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1. Differential equations constants), while I assume an anisotropic medium (with
Here, I will consider a transversely isotropic medi-

um of the type that has been investigated from a

different aspect in my mémoire ‘‘Parametric Represen-

tation of the Elastic Wave’’ (Bull. Acad. of Cracow, A.

October 1911, pp. 503–536). It is known that such a

medium has an axis of symmetry, that all directions

normal to this axis are equivalent, and that it is

described by five elastic constants; in certain cases,

this number is reduced to four or even three (see, e.g.,

A.E.H. Love, Treatise on the Mathematical Theory of

Elasticity, 2nd edition, Cambridge 1906. I adopt—as in

‘‘Parametric Representation’’—Love’s notation). In

that paper, I dealt with an elastic wave propagating

indefinitely in any direction of space; in the current

memoir, I will consider the surface wave that has been

discovered, as we know, by Lord Rayleigh. However,

Lord Rayleigh (London, Math. Proceedings XVIII p4

et seq. I have introduced the Lord Rayleigh’s theory in

my ‘‘Physik der Erde, Leipzig 1911, p. 151 et seq.) and

after him M. Lamb (On the propagation of tremors,

Phil. Trans. R.S. London, Ser. A, vol 203, 1904, 1–42)

have assumed an isotropic medium (with two elastic
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five elastic constants).

In order to keep the derivations as simple as pos-

sible, we shall assume that the medium is bounded by

a horizontal plane (thus, neglecting the curvature

of the earth’s surface), and that the axis of symmetry

of the medium is perpendicular to the plane [A

geologist would say that the medium is layered, and

that the layers are horizontal]. Since we are interested

only in the velocity of propagation and the ratio of the

vertical to the horizontal displacement, we can assume

that the wave propagates parallel to an arbitrary

vertical plane (obviously permissible under our as-

sumption). We shall also restrict the discussion to par-

ticular integrals.

If we choose the xz-plane as the vertical plane

parallel to the direction of propagation, the motion

becomes independent of y and the differential equa-

tions that have to be satisfied reduce to

B
2u

Bt2
¼ c11

B
2u

Bx2
þ c44

B
2u

Bz2
þ ðc13 þ c44Þ

B
2w

BxBz

B
2w

Bt2
¼ c44

B
2w

Bx2
þ c33

B
2w

Bz2
þ ðc13 þ c44Þ

B
2u

BxBz
ð1Þ

As usual, the letters u and w indicate the

components of the displacement in the two princi-
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pal directions x and z, respectively. The z-axis is

vertical, as a consequence, parallel to the symmetry

axis of the medium. We assume that the positive

direction is downward and that the free surface

coincides with the plane z = 0. The symbols c11,

c33, . . . are the ordinary elastic constants divided by

the density q of the medium (this means that c11
simply stands for c11/q. In this form, the c11, . . .
are the squares of velocities). The constant c66,

does not show up at all.
2. Integrals suitable for the representation of the

surface waves

The surface wave can be expressed by the fol-

lowing functional form:

u ¼ u0e
s; w ¼ w0e

s;

where

s ¼ �rzþ iðfxþ ptÞ; i ¼
ffiffiffiffiffiffiffi
�1

p
; ð2Þ

The wave is thus characterized by a rapid decrease

of amplitudes with depth.

On substituting, expression (2) into the differential

Eq. (1), one finds

u0ðp2 � c11f
2 þ c44r

2Þ þw0ðc13 þ c44Þrf ¼ 0

ð3Þ
�u0ðc13 þ c44Þrfþw0ðp2 � c44 f

2 þ c33r
2Þ ¼ 0

It is well known that these equations are

equivalent to

ðp2 � c11f
2 þ c44r

2Þðp2 � c44 f
2 þ c33r

2Þ
þ ðc13 þ c44Þ2r2f 2 ¼ 0

u0 ¼ kðp2 � c44 f
2 þ c33r

2Þ

w0 ¼ kðc13 þ c44Þrf ; ð4Þ

where k is an undetermined coefficient.

