
for depths of 1 km and 1.7 km. At 1 km bubbles
are present before the decompression and these
start to grow. The volume of gas increases from
the initial value. The density decreases as the
gas is exsolved but the seismic velocity remains
almost constant. At 1.7 km there are no bub-

bles present before the decompression event so
the volume of gas increases from zero. The seis-
mic velocity decreases from the initial value of
2400 m s31.

3. E¡ects of model parameters

In the following we identify the parameters
which control the rate of bubble growth and
therefore the timescale for the gliding lines in
the seismic spectra. The frequencies of the seismic
events depend on the seismic velocity and nucle-
ation depth in the conduit and the timescales with
which these parameters change is important. The
growth of the spine indicates the rate at which the
volume of gas in the conduit changes and is used
to illustrate changes in the rate of bubble growth
and therefore the rates of change of the seismic
parameters. The height of the extruded spine is
shown as a function of time in Figs. 5 and 6
and can be used for an initial comparison with
observations.

The spine is magma extruded to accommodate
the extra volume created by the growth of the
bubbles. It is extruded from the top of the conduit
so it is a gas/melt mixture. However, in the ¢gures
the volume of gas is excluded and just the volume
of extruded melt is plotted. This is to simulate the
extrusion of a dense spine where the gas has al-

Fig. 5. The e¡ect of bubble number density on the growth
rate of the spine.

Fig. 6. The e¡ect of viscosity on the growth rate of the
spine.
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ready escaped as is seen at volcanoes including
Montserrat and Mount Pele¤e (Lacroix, 1904).
The time dependence of the degassing is not mod-
elled and the magma can escape freely from the
top of the conduit, so the spine growth is not
modelled accurately. The height of the spine is
shown rather than the volume extruded, because
the volume is the height multiplied by the cross
sectional area of the conduit. The area is constant
as expansion is only allowed vertically. If the
height is plotted the results apply to a conduit
of any diameter.

3.1. E¡ect of bubble number density

To examine the e¡ect of the number density of
nucleated bubbles, simulations were run with ini-
tial number densities of 109 m33, 1010 m33 and
1011 m33. The initial values of the other parame-
ters are the same as for the ‘champagne bottle’
model and kept constant for each simulation.
The results for the ‘champagne bottle’ model
with a nucleation number density of 1010 mm33

are identical to those plotted in Fig. 1.
Fig. 5 shows the e¡ect of di¡erent number den-

sity of bubbles on the growth of the spine. Each
simulation shows the same pattern of growth: in-
itial rapid growth of the spine as bubbles grow at
all depths in the conduit, followed by a slower
extrusion as equilibrium is reached deeper in the
conduit. Finally, growth of the spine ceases when
equilibrium is reached at all depths and there is
no further bubble growth.

When the number density of bubbles increases,
the initial growth of the spine is more rapid and
equilibrium is reached more quickly. For the
‘champagne bottle’ model all the spines reach
the same ¢nal height because the ¢nal gas concen-
trations are identical. The rate at which the bub-
bles grow is the same for di¡erent number den-
sities, but the rate at which the volume of
exsolved gas grows increases with the number of
bubbles. Thus the equilibrium concentration is
reached more rapidly.

Fig. 5 also shows the results for the height of
the spine as a function of time for the ‘dome
collapse’ model simulated in ¢gure dome. For a
decompression of only 5 MPa the ¢nal height of

the spine is less than that for the ‘champagne
bottle’ model because with a smaller decompres-
sion not as much gas comes out of solution.

If the results are compared with those for the
‘champagne bottle’ model with the same number
density of bubbles, the timescales for the growth
of the spine are very similar. In both cases the
spines stop growing after 4000 s. For di¡erent
sizes of decompression events the time for reequi-
libration is very similar if all other parameters are
kept the same. The transition from rapid to slow
growth of the spine is more gradual for the
‘champagne bottle’ model. This is because for
the ‘dome collapse’ model the supersaturation
after decompression is a constant up to the initial
equilibrium depth, so equilibrium is reached al-
most simultaneously at all depths in the conduit.
Until this time there is rapid growth of bubbles
throughout the conduit. After this there is only
growth below the initial equilibrium depth and
the volume change is very small, so the spine
grows much more slowly. For the ‘champagne
bottle’ model the supersaturation decreases grad-
ually with depth, so equilibrium is reached grad-
ually with depth and the transition is smoother.
Bubble number density controls the time it takes
after decompression before the new equilibrium is
reached.

