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Abstract

Shortly after his appointment to the first geophysical professorship (1895 at the Jagiellonian University of Cracow), Rudzki

had published two papers in which he made a strong case for anisotropy of crustal rocks [Beitr. Geophys. 2 (1898); Bull. Acad.

Sci. Crac. (1899)]. He had solved the Christoffel equation for transversely isotropic media in terms of what we today would call

the ‘‘slowness surface’’. Rudzki regarded this as the representation of the wave surface in line coordinates. The conversion to

point coordinates lead to an equation of 12th degree. Rudzki had determined a few points, but this was not sufficient to obtain

an impression of the wavefront. Costanzi [Boll. Soc. Sismol. Ital. 7 (1901)] had suggested to simplify the coordinate conversion

by expressing the solution of the Christoffel equation in a parameter form. The first part of the current paper describes the

implementation of this idea. For the first time, the cusps in the wave surface became visible. The results of this first part have

been discussed and expanded by Helbig [Beitr. Geophys. 67 (1958) 177; Bull. Seismol. Soc. Am. 56 (1966) 527; Helbig, K.,

1994. Foundations of Anisotropy for Exploration Geophysics. Pergamon] and Khatkevich [Isv. Akad. Nauk. SSSR, Ser. Geofiz.

9 (1964) 788]. In a second part, Rudzki applied the ideas to orthorhombic media. The process is straightforward: the elements of

the characteristic determinant are of order 2 in the three line coordinates (the three slowness components), with squares of

coordinates in the diagonal elements and products of two coordinates in the off-diagonal elements. The elements are easily

manipulated so that they are expressed in terms of squares only. Next, the determinant is expanded in terms of rows. This leads

to three (equivalent) expressions. The vanishing of any of the three expressions means that the characteristic determinant

vanishes, i.e., it corresponds to a solution of the Christoffel equation. Each of the equations can be used to determine one of the

sheets of the line coordinates of the wave surface (point coordinates of the slowness surface). To this end, it is expressed in

terms of two parameters, which have been chosen strictly for mathematical convenience. After conversion of the line

coordinates to point coordinates (formation of the envelopes), one obtains a parameter expression for the wave surface. Until

today, the second part of the Rudzki’s paper has not been closely studied. However, a blind test of the equations showed that

they indeed describe the wave surface of orthorhombic media. The final sections discuss a few interesting aspects, among them

the stability conditions for orthorhombic media and the condition under which a transversely isotropic medium transmits pure

P- and S-waves.
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� �
1. Introduction

I have discussed the shape of the elastic wave [front]

in a transversely isotropic medium already in 1898 and

1899 (Rudzki, 1898, 1899), but could not finish the

investigation. I came across an equation of degree 12 of

such difficulty that I had to be content with approximate

conclusions. In the subsequent text, these older papers

will be called the ‘‘first paper’’ and the ‘‘second paper’’.

In a ‘‘résumé’’ to my investigation on the propa-

gation of earthquake waves, Costanzi (1901) has

shown that it should be relatively simple to obtain a

parametric representation of the curve of degree 12. I

give this representation in the present paper. It will be

seen that the curve of degree 12 is more complicated

than Costanzi assumed: with the numerical values I

used in my earlier papers, one of the three branches of

the curve is certainly not an oval. Thus I had been

close to the truth; but with the cumbersome approx-

imations, I could not determine the characteristic

properties of the curve exactly.

Obviously, some of the earlier material has to be

repeated, but more than three quarters of the present

paper are completely new. New is, e.g., the investi-

gation of the wave surface of a medium with three

planes of symmetry in Sections 6–10.
2. Elastic waves in a transversely isotropic medium

A medium is called ‘‘transversely isotropic’’

(Love, 1906), if all directions parallel to a given plane

are equivalent. If this plane is chosen as the xy plane,

the elastic potential W has the following form (I use

Love’s notation throughout. In the earlier papers, I had

used a different notation):

2W ¼ c11ðexx þ eyyÞ2 þ c33e
2
zz þ 2c13ezzðexx þ eyyÞ

� 4c66exxeyy þ c44ðe2xz þ e2yzÞ þ c44e
2
xy; ð1Þ

where

exx ¼
Bu

Bx
;

eyz ¼
Bw

By
þ Bv

Bz

� �
;

eyy ¼
Bv

;

By
exz ¼
Bu

Bz
þ Bw

Bx
;

ezz ¼
Bw

Bz
;

exy ¼
Bv

Bx
þ Bu

By

� �
:

Of course, u, v, w are displacements and c11, c33, . . .
are elastic constants. We see that a transversely

isotropic medium is characterized by five independent

elastic constants.

The stress components are

Xx ¼ c11exx þ ðc11 � 2c66Þeyyþ c13ezz;

Yy ¼ ðc11 � 2c66Þexx þ c11eyyþ c13ezz;

Zz ¼ c13exx þ c13eyy þ c33ezz; ð2Þ
Zy ¼ c44eyz;

Xz ¼ c44exz;

Yx ¼ c66exy:

Now we write the differential equation for oscillations

of small amplitude:

q
d2u

dt2
¼ BXx

Bx
þ BXy

By
þ BXz

Bz
;

q
d2v

dt2
¼ BYx

Bx
þ BYy

By
þ BYz

Bz
;

q
d2w

dt2
¼ BZx

Bx
þ BZy

By
þ BZz

Bz
; ð3Þ

divide everywhere through the density q, write for

simplicity c11 instead of c11/q, c33 instead of c33/q,
etc., and substitute the particular integral

u ¼ Akr; v ¼ Alr; w ¼ Amr;
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with

r ¼ eiðlxþmyþnzÞ;

where A is an arbitrary constant (magnitude of the

displacement); k, l, m the direction cosines of the

displacement; l, m, n the direction cosines of the wave

normal; and V the velocity of propagation of the

oscillations.

In this way, we obtain the equations:

ðH11 � V 2Þk þ H12l þ H13m ¼ 0;

H12k þ ðH22 � V 2Þl þ H23m ¼ 0;

H13k þ H23l þ ðH33 � V 2Þm ¼ 0; ð4Þ

where

H11 ¼ c11l
2 þ c66m

2 þ c44n
2;

H22 ¼ c66l
2 þ c11m

2 þ c44n
2;

H33 ¼ c44l
2 þ c44m

2 þ c33n
2;

H12 ¼ ðc11 � c66Þlm;

H12 ¼ ðc13 þ c44Þln;

H12 ¼ ðc13 þ c44Þmn: ð5Þ

Now we follow Costanzi (1901); we divide Eq. (4)

by V2 and set

l

V
¼ n;

m

V
¼ g;

n

V
¼ f:

(Costanzi uses a substitution that makes n, g, f
‘‘Plücker’’ coordinates, i.e., l/V=�n, etc. I find it more

convenient to set l/V=n). [In this form, n, g, f are the
components of the slowness vector]. This transforms