Evidently, p/f is nothing but the velocity of

propagation. Let us denote this velocity with V,

i.e., we set

p

f
¼ V ð5Þ
With the further abbreviations

r

f
¼ q

c11 � V 2

c44
þ c44 � V 2

c33
� ðc13 þ c44Þ2

c33c44
¼ 2m

c11 � V 2

c44

c44 � V 2

c33
¼ n2

ð6Þ

we write the first Eq. (4) in the form

q4 � 2mq2 þ n2 ¼ 0: ð7Þ

The roots of this equation

q2
1 ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � n2

p
and

q2
2 ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � n2

p
ð8Þ

depend only on the propagation velocity and on the

constants c11, c33, . . .. But if there are two roots for q,
there will also be two different values for r; thus, one

must write in place of expression (2)

u ¼ u01e
s1 þ u02e

s2 ; w ¼ iðw01e
s1 þ w02e

s2Þ; ð9Þ

or (with suppression of the now superfluous factors f 2)

u01 ¼ k1ðV 2 � c44 þ c33q2
1Þ;

u02 ¼ k2ðV 2 � c44 þ c33q2
2Þ

w01 ¼ k1ðc13 þ c44Þq1; w02 ¼ k2ðc13 þ c44Þq2

s1 ¼ ð�q1zþ iðxþ VtÞÞf ; s2 ¼ ð�q2zþ iðxþ VtÞÞf :

ð10Þ

Evidently, q1, q1, and t must be real and positive

whereas V only has to be real.
3. Boundary conditions at the free surface

At the free surface, i.e., in the plane z= 0, the two

tangential stresses must vanish, and the normal stress

must be equal to the atmospheric pressure. Since the
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latter is insignificant in comparison to the elastic

stresses, we can neglect it and write

Zx ¼ 0; Zy; ¼ 0; Zz ¼ 0:

The second condition is identically satisfied; as

for as the two other conditions are concerned, they

reduce to

Bu

Bz
þ Bw

Bz
¼ 0; c13

Bu

Bx
þ c33

Bw

Bz
¼ 0 ð for z ¼ 0Þ

If one introduces the values Eq. (9) and suppresses

common factors (note that for z = 0 s1 = s2), the

equations become

k1q1ðV 2 þ c13 þ c33q2
1Þ þ k2q2ðV 2 þ c13 þ c33q2

2Þ ¼ 0

ð11Þ
k1ðc13ðV 2�c44Þ�c33c44q2

1Þþk2ðc13ðV 2�c44Þ�c33c44q2
2Þ¼0

In order to have Eq. (11) compatible, one must

have

q1ðV 2 þ c13 þ c33q
2
1Þðc13ðV 2 � c44Þ � c33c44q

2
2Þ

¼ q2ðV 2 þ c13 þ c33q
2
2Þ

� ðc13ðV 2 � c44Þ � c33c44q
2
1Þ; ð12Þ

k1 ¼ Kðc13ðV 2 � c44Þ � c33c44q
2
2Þ;

k2 ¼ �Kðc13ðV 2 � c44Þ � c33c44q
2
1Þ: ð13Þ

The coefficient K (as before the coefficient f ) is

available if one wants to form the general solution and

satisfy the initial conditions. With the help of the

relations (8), one can eliminate q1 and q2 from Eq.