3.2. E¡ect of viscosity

Fig. 6 shows the e¡ect of melt viscosity on the
growth of the spine, all other parameters being
kept constant. Viscosity is very dependent on
the concentration of water in the melt and the
viscosity of rhyolite at 900‡C can be as high as
108 Pa s if the water concentration is less than 0.1
wt% (Shaw, 1972; Hess and Dingwell, 1996).

A change in the viscosity does not change the
equilibrium concentration so the ¢nal size of the
bubbles is the same. Viscosity is important when
the bubbles are small and can delay bubble
growth as discussed by Sahagian et al. (1994)
and Sparks (1994). For a very high viscosity of
108 Pa s this time delay can be seen clearly: bub-
ble growth is delayed by almost 200 s. However,
for viscosities of 106 and 107 Pa s the time delay is
small. Over long timescales the results look very
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similar and the viscosity does not have a large
e¡ect.

4. Limitations of the model

The solutions for bubble growth adopted in this
paper are too simpli¢ed to fully describe the phys-
ical system. Lyakhovsky et al. (1996) derive Eq. 7
as an analytical solution describing bubble growth
when tCr if the supersaturation is assumed to
be constant. With a high number density of bub-
bles the concentration of water remaining in the
melt decreases with time, leading to a decrease in
the supersaturation. The bubble would therefore
grow more slowly at longer time periods than
described by the equation.

Lensky et al. (2002) show that the analytical
solution is a good approximation to the numerical
solution when t6 dd where dd is the viscous time-
scale:

d d ¼ 1
D

3
4ZN

� �2
3 ð18Þ

For a number density of 1010 m33 the viscous
timescale is 2700 s. In the calculations the bubbles
stopped growing after 3800 s, so only during the
last 1000 s would the growth be slower. For a
number density of 109 m33 and 1011 m33 the vis-
cous timescale is 13 000 s and 600 s, respectively.
The viscous timescale is approximately 70% of the
total time in which the bubbles grow. After this
the solutions will overestimate the amount of ex-
solved gas and equilibrium is reached more rap-
idly and the bubbles should be modelled with a
time-dependent supersaturation.

The growth of the spine is used to illustrate
how rapidly the bubbles are growing. For a num-
ber density of 1010 m33, the spine grew 210 mm in
35 min. This number is hard to compare with
observations; at Montserrat it is rare that visibil-
ity is good enough to measure the growth, and
erosion of the spine material is continuous. How-
ever, the growth rate obtained from the model is
probably more rapid than in reality. Modelling
the spine growth accurately is beyond the scope
of our model because no £ow dynamics of the
extruding magma are included. The extra material

can escape freely. However, this frictionless es-
cape is partly compensated by keeping the bubble
number density low.

5. Conclusions

We can model pro¢les of physical parameters in
a magma ¢lled conduit to obtain a time history
for the re-equilibration of the system after a de-
compression event. For both the ‘champagne bot-
tle’ model and the ‘dome collapse’ model the vol-
ume fraction of exsolved gas increases after a
decompression event resulting in a change in the
pro¢les of the density and the seismic velocity.
The density decreases signi¢cantly throughout
the conduit in both models. The ‘champagne bot-
tle’ model has a large decrease in the seismic
velocity throughout the conduit. In the ‘dome
collapse’ model, the nucleation level moves down-
ward and the part of the conduit with slow seis-
mic velocities extends to greater depths. Where
bubbles were already present, above the initial
nucleation level, the seismic velocities are almost
unchanged.

Timescales derived from these models are sim-
ilar to those observed for gliding lines. At Mont-
serrat they occur over a 30-min period (Neuberg
et al., 2000), corresponding to the timescale for a
bubble number density of 1010. The timescale is
the same for the ‘champagne bottle’ model and
the ‘dome collapse’ model, so the initial condi-
tions are not very important.

Viscosity is an important factor. It can delay
the onset of the changes in frequency. However,
after a dome collapse seismic signals may be dom-
inated by signals from pyroclastic £ows and the
gliding spectral lines cannot be observed until
after the pyroclastic £ows run out. The small
time delay would go unnoticed.
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