Eq. (4) into

ðh11 � 1Þk þ h12l þ h13m ¼ 0;

h12k þ ðh22 � 1Þl þ h23m ¼ 0;

h13k þ h23l þ ðh33 � 1Þm ¼ 0; ð4bisÞ

where

h11 ¼ c11n
2 þ c66g

2 þ c44f
2;

h22 ¼ c66n
2 þ c11g

2 þ c44f
2;

h33 ¼ c44n
2 þ c44g

2 þ c33f
2;

h12 ¼ ðc11 � c66Þng;

h13 ¼ ðc13 þ c44Þnf;

h23 ¼ ðc13 þ c44Þgf: ð5bisÞ

Eq. (4 bis) can be satisfied only if the determinant

of the coefficients of k, l, m vanishes. The equation

thus obtained, i.e.,

h11 � 1 h12 h13

h12 h22 � 1 h23

h13 h23 h33 � 1

����������

����������
¼ 0: ð6Þ

is the equation of the wave surface [If the n, g, f are

considered as point coordinates, Eq. (6) is the equa-

tion of the slowness surface. Rudzki regards n, g, f as

line coordinates. In this form, they describe all tan-

gent planes of the wave surface]. Eq. (6) can be

simplified significantly, because obviously the wave

surface is a surface of revolution about the z-axis. It is

sufficient to investigate a meridional curve, e.g., in the

xz plane. We set

m ¼ 0; g ¼ 0;
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and obtain immediately

h12 ¼ h23 ¼ 0;

which lets Eq. (6) decouple into two equation. The

first has the form:

h22 � 1 ¼ 0;

i.e.,

c66n
2 þ c44f

2 � 1 ¼ 0; ð7Þ

The second has the form

h11 � 1 h13

h13 h33 � 1

������
������ ¼ 0;

i.e.,

ðc11n2 þ c44f
2 � 1Þðc44n2 þ c33f

2 � 1Þ � b2n2f2 ¼ 0;

ð8Þ

where for simplicity’s sake we have set

c13 þ c44 ¼ b:

Eq. (7) represents a curve of class 2 (a conical

section), Eq. (8) a curve of class 4. Curve (8) is of

degree 12, as I have found in my second paper [the

degree of a curve is given by the number of inter-

sections of a straight line; the class of a curve is given

by the number of tangents from a point]. From the

well-known Plücker relations, it follows that curve (8)

has neither points of inflection nor double tangents,

but [up to] 28 double points and 24 cusps. The curve

is of genus 3 and not rational. One sees immediately

that both curves (7) and (8) are symmetric with

respect to the x- and z-axes.
3. Parametric representation of curve (7)

We now follow Costanzi (1901) to obtain the

parametric representation of the curves (7) and (8).

The wave surface is nothing but the envelope of all

planes

lxþ myþ nz ¼ V ðt � t0Þ;
where

l2 þ m2 þ n2 ¼ 1

and the time interval (t�t0) has a fixed value. If one

sets (t�t0)=1 and divides the equation of the planes by

V, one can write:

xn þ yg þ zf ¼ 1:

[x, y, z are the coordinates of the wave surface, i.e., the

components of the wave velocity vector]. In this

particular case, we only need the equation of the

meridional curve in the plane y=0 (g=0) that is the

envelope to the lines xn+zf=1.
One knows from the theory of curves that the

envelope is determined by the system

xn þ zf ¼ 1

x
Bn
Bu

þ z
Bf
Bu

¼ 0;

9>=
>; ð9Þ

where u is a parameter. If one solves the system (9) for

x and z, one obtains:

x ¼
Bf
Bu

n
Bf
Bu

� f
Bn
Bu

; z ¼
� Bn
Bu

n
Bf
Bu

� f
Bn
Bu

; ð10Þ

and it only remains to represent n and f in terms of a

single parameter (up to here this is a recapitulation of

my older papers and of Costanzi (1901). What follows

is new).

Let us first look at Eq. (7). One can write it as

c66n
2 ¼ u2; c44f

2 ¼ 1� u2:

It follows that

n ¼ uffiffiffiffiffiffi
c66

p ; f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
ffiffiffiffiffiffi
c66

p ;

Bn
Bu

¼ 1ffiffiffiffiffiffi
c66

p ;
Bf
Bu

¼ �1ffiffiffiffiffiffi
c66

p
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p ;

and

x ¼ ffiffiffiffiffiffi
c66

p
u; z ¼ ffiffiffiffiffiffi

c44
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2:
p
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That is the parametric representation of the ellipse

x2

c66
þ z2

c44
¼ 1: ð11Þ

Thus, the first sheet of the wave surface is an ellipsoid

of rotation with the semiaxes Mc66 and Mc44, as I had

shown in a different way already in my first paper.
4. Parametric representation of curve (8)

Eq. (8) is identical with the equation

h11 � 1 bn2

bf2 h33 � 1

������
������ ¼ 0; ð12Þ

which can be separated in two ways. First, we write

h11 � 1

bf2
¼ bn2

h33 � 1
¼ u; ð13Þ

and second

h11 � 1

bn2
¼ bf2

h33 � 1
¼ � 1

u1
: ð14Þ

The system (13) gives the second and the system (14)

the third branch of the meridional curve. If one

substitutes h11 and h22 from Eq. (5 bis) and solves

Eqs. (8) and (9), respectively, for n2 and f2, one

obtains from Eq. (8)

n2 ¼ ðc33 � c44Þuþ bu2

bc44 þ ðc11c33 � c244 � b2Þuþ bc44u2

f2 ¼ bþ ðc11 � c44Þu
bc44 þ ðc11c33 � c244 � b2Þuþ bc44u2

9>>>=
>>>;

ð15Þ

and from Eq. (14)
n2 ¼ ðc33 � c44Þu1 þ bu21
bc33 þ ðc11c33 � c244 þ b2Þu1 þ bc11u

2
1

f2 ¼ bþ ðc11 � c44Þu1
bc33 þ ðc11c33 � c244 þ b2Þu1 þ bc11u

2
1

9>>>>=
>>>>;

ð16Þ
First, we insert into Eq. (10) the values for n and f that
follow from Eq. (15). For brevity, we write

c11 � c44 ¼ e; c33 � c44 ¼ g; c11c33 � b2 ¼ R2

and obtain

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

guþ bu2

bc44 þ ðR2 � c244Þuþ bc44u2

s
c44 þ

R2

g þ 2buþ eu2

� �

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ eu

bc44 þ ðR2 � c244Þuþ bc44u2

s
c44 þ

R2u2

g þ 2buþ eu2

� �
9>>>>=
>>>>;

ð17Þ

This is the required parametric representation of the

second branch of the wave surface. [There seems to be

a slip of the pen: it follows from Eq. (15) that the

second term in the denominator of the radicand is

c11c33�c44
2�b2p R2�b2. The error does not invalidate

any conclusion, but affects the detailed shape of the

wave surface and the numerical values in Table 1 (in

Rudzki’s version, the cusps are exaggerated). In

Helbig (1958), the calculations were repeated with

the correct expressions.]

So little is known about the elastic constants of

rocks (moreover, one should presumably distinguish

between static and dynamic constants) that we are

forced to take an arbitrary example. As a guideline,

we take the elastic constants of beryl. According to W.