(12), which then contains only V2 and the elastic

constants. One sees immediately that Eq. (12) has

the same roots as the equation

m2 � n2 ¼ 0:
Besides, by squaring, substituting m2 and n2 from

Eq. (6) and rearranging, one finds that Eq. (7) can be

written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � n2

p
ðV 2 � c44ÞððV 2 � c44Þ

� ðc33ðV 2 � c11Þ þ c213Þ
2 � c33c44ðV 2 � c11ÞÞ ¼ 0

ð12 bisÞ
4. Velocity of propagation of the surface wave

The Eq. (12 bis) gives the velocity of propagation

of the surface wave. One sees that it can be decom-

posed into three equations, the first of which

m2 � n2 ¼ 0: ð14Þ

can be written as

ðc33 � c44Þ2V 4 � 2ððc33 � c44Þðc11c33 � c244Þ
� ðc33 þ c44Þðc13 þ c44Þ2ÞV 2 þ ðc11c33 � c244Þ

2

� 2ðc11c33 þ c244Þðc13 þ c44Þ2 þ ðc13 þ c44Þ4 ¼ 0

ð14 bisÞ

This a quadratic equation in V2 with the

discriminant

4c33c44ðc13 þ c44Þ2ððc13 þ c44Þ2

� ðc11 � c44Þðc33 � c44ÞÞ:

The discriminant will often be negative, all con-

stants—with the exception of c13, which may be

negative—must be positive (see ‘‘Parametric Repre-

sentation . . .’’ p. 518), and c11, c33 are generally

considerably larger than c13 and c44. In this case, the

two complex roots of Eq. (14) have no physical

significance, since V2 must be real and positive. But

there is something else. If m2� n2 = 0, one has from

Eq. (7) q1 = q2 and s1 = s2 at all depths. It is not

necessary to impose the double condition (2) and if

one tries to satisfy the surface conditions for z= 0,

one finds that the coefficients u0 and w0 must vanish.

The same result is, of course, obtained if one starts

from Eq. (11); indeed for q1 = q2, these give

k1 + k2 = 0, which combined with s1 = s2 (for all



M.P. Rudzki / Journal of Applied Geophysics 54 (2003) 185–190188
depths) leads to the conclusion that u and w are

identical zero. For m2� n2 < 0, q1
2 and q2

2—and

consequently q1 and q1—are complex. Nevertheless,

if all the real parts are positive, the motion is not

impossible. But this is not the place to discuss this

aspect.

Let us turn to the linear equation

V 2 � c44 ¼ 0; ð15Þ

which always give a real velocity that is equal to that

of the horizontal velocity of the second sheet of the

ordinary elastic wave [see ‘‘Parametric repre-

sentation. . .’’ p. 533 et seq. In passing, I notice that

Fig. 2 of p. 534 corresponds to the case c66 < c44]. If

one inserts this velocity into Eqs. (6) and (8), one

finds at once:

n2 ¼ 0;

q2
1 ¼ 2m ¼ c33ðc11 � c44Þ � ðc13 þ c44Þ2

c33c44
;

q2
2 ¼ 0:

Under ordinary circumstances q1
2 is positive; but

from Eqs. (10) and (13) one finds that the four

coefficients u01, u02, w01, w02 become zero, thus the

wave is evanescent, as in the previous case.

Let us turn finally to the equation of third order

in V2

ðV 2 � c44Þðc33ðV 2 � c11Þ þ c213Þ
2

� c33c44V
4ðV 2 � c11Þ ¼ 0 ð16Þ

As one sees easily, this equation has always a

positive root between 0 and c44 and, for realistic

elastic constants, two further positive roots, both

larger than c11. Nevertheless, these latter roots have

no physical meaning, since, c11 being greater than c44,

a root greater than c11 makes n2 positive and m2

negative (see Eq. (6)). Consequently (see Eq. (8)),

q1
2 and q2

2 are negative or complex (with negative real

parts), and q1 and q2 are purely imaginary or complex.

With respect to the root smaller than c44, it is easy to

convince oneself that it makes q1
2 and q2

2 real and
positive, and the coefficients u01. . . different from

zero. Thus, similar to the situation in isotropic media

[in isotropic media c44 is the square of the torsional

wave velocity], we have found a single velocity of

propagation; as for isotropic media, this velocity is

less than Mc44.
5. Ratio of horizontal to vertical amplitude

At the surface z = 0, the horizontal displacement

becomes

u ¼ ðu01 þ u02Þcos f ðxþ VtÞ

and the vertical displacement becomes

w ¼ �ðw01 þ w02Þsin f ðxþ VtÞ

(note that, of course, only the real parts have been

written out). A point at the surface thus describes an

ellipse with the horizontal semi-axis A(u01 + u02)A and

the vertical semi-axis A(w01 +w02)A. The ratio R of

vertical to horizontal semi-axes is (according to Eqs.