Voigt (in his units), beryl has the constants c11=27460,

c33=24090, c44=6660, c13=6740, c66=8830. We as-

sume (in different units) round values that stand in

relations close to those of the constants of beryl. Thus,

we deal with an arbitrary ideal medium that is

somewhat similar to beryl and that has the following

constants: c11=10, c33=8, c44=c13=2. We have

b=c 1 3+c 4 4=4 , e=c 11�c 4 4=8 , g=c 3 3�c 4 4=6 ,

R2=eg�b2=32. c66 does not occur in Eq. (17).

With these numerical values, one finds after a few

reductions

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6uþ 4u2

2þ 15uþ 2u2

r
1þ 8

3þ 4uþ 4u2

� �

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 8u

2þ 15uþ 2u2

r
1þ 8u2

3þ 4uþ 4u2

� �
9>>>=
>>>;

ð18Þ

To obtain the curve in a quadrant, it is sufficient to let

u vary between 0 and l. For u, one cannot use

negative values, since then either x or z or both would

be imaginary. Coordinates in other quadrants are

obtained by mere changes of the algebraic sign.



Table 1

u x z

0.000 0.0000 1.4142

0.001 0.1998 1.4104

0.01 0.9646 1.3777

0.1 1.4180 1.1949

0.2 1.5627 1.1348

0.25 1.5731 1.1295

0.3 1.5663 1.1334

0.4 1.5274 1.1575

0.5 1.4757 1.1926

1.0 1.2531 1.3727

2.0 1.0846 1.5445

3.0 1.0544 1.5829

3.5 1.0554 1.5815

4.0 1.0608 1.5732

4.5 1.0686 1.5608

5.0 1.0775 1.5457

6.0 1.0966 1.5114

10.0 1.1638 1.3707

20.0 1.2553 1.1193

100.0 1.3744 0.5763

l 1.4142 0.0000
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We give the coordinates of a few points in the first

quadrant together with the corresponding values of the

parameter u.

From these values and Fig. 1 , one sees that the

curve has four double points and eight cusps. For a

cusp to exist, simultaneously

dx

du
¼ 0 and

dz

du
¼ 0

must hold. If one combines this condition with Eq.

(10), one finds that both condition reduce to the

single equation
Fig. 1. Left, from Rudzki (1911).
df
du

d2n
du2

� dn
du

d2f
du2

¼ 0 ð19Þ

Substitution into Eq. (19) of n and f from Eq. (14),

one obtains after a few obvious operations

a0u
6 þ a1u

5 þ a2u
4 þ a3u

3 þ a4u
2 þ a5u

1 þ a6 ¼ 0;

ð20Þ
where

a0 ¼ e3 þ e2
R

c44
;

a1 ¼ 6be2;

a2 ¼ 3e eg þ 4b2 � R2

c44
ðeþ gÞ � R4

c244

� �
� 3eg

R2

c44
;

a3 ¼ 12egbþ 8b3 � 4R2

c44
ðeþ gÞ eg þ b2

b

� 2R2 2eg þ b2

b
;

a4 ¼ 3g eg þ 4b2 � R2

c44
ðeþ gÞ � R4

c244

� �
� 3eg

R2

c44
;

a5 ¼ 6bg2;

a6 ¼ g3 þ g2
R

c44
:

[The factor 2 in the last term of the expression for a3
should be 1].
Right, from Helbig (1958).
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In these equations, the former abbreviations have

been kept: b=c13+c44, e=c11�c44, g=c33�c44,

R2=eg�b2.

Eq. (20) is of degree 6 in u; thus, it can have [at

most] six distinct roots. In view of the symmetry,

each of the roots corresponds to four cusps. Thus,

the curve has [not more than] 24 cusps, as we

found earlier from Plücker’s equations. With the

assumed numbers and after division by 8, one finds

a0=a1=192, a2=1392, a3=3232, a4=�1116, a5=108,

a6=99. Further, one finds that the equation has only

two positive real roots, viz, u1=0.2505 and

u2=3.159. To these two real positive roots of Eq.

(20) thus correspond eight real cusps of the curve.

The remaining roots correspond to imaginary cusps,

since the other branch has no cusps (compare

Section 5).

These are the conditions for the numerical

example. But another case is possible: If Eq. (20)

has no real positive roots, then not only has the

branch no cusps, but also no double points if Eq.

(20) has no real roots between u=0 and u=l, then

dx/du and dz/du cannot change sign. x increases

monotonously and z decreases monotonously, so

that neither x nor z can assume the same value a

second time.

The case R=eg�b2=0 is worth noting. In this

case, Eq. (20) reduces to

ð
ffiffiffi
e

p
uþ ffiffiffi

g
p Þ6 ¼ 0;

which certainly has not real positive root. The

branch of the curve degenerates to a circle:

x2 þ z2 ¼ C44;

i.e., the corresponding wave surface becomes a

sphere. The propagation velocity has in all direc-

tions the same value: Mc44. In this case, Eq. (8)

decouples into two equations, viz.,

c44ðn2 þ f2Þ � 1 ¼ 0 and c11n
2 þ f233 � 1 ¼ 0:

R=0 occurs, e.g., if the medium propagates

dilatational oscillations separately from the torsional
oscillations [pure longitudinal and transverse waves

in all directions]. For a transversely isotropic

medium, that happens if

c33 ¼ c11 and c13 ¼ c11 � 2c44:

With these conditions, one has simultaneously

g=e=b, and thus R=0. In this case, the number of

independent elastic constants is reduced from five to

three; however, in general, R=0 implies only the

reduction of the number of constants from five to

four.

Of course, it is possible that Rp0 and all five

constants are independent, but that nevertheless Eq.

(20) has no real positive root. In this case, the

second branch of the curves is a smooth oval.

5. The third branch of the meridian curve.

Algebraic signs of the elastic constants

We take the values of and f2 from Eq. (16),

substitute them into Eq. (10), and obtain

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gu1 þ bu21
bc33 þ ðc11c33 þ b2 � c244Þu1 þ bc11u

2
1

s
c11 �

R2

g þ 2bu1 þ eu21

� �

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ eu1

bc33 þ ðc11c33 þ b2 � c244Þu1 þ bc11u
2
1

s
c33 �

R2u21
g þ 2bu1 þ eu21

� �
9>>>>=
>>>>;

ð21Þ

As in the previous section, one needs only the curve

in one quadrant. If one uses the same values for u as in

Section 4, one obtains the following triplets (Table 2).

Thus, this third branch of the curve is an oval

without cusps and double points, looking somewhat

like an ellipse. In the same manner, as for the second

branch, we can form the equation

f
d2n
du2

� n
d2f
du2

¼ 0

Of course, it is of degree 6 in u1

a0u
6
1 þ a1u

5
1 þ a2u

4
1 þ a3u

3
1 þ a4u

2
1 þ a5u

1
1 þ a6 ¼ 0;

ð22Þ



Table 2

u x z

0 0.0000 2.8284

1/100 0.2029 2.1860

1/10 0.6634 2.7017

1/4 1.0878 2.5082

1/3 1.2694 2.4041

1/2 1.5635 2.2111

2/3 1.7903 2.0418

10/11 2.0366 1.8365

1 2.1102 1.7706

10/9 2.1892 1.6970

2 2.5684 1.2984

4 2.8528 0.9146

10 3.0369 0.5715

l 3.1623 0.0000

M.P. Rudzki / Journal of Applied Geophysics 54 (2003) 165–183172
but the coefficients a0, etc. have now another meaning,

viz.:

a0 ¼ e3 � e2
R

c33
;

a1 ¼ 6be2;

a2 ¼ 3e eg þ 4b2 þ R2 e

c11
þ g

c33

� �
� R4

c11c33

� �

þ 3R2eg

c33
;

a3 ¼ 12egbþ 8b3 þ 4R2 e

c11
þ g

c33

� �
eg þ b2

b

� 2R4

c11c33

2eg þ b2

b
;

a4 ¼ 3g eg þ 4b2 þ R2 e

c11
þ g

c33

� �
� R4

c11c33

� �

þ 3R2eg

c11
;

a5 ¼ 6bg2;

a6 ¼ g3 � g2
R

c11
:

The roots of Eq. (12) must be closely related to

the roots of Eq. (20). Each equation must be a

transform of the other, since the entire curve (8), i.e.,

the second and the third branch together, have 24

imaginary and real cusps. But both Eqs. (20) and (22)

have six roots, and in view of the symmetry each

root corresponds to four cusps. Thus, a single

equation is sufficient to determine all real and

imaginary cusps (in our example, the two positive

roots of Eq. (20) correspond to two negative roots of

Eq. (22)). By the way, for R=0, Eq. (22) reduces to

the same equation

ð
ffiffiffi
e

p
u1 þ

ffiffiffi
g

p Þ6 ¼ 0;

as Eq. (20). At the same time, the third branch

reduces to an ellipse with the semiaxes Mc11 and

Mc33.

With the numerical values for the constants used

earlier, one obtains—after removal of a common

factor:

a0 ¼ 160; a1 ¼ 960; a2 ¼ 2592; a3 ¼ 3296;

a4 ¼ 1962; a5 ¼ 540; a6 ¼ 63:

Thus Eq. (22) has in this case certainly no positive

real root, and thus the third branch of the curve has

certainly neither cusps nor double points, a result that

confirms the statement made in connection with

Table 2. But the coefficients of Eq. (22) are all

positive not only in this special case, but one can

state generally that this occurs frequently. We shall

give the reasons for this.

First, the elastic constants must satisfy certain

inequalities that follow from the condition that the

elastic potential must be always positive. Thus, the

coefficients of the squares

e2yz; e2zx; e2xy

must be positive, i.e., one must have

c44 > 0; c66 > 0:
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Further, the quadratic form

c11ðexx þ eyyÞ2 þ c33e
2
zz þ 2c13ezzðexx þ eyyÞ

� 4c66exxeyy

must be always positive. It is known from the theory

of orthogonal substitutions that this form can be

converted to the sum of squares

k1e
2
x1x1

þ k2e
2
y1y1

þ k3e
2
z1z1

Thus, the three coefficients k1, k2, k3 must be real

and positive. These coefficients are the roots of the

equation

c11 � k c11 � 2c66 c13

c11 � 2c66 c11 � k c13

c13 c13 c33 � k

����������

����������
¼ 0

After expanding and solving of this equation, one

finds

k1 ¼ 2c66;

k2 ¼ c11 � c66 þ
1

2
c33

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 � c66 þ

1

2
c33

� �2

�2ðc33ðc11 � c66Þ � c213Þ

s
;

k3 ¼ c11 � c66 þ
1

2
c33

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 � c66 þ

1

2
c33

� �2

�2ðc33ðc11 � c66Þ � c213Þ

s
:

We have found already that c66 is positive; thus we

need only determine the conditions under which k2
and k3 are positive. Since the function under the
square root is essentially positive- it can be written in

the form

c11 � c66 �
1

2
c33

� �2

þ2c213;

-there only remain the conditions

c11 � c66 þ
1

2
c33 > 0 and c33ðc11 � c66Þ � c213 > 0:

These can be satisfied if and only if

c33 > 0 and c11 � c66 > 0:

But since c66>0, there also must be c11>0.

Finally, one obtains the following conditions:

c44 > 0; c66 > 0 c11 > 0; c33 > 0;

c11 � c66 > 0; c33ðc11 � c66Þ � c213 > 0:

Only the constant c13 and therefore also b=c13+c44
can be negative.

Further information is based on experience.

Generally, one has not only

c11 � c66 > 0;

but also

c33 � c66 > 0; c11 � c44 > 0; c33 � c44 > 0:

Thus, also e and g are generally positive. Further,

experience shows that b and R2 are frequently

positive. But if e, g, b, R2, c44, c33, and c11 are

positive, all coefficients of Eq. (22) are positive. This

is easily seen if one converts the coefficients that

contain negative terms into sums of positive terms.

One can write

a0 ¼
e2

c44
ðec44 þ b2Þ;
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a2 ¼ 3e eg þ 4b2 þ R2

c11c33
ðeg þ c44ðeþ gÞ þ b2Þ

� �

þ 3R2eg

c33
;

a3 ¼ 12egbþ 8b3 þ 2R2

c11c33b

� ð2e2g2 þ 5egb2 þ b4 þ 2c44ðeþ gÞ
� ðeg þ b2ÞÞ;

a4 ¼ 3g eg þ 4b2 þ R2

c11c33
ðeg þ c44ðeþ gÞ þ b2Þ

� �

þ 3R2eg

c11
;

a6 ¼
g2

c11
ðgc44 þ b2Þ:

[The above argument is not conclusive. It is correct

that all terms appear to contain only squares, but

R2=(c11�c44)(c33�c44)�(c13+c44)
2 is a square only

for reasons of dimension. Nothing general can be

said about its algebraic sign].1
1 Translator’s note on Section 5: Costanzi’s (1901) suggestion

to express the solution of the Christoffel equation in a parametric

form was a significant advance. At a time when all numerical

calculation had to be done by hand, the standard expressions were

too complicated for a determination of the wave surface. When

Rudzki followed the suggestion, he made considerable progress in

the investigation of seismic anisotropy.

In hindsight, it is a pity that the parameter was established only

formally (see Eqs. (12) and (13)), because in this way, the physical

meaning of the parameter u got lost. It is easy to see that Rudzki’s

parameters are u=tan b tan a and u1=tan b cot a, where b is the angle

between wave normal and axis of symmetry and a is the angle

between polarization direction and the axis of symmetry. For u=u1,

the propagation direction is the same and the polarization direction

differs by 90j, as it should for qP- and qS waves (see Helbig, 1966).

Moreover, as Khatkevich (1964) pointed out, the restriction to

positive values of u is arbitrary. Some negative parameter values

make indeed one of the slowness components imaginary (and thus

tan b imaginary), but these values refer to evanescent waves. There is

always a range of negative parameters that yield qS waves if inserted

into the qP equation, and qP waves if inserted into the qS equation.

While it is more convenient to use different equations for the two

wave types, the joint formulation highlights the close relationship

between the two wave types with in-plane polarization. For a

thorough discussion of these aspects, see Chapter 6 of Helbig (1994).
6. The wave surface in a medium with three

planes of symmetry

The elastic potential of such a medium contains

nine (elastic) constants. It has the form

2W ¼ c11e
2
xx þ2c12exxeyy þ2c13exxezz

þc22e
2
yy þ2c23eyyezz

þc33e
2
zz þc44e

2
yz þ c55e

2
xz þ c22e

2
xy

ð23Þ

The stress components are

Xx ¼ c11exx þ c12eyy þ c13ezz;

Yy ¼ c12exx þ c22eyy þ c23ezz;

Zz ¼ c13exx þ c23eyy þ c33ezz;

ð24Þ
Zy ¼ Yz ¼ c44eyz;

Xz ¼ Zx ¼ c55exz;

Yx ¼ Xy ¼ c66exy:

The meaning of the symbols exz, etc. was already

given in Section 2. With operations as in Section 2,

one successively obtains equations that are similar to

Eqs. (3), (4), and (4 bis), but with a different

meaning of the symbols H11 . . . and h11 . . . H11 need

not be given, but the new meaning of h11 . . . must

be listed:

h11 ¼ c11n
2 þ c66g

2 þ c55f
2;

h22 ¼ c66n
2 þ c22g

2 þ c44f
2;

h33 ¼ c55n
2 þ c44g

2 þ c33f
2;

h12 ¼ ðc12 þ c66Þng ¼ cng;

h13 ¼ ðc13 þ c55Þnf ¼ bnf;

h23 ¼ ðc23 þ c44Þgf ¼ agf: ð25Þ

Further, we obtain the wave surface (6) in the same

way as in Section 2. However, we write these
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equations in slightly different form by substituting

for h12, h13, and h23 the expressions from Eq. (25).

In this way, we obtain the equation of the wave

surface in the form

h11 � 1 cng bnf

cng h22 � 1 agf

bnf agf h33 � 1

����������

����������
¼ 0; ð26Þ

or equivalently

h11 � 1 cg2 bf2

cn2 h22 � 1 af2

bn2 ag2 h33 � 1

����������

����������
¼ 0; ð27Þ

The entire analysis in the following rests on the

identity of Eqs. (26) and (27), since Eq. (27) leads to

much simpler expressions. Eq. (27) can be written in

three ways

ðh11 � 1ÞM11 þ cg2M12 þ bf2M13 ¼ 0

cn2M21 þ ðh22 � 1ÞM22 þ af2M23 ¼ 0

bn2M31 þ ag2M23 þ ðh33 � 1ÞM33 ¼ 0

9>>>>=
>>>>;

ð28Þ

where M11 . . . are the minors of the determinant in

Eq. (27). Each of the three equations in Eq. (28) can

be used to determine another sheet of the wave

surface. Take, e.g., the first equation. We replace it

by the system of three equations

M11 þM12uþM13v ¼ 0

cg2 � ðh11 � 1Þu ¼ 0

bf2 � ðh11 � 1Þv ¼ 0

9>>>>=
>>>>;

ð29Þ

which give the parametric representation of the first

sheet. Similarly, the system replacing Eq. (28.2) is

the parametric representations of the second sheet

and the system replacing Eq. (28.3) is the parametric

representations of the third sheet.
By substitution of h11 from the first Eq. (25), one

obtains from the second and third Eq. (29)

g2 ¼ c11n
2 � 1

F
bu; f2 ¼ c11n

2 � 1

F
cv; ð30Þ

where

F ¼ bc� c66bu� c55cv:

On the other hand, the first Eq. (29) can be written

as

ðh22�1Þðh33�1Þ�a2g2f2 þ n2ððabf2 � cðh33 � 1ÞÞu
þ ðacg2 � bðh22 � 1ÞÞvÞ ¼ 0:

On substituting and h33 from Eq. (25) and eliminat-

ing n2 and g2 with the help of Eq. (30), one obtains

An4 � 2Bn2 þ C ¼ 0; ð31Þ

where

A ¼ F2a þ c11FLþ c211M ;

2B ¼ F2b þ c11FðLþ c11ðRþ SÞÞ þ 2c11M ;

C ¼ F2 þ FðRþ SÞ þM :

9>>>>=
>>>>;

ð32Þ

In these expressions, the following abbreviations

have been used:

F ¼ bc� c66bu� c55cv;

a ¼ c55c66 � c55cu� c66bv;

b ¼ c66 � cuþ c55 � bv;

R ¼ c22buþ c44cv;

S ¼ c44buþ c33cv;

L ¼ Rðc55 � bvÞ þ Sðc66 � cuÞ þ 2abcuv;

M ¼ RS � a2bcuv:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð33Þ
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From Eq. (31), it follows that

n2 ¼ BF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p

A

It is easily shown that in B2–AC all terms without

the factor F and all terms that contain F only in the

first power cancel. Thus, one can write

n2 ¼ BFF
ffiffiffiffi
Q

p

A
; ð34Þ

where

Q ¼ 1

4
b2 � a

� �
F2 þ 1

2
b � c11

� �
L

�

þ 1

2
bc11�a

� �
ðRþ SÞÞFþ 1

4
ðL�c11ðRþ SÞÞ2

�ða � c11b þ c211ÞM :ð35Þ

A and B are polynomials of degree 3 in u and v, Q is

a polynomial of degree 4 in u and v, and F is linear

in u and v.

If one now substitutes n2 from Eq. (34) into Eq.

(30), one obtains

g2 ¼ bu

F

c11B� AFc11F
ffiffiffiffi
Q

p

A
;

f2 ¼ cv

F

c11B� AFc11F
ffiffiffiffi
Q

p

A

One sees immediately that terms without the factor F

in the difference c11B–A cancel, so that c11B–A is

divisible by F. If we set

c11B� A

F
¼ T ¼ 1

2
c11b � a

� �
F

� 1

2
c11ðL� c11ðRþ SÞÞ;

we can write

g2 ¼ TFc11
ffiffiffiffi
Q

p

A
bu;

f2 ¼ TFc11
ffiffiffiffi
Q

p

A
cv:
However, it follows from Eq. (35) and the first Eq.

(32) that

c211Q ¼ T2 � Ac; ð37Þ

where

c ¼ a � c11b þ c211 ¼ ðc11 � c55Þðc11 � c66Þ

þðc11 � c55Þcuþ ðc11 � c66Þbv:ð38Þ

Thus, we finally get the following expressions for n2,
g2, f2 in terms of the two parameters u, v:

n2 ¼ BFF
ffiffiffiffi
Q

p

A
¼ Aþ TFF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
c11A

;

g2 ¼ TF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
A

bu;

f2 ¼ TF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
A

cv;

9>>>>>>>>=
>>>>>>>>;

ð39Þ

T is a polynomial of second degree in u and v.

7. Parametric representation of the first sheet

The wave surface is the envelope of all planes

lxþ myþ nz� V ðt � t0Þ ¼ 0;

where t�t0 has a fixed value and V the velocity of

propagation. If one divides the equation of the plane

by the propagation distance V(t�t0) and sets

n ¼ l

V ðt � t0Þ
; g ¼ m

V ðt � t0Þ
; f ¼ n

V ðt � t0Þ
;

it takes the form

xn þ yg þ zf � 1 ¼ 0;
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and the envelope is determined by the system of

equations:

xn þ yg þ zf ¼ 1;

x
Bn
Bu

þ y
Bg
Bu

þ z
Bf
Bu

¼ 0;

x
Bn
Bv

þ y
Bg
Bv

þ z
Bf
Bv

¼ 0;

9>>>>>=
>>>>>;

ð40Þ

where u and v are two independent parameters. From

Eq. (40), we get for x, y, z the expressions

x ¼ Dn

D
; y ¼ Dg

D
; z ¼ Df

D
; ð41Þ

where

Dn ¼
Bg
Bu

Bf
Bv

� Bf
Bu

Bg
Bv

Dg ¼
Bf
Bu

Bn
Bv

� Bn
Bu

Bf
Bv

Df ¼
Bn
Bu

Bg
Bv

� Bg
Bu

Bn
Bv

D ¼ nDn þ gDg þ fDf:

9>>>>>>>>>>=
>>>>>>>>>>;

ð42Þ

In view of Eq. (39), which contains only squares of

n, g, f, the coordinates x, y, z should also be expressed

in terms of squares of n, g, f and their derivatives. To

this end, one multiplies in Eq. (41) the numerators and

the denominators with n, g, f, respectively, and

obtains

x ¼ nPn

P
; y ¼ gPg

P
; z ¼ fPf

P
; ð43Þ

where

Pn ¼ g
Bg
Bu

f
Bf
Bv

� f
Bf
Bu

g
Bg
Bv

Pg ¼ f
Bf
Bu

n
Bn
Bv

� n
Bn
Bu

f
Bf
Bv

Pf ¼ n
Bn
Bu

g
Bg
Bv

� g
Bg
Bu

n
Bn
Bv

P ¼ n2Pn þ g2Pg þ f2Pf:

9>>>>>>>>>>=
>>>>>>>>>>;

ð44Þ
Now one has to substitute the values of n2, g2, f2

from Eq. (39) into Eq. (44). If one uses the

abbreviations

q ¼ TF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Ac

p
A

; ð45Þ

writes Eq. (39) in the form

n2 ¼ 1þ qF

c11
; g2 ¼ buq; f2 ¼ cvq; ð46Þ

and substitutes these expressions in Eq. (44), one

obtains

Pn ¼
1

4
bcq qþ u

Bq

Bu
þ v

Bq

Bv

� �

Pg ¼
1

4

bcq

c11
c66 qþ u

Bq

Bu
þ v

Bq

Bv

� �
� c

Bq

Bu

� �

Pf ¼
1

4

bcq

c11
c55 qþ u

Bq

Bu
þ v

Bq

Bv

� �
� b

Bq

Bv

� �

P ¼ 1

4

bcq

c11
qþ u

Bq

Bu
þ v

Bq

Bv
þ bcq2

� �
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð47Þ

The right-hand sides of the Eq. (47) contain only u

and v; if one introduces these expressions into Eq.

(43) and replaces n, g, f by the square roots of the

right-hand sides of Eq. (46), one obtains

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qF

p
ffiffiffiffiffiffi
c11

p
qþ u

Bq

Bu
þ v

Bq

Bv

� �

qþ u
Bq

Bu
þ v

Bq

Bv
þ bcq2

y ¼
ffiffiffiffiffiffiffiffi
buq

p c66 qþ u
Bq

Bu
þ v

Bq

Bv

� �
� c

Bq

Bu

qþ u
Bq

Bu
þ v

Bq

Bv
þ bcq2

z ¼ ffiffiffiffiffiffiffi
cvq

p c55 qþ u
Bq

Bu
þ v

Bq

Bv

� �
� b

Bq

Bn

qþ u
Bq

Bu
þ v

Bq

Bv
þ bcq2

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð48Þ
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However, q is itself a fraction; if one introduces its

value

q ¼ TF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Ac

p
A

;

removes the denominators and uses the abbreviations

M1 ¼ A
BT

Bu
� T

BA

Bu
;

M2 ¼ A
BT

Bv
� T

BA

Bv
;

M3 ¼ 2T2 � Ac;

M ¼ AT þ uM1 þ vM2;

N1 ¼ AT
BT

Bu
� T 2 � 1

2
Ac

� �
BA

Bu
� 1

2
A2 Bc

Bu
;

N2 ¼ AT
BT

Bv
� T 2 � 1

2
Ac

� �
BA

Bv
� 1

2
A2 Bc

Bv
;

N3 ¼ 2T T 2 � Acð Þ;

N ¼ A T 2 � Acð Þ þ uN1 þ vN2;

finally H ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
FN þ bc M3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
FN3

� 

;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð49Þ

one can write the Eq. 49 [Eq. (48)] in the following

form:

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ TFFF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Ac

p
A

s ffiffiffiffiffiffi
c11

p M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
FN

H

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bu

A
ðTF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
Þ

r
c66ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
FNÞ � cðM1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Ac

p
FN1Þ

H

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
av

A
ðTF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
Þ

r
c55ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 � Ac

p
FNÞ � bðM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Ac

p
FN2Þ

H
:

9>>>>>>>>>=
>>>>>>>>>;

ð50Þ

Here c and F are linear in u and v, T is of second

degree, A of third degree, M1, M2, M3 and T2�Ac of

fourth degree, M of fifth degree, N1, N2, N3 of sixth

degree, and N and H of seventh degree. Thus, under

the square root, we have fractions where numerator

and denominator are of degree 3, and outside the

square roots fractions with numerator and denomi-

nator are of degree 7.

With the help of the expressions of the last

paragraph, one could replace the symbols M, N, T,

etc., by polynomials in u and v. However, the resulting

expressions would be too complicated.
By cyclic substitution, one can obtain from the

expressions for the first sheet the corresponding

expressions for the second and the third sheet.

8. Algebraic signs of the elastic constants.

Condition for separate propagation of

dilatational and torsional waves

Obviously, the expressions under the square root

must be positive to make x, y, and z real; but the

algebraic signs of these expressions depend in turn on

the signs of the coefficients and ultimately on the

signs of the elastic constants.

The condition the potential W (see Eq. (23)) must be

positive requires that

c44 > 0; c55 > 0; c66 > 0

In addition, the quadratic form

c11e
2
xx þ 2c12exxexx þ 2c13exxezz

þc22e
2
yy þ 2c23eyyezz

þc33e
2
zz

must be always positive. It is known that this

quadratic form can, by an orthogonal substitution,

be converted into the sum of squares

k1e
2
x1x1

þ k2e
2
x2x2

þ k3e
2
x3x3

in which all three coefficients k1, k2, k3 obviously

must be positive to make the form always positive.

The coefficients k1, k2, k3 are the roots of the

equation

c11 � k c12 c13

c12 c22 � k c23

c13 c23 c33 � k

����������

����������
¼ 0; ð51Þ

of which it is known that he roots are real if the

constants c11, etc. are real. There is no doubt that

these constants are real; thus, k1, k2, k3 are certainly

real; however, they must, in addition, be positive.
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One can show easily the real k1, k2, k3 are positive
if

k1 þ k2 þ k3 > 0;

k1k2 þ k2k3 þ k3k1 > 0;

k1k2k3 > 0:

But the left members of these inequalities can be

expressed in terms of symmetric functions of the

coefficients of Eq. (51). Thus, the conditions for

positive k1, k2, k3 can be written as

c11 þ c22 þ c33 > 0;

c11c22 þ c22c33 þ c33c11 � ðc212 þ c223 þ c213Þ > 0;

c11c22c33 þ 2c12c23c13 � ðc11c223 þ c22c
2
13 þ c33c

2
12Þ > 0:

ð52Þ

The inequalities (52) can be satisfied if one of the

three constants c11, c22, c33 is negative; but for

physical reasons, all three are positive. The constants

c12, c23, c13 can be positive or negative, but their

absolute values must be smaller than the absolute

values of the constants c11, c22, c33. From experience,

one should assume that the numerical values of the

constants c44, c55, c66 are smaller than the numerical

values of the positive constants c11, c22, c33. In

consequence, the differences c11�c55, c11�c66, etc.

should be regarded as positive. On the other hand, the

sums a=c23+c44, b=c13+c55, c=c23+c44, c12+c66 can

individually or collectively be negative.

In this occasion, we answer the question, in which

relation the nine constants must stand if the medium

is to propagate dilatational [longitudinal] oscillations

separately from torsional [transverse] oscillations.

One can find the relations, e.g., in the following way.

One differentiates the Differential Equation (3) (valid

for oscillations of small amplitude), the first with

respect to x, the second with respect to y, and the

third with respect to z. Then, one adds the three

equation and finds the relation between the constants
under which the differential equation thus obtained

contains only the dilatation

d ¼ Bu

Bx
þ Bv

By
þ Bw

Bz

and its derivatives. One finds that the following

relations are necessary and sufficient:

c11 ¼ c22 ¼ c33 ¼ c12 þ 2c66 ¼ c13 þ 2c55

¼ c23 þ 2c44:

We call the common value of these quantities k

and write

c11 ¼ c22 ¼ c33 ¼ k; c12 ¼ k � 2c66;

c13 ¼ k � 2c55; c23 ¼ k � 2c44:

This reduces the differential equation in d to

d2d
dt2

¼ kj2d: ð53Þ

The simplification is significant: instead of nine,

there are only four independent constants. Eq. (53)

shows that the dilatational wave propagates in all

direction with the common velocityffiffiffi
k

p

i.e., that the wavefront is a sphere (one should not

forget that we discuss waves that emanate from a

point).

The shape of the torsional wave is less simple; it is

the well-known Fresnel’s wave surface of optically

triaxial media. I do not think it likely that an elastic

material, say a rock, would be isotropic with respect

to dilatational deformations and anisotropic with

respect to torsional deformations. Nevertheless, I

shall give the equations corresponding to Fresnel’s

wave surface. They are inherently interesting and

provide the occasion to test the method on a well-

known and thoroughly investigated case.

9. Fresnel’s wave surface

Since the waves are purely torsional, the dilatation

d must vanish. The condition d=0 is written as

kl þ lmþ mn ¼ 0
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or, in terms of the variables n, g, f,

kn þ lg þ mf ¼ 0: ð54Þ

Let us write Eq. (4 bis) in extenso and use the

relations determined in Section 8:

c11 ¼ c22 ¼ c33 ¼ k;

c12 ¼ k � 2c66; c13 ¼ k � 2c55 ¼ c23 ¼ k � 2c44:

We obtain

ðkn2 þ c66g2 þ c55f
2 � 1Þk þ ðk � c66Þngl þ ðk � c55Þnfm ¼ 0

ðk � c66Þngk þ ðc66n2 þ kg2 þ c44f
2 � 1Þl þ ðk � c44Þgfm ¼ 0

ðk � c55Þnfk þ ðk � c44Þgfl þ ðc55n2 þ c44g2 þ kf2 � 1Þm ¼ 0

or, in view of Eq. (54),

ðc66g2 þ c55f
2 � 1Þk � c66ngl � c55nfm ¼ 0

�c66ngk þ ðc66n2 þ c44f
2 � 1Þl þ ð�c44gfmÞ ¼ 0

�c55nfk � c44gfl þ ðc55n2 þ c44g
2 � 1Þm ¼ 0:

ð55Þ
These equations can exist together if the determi-

nant vanishes:

c66g2 þ c55f
2 � 1 �c66ng �c55nf

�c66ng c66n
2 þ c44f

2 � 1 �c44ng

�c55nf �c44gf c55n
2 þ c44g2 � 1

������������

������������
¼ 0:

ð56Þ

We replace this last equation by the equivalent

equation

c66g2 þ c55f
2 � 1 �c66g2 �c55f

2

�c66n
2 c66n

2 þ c44f
2 � 1 �c44n

2

�c55n
2 �c44g2 c55n

2 þ c44g2 � 1

������������

������������
¼ 0:

ð57Þ

Eqs. (56) and (57) are only apparently of degree 6,

since all sixth-degree terms cancel. An equation of
degree 4 remains; the equation of Fresnel’s wave

surface in line [plane] coordinates. It is

c55c66n
4 þ c44c66g

4 þ c44c55f
4 þ c44ðc55 þ c66Þg2f2

þ c55ðc44 þ c66Þn2f2 þ c66ðc44 þ c55Þn2g2

� ðc55 þ c66Þn2 � ðc44 þ c66Þg2 � ðc44 þ c55Þf2

þ 1 ¼ 0: ð58Þ

With the methods of Section 6, one finds

immediately

g2 ¼ 1

c66

u

F
; f2 ¼ 1

c55

v

F
;

and finally n2 ¼ 1

2c55c66F
ðMF

ffiffiffi
R

p
Þ;

ð59Þ

where

F ¼ uþ vþ 1;

M ¼ ðc66 � c44Þuþ ðc55 � c44Þvþ c55 þ c66;

R ¼ ððc66 � c44Þuþ ðc55 � c44ÞvÞ2

�2ðc55 � c66Þððc66 � c44Þu

þðc55 � c44ÞvÞ þ ðc55 � c66Þ2;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð60Þ

u and v are the two independent parameters.

With the methods of Section 7, one finds the

following parametric representation of Fresnel’s wave

surface:

x ¼ n
F2c55c66

ffiffiffi
R

p

ðc55 � c66ÞLFðc55 þ c66Þ
ffiffiffi
R

p

y ¼ gc66
ðc55 � c44ÞPbðc55 þ c44Þ

ffiffiffi
R

p

ðc55 � c66ÞLFðc55 þ c66Þ
ffiffiffi
R

p

z ¼ fc55
ðc66 � c44ÞQbðc66 þ c44Þ

ffiffiffi
R

p

ðc55 � c66ÞLFðc55 þ c66Þ
ffiffiffi
R

p

9>>>>>>>>=
>>>>>>>>;

ð61Þ

where

L ¼ �ðc66 � c44Þuþ ðc55 � c44Þvþ c55 � c66;

P ¼ ðc66 � c44Þuþ ð2c66 � c44 � c55Þv� c55 þ c66;

Q ¼ ð2c55 � c44 � c66Þuþ ðc55 � c44Þvþ c55 � c66:

9>>>>=
>>>>;

ð62Þ
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The meaning of the other symbols was given in

connection with Eqs. (59) and (60).

One can verify that the expressions in Eq. (61)

satisfy the equation of Fresnel’s wave surface:

ðx2 þ y2 þ z2Þðc44x2 þ c55y
2 þ c66z

2Þ

�c44ðc55 þ c66Þx2 � c55ðc44 þ c66Þy2

�c66ðc44 þ c55Þz2 þ c44c55c66 ¼ 0: ð63Þ

The necessary calculations are too lengthy to be

given here. Obviously, it is sufficient to let u and v

vary between zero and infinity, since the factors n,
g, f in the expressions in Eq. (61) are square roots

and can assume both signs ‘‘+’’ and ‘‘�’’.

10. The line element of the wave surface

We will indicate briefly how the square of the line

element of the wave surface can be determined. It is

known that

ds2 ¼ Mdu2 þ 2Ndudvþ Pdv2; ð64Þ

where

M ¼ Bx

Bu

� �2

þ By

Bu

� �2

þ Bz

Bu

� �2

;

N ¼ Bx

Bu
	 Bx
Bv

þ By

Bu
	 By
Bv

þ Bz

Bu
	 Bz
Bv

;

P ¼ Bx

Bv

� �2

þ By

Bv

� �2

þ Bz

Bv

� �2

:

9>>>>>>>>=
>>>>>>>>;

ð65Þ

With the help of the identities

Dn
Bn
Bu

þ Dg
Bg
Bu

þ Df
Bf
Bu

¼ 0

and

Dn
Bn
Bv

þ Dg
Bg
Bv

þ Df
Bf
Bv

¼ 0
one finds from the Eq. (41)

Bx

Bu
¼ 1

D2
ðrg � qfÞ; By

Bu
¼ 1

D2
ðpf � rnÞ;

Bz

Bu
¼ 1

D2
ðqn � pgÞ;

where

D ¼ nDn þ gDg þ fDf;

p ¼ Df
BDg

Bu
� Dg

BDf

Bu
;

q ¼ Dn
BDf

Bu
� Df

BDn

Bu
;

r ¼ Dg
BDn

Bu
� Dn

BDg

Bu
:

Similarly, one finds

Bx

Bv
¼ 1

D2
ðr Vg � qVfÞ; By

Bu
¼ 1

D2
ðpVf � r VnÞ;

Bz

Bu
¼ 1

D2
ðqVn � pVgÞ;

where

pV ¼ Df
BDg

Bv
� Dg

BDf

Bv
;

qV ¼ Dn
BDf

Bv
� Df

BDn

Bv
;

r V ¼ Dg
BDn

Bv
� Dn

BDg

Bv
:

The substitution of the values of Bx/Bu, etc. into Eq.

(65) and then into Eq. (64) can be left out here.

11. Closing considerations

Under the media considered here, the second

[orthorhombic] medium offers but scant interest for

seismology, since rocks with three planes of symmetry
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are presumably rare; much more important is the

transversely isotropic medium, since most layered

rocks (and many massive rocks) should behave like a

transversely isotropic medium. The axis of symmetry

is normal to the layers.

We have seen in Sections 3–5 that in such a

medium, the wave surface consists of three sheets: the

first is an ellipsoid of rotation with semiaxes Mc44 in

the direction of the axis and Mc66 in the equatorial

plane (for beryl Mc66>Mc44, but in rocks we could

have Mc66<Mc44). The second sheet is also a surface

of rotation with respect to the z-axis. It intersects the z-

axis in the same distance as the ellipsoid of rotation,

so that the two sheets touch at the z-axis. The

intersection of the second sheet with the equatorial

plane is a circle with radius Mc44. If among the elastic

constants the relation

c11c33 � c44ðc11 þ c33Þ ¼ c213 þ 2c13c44

holds, the second sheet becomes a sphere of radius

Mc44. Generally, it differs from a sphere; it can even

have a sort of bulges, as seen in Section 4. There are

regions (see Fig. 1, between the lines OS and OQ)

where the second sheets meets every point three

times. Since the same point is met by each of the

other two sheets once, the points in the region SOQ

are affected five times by the wave. The third sheet

has no such bulges. It is also a surface of rotation

about the z-axis. It intersects the z-axis at distance

OK=Mc33 and the equatorial plane in a circle with

radius Mc11 (for beryl Mc11>Mc33, but in rocks one

may have Mc11>Mc33). The meridional curve of the

third sheet is an oval that looks like an ellipsoid of

rotation with the semiaxes Mc33 and Mc11; it

coincides with this ellipsoid if and only if

c11c33 � c44ðc11 þ c33Þ ¼ c213 þ 2c13c44

The velocity of propagation of the third sheets is

highest, it arrives thus before the other two. If

Mc66>Mc44, the second sheet follows the third and

the first arrives last; however, if Mc66<Mc44, the first

sheet arrives before the second. In the direction of

the z-axis (the axis of symmetry), the first and the

second sheet propagate with the same velocity.

The deformation during the passage of a wave

consists simultaneously of a dilatation and a torsion.
Only if special relations hold between the elastic

constants, dilatational oscillations propagate sepa-

rately from torsional oscillations. Such relations

hold, e.g., in isotropic media. In isotropic solids,

only two waves propagate (the second sheet

coincides with the first): viz., the dilatational and

the torsional wave.

In my textbook ‘‘Physics of the Earth’’ (chapter

6, Leipzig 1911, Tauchnitz), as at other occasions, I

have stressed that at large depth—in the central part

of the earth—the material should be (close to)

isotropic. But close to the surface, the material is

certainly largely anisotropic, and there is no reason

that for such media the special relations between the

elastic constants hold that would allow separate

propagation of dilatational and torsional waves. The

deformation during the passage of a wave must thus

have a mixed character, i.e., it must consist

simultaneously of a dilatation and a torsion. More-

over, there should be in the crust not two, but three

distinct waves (not counting the Lamb–Rayleigh

surface wave). In certain direction, one and the

same wave can meet one and the same point several

times.

To fix our thoughts, we think of the situation

where the oscillations pass from an isotropic

medium into a transversely isotropic medium. We

shall disregard all special complications; we only

want to stress that refraction at the interface

multiplies the wave. Each wave coming from the

isotropic medium generates three waves in the

transversely isotropic medium. If only the two

primary waves—one dilatational and one torsion-

al—reach the interface, there must be six waves in

the transversely isotropic medium. Of course, the

second and third wave (first and second sheet)

generated by the dilatational wave follow each other

closely; the same holds for the second and third

wave generated by the torsional wave.

Since in seismology, there exists the deplorable

habit to regard anisotropic materials as isotropic, one

generally calls the first arriving wave train as

dilatational, the second torsional. It is well known

that the arrival of the second train is not easily

determined: it is difficult to decide where on the

seismogram the onset of the second train can be

assumed. Next to other difficulties, one cause of this

indeterminacy may be the fact that the train that is
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thought to represent a single wave consists really of

two waves, viz. the second and the first sheet of the

wave surface. Depending on the direction of arrival,

the two trains can arrive with different separations.

There may be a single onset or two onsets; in

directions where the bulge of the wave surface

passes through the point of observation, there may

be even a sequence of three or four rapidly following

onsets.

We speak here of wave trains and of onsets of

new wave trains, since due to dispersion and other

causes, one observes trains instead of individual

waves. A closer inspection of this aspect lies outside

the scope of this paper.

Since we started with the classical equations for

oscillations of small amplitude (disregarding squares

and products of deformation components), the results

of this study does not apply to oscillations of large

amplitudes.
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