(10) and (13))

R ¼ w01 þ w02

u01 þ u02

����
���� ¼ c13ðV 2 � c44Þ þ c33c44q1q2

c33ðV 2 � c44Þðq1 þ q2Þ

����
����
ð17Þ

Since (see Eq. (6))

q1q2 ¼ n; q1 þ q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmþ nÞ

p

one must determine the root (smaller than c44) of Eq.

(16) and the numbers m and n. As an example, we

select the same constants

c11 ¼ 5c44; c33 ¼ 4c44 and c13 ¼ c44;
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which were chosen for the numerical calculations for

the ‘‘Parametric Representation . . .’’. We find

V 2 ¼ 0:93844 . . . c44; V ¼ 0:96872 . . .
ffiffiffiffiffiffi
c44

p
;

n¼q1q2¼0:25001 . . . ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmþnÞ

p
¼q1þq2¼1:89129 . . . ;

and R= 2.015. . ..
Thus, the ratio of the vertical to horizontal semi-

axes is even greater than for an isotropic medium [see

‘‘Parametric representation. . .’’ p. 511] with Poisson’s

ratio m = 0.25, where R = 1.468. . ..
One should not attach too much importance to

these results. In the absence of knowledge of the

constants suitable for rocks, I have arbitrarily adopted

numerical values close to those of beryl. However, it

appears that one cannot expect significantly lower

values of R. Let us look at the problem from a

different point of view and try to determine R from

observational data. The observed velocity of surface

waves is, in average, 3.4 km/s. According to Zoep-

pritz and Geiger, the value for Mc44 for the terrestrial

crust is 4.01 km/s. We assume

V ¼ 0:85
ffiffiffiffiffiffi
c44

p
; V 2 ¼ 0:7225c44

In order to determine the other constants, we take

Eq. (16), which must be satisfied in any case. Since

this equation is not sufficient, let us consider the

limiting case, where the waves become evanescent,

and let m = n. In this way, we obtain two equations.

One cannot separate c11 and c33. but one can deter-

mine c13 and

h ¼ c33ðc11 � V 2Þ
c44

:

For c13, one obtains an equation of fourth degree

with a double root

c13 ¼ �c44

and two simple roots

c13 ¼ 0:1410 . . . c44 and c13 ¼ �0:3766 . . . c44;
(remember that c13 is the only constant that may be

negative). During the investigation of h, all values that

correspond to the double root

c13 ¼ �c44

must be rejected and also two others far outside the

range of values observed in nature. Finally, one finds

h ¼ 2:7816 . . . c44 with c13 ¼ 0:1410 . . . c44

and

h ¼ 1:3230 . . . c44 with c13 ¼ �0:3766 . . . c44:

In order to eliminate c33 from Eq. (17), a supple-

mentary hypothesis was necessary. We assume for

simplicity’s sake

c33 ¼ c11;

the relation that connects h with c11 and c33 becomes

then

c211 � c11V
2 � hc44 ¼ 0:

With the assumed numerical values, one gets

c11

c44

� �2

�0:7225
c11

c44

� �
� 2:7816 . . .

¼ 0 for
c13

c44
¼ 0:1410 . . .

and

c11

c44

� �2

�0:7225
c11

c44

� �
� 1:3230 . . .

¼ 0 for
c13

c44
¼ �0:3766 . . .

Both equations have a positive root, the first the

root

c11 ¼ c33 ¼ 2:0677 . . . c44;

and the second the root

c11 ¼ c33 ¼ 1:5666 . . . c44:
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In the first case, one finds

R ¼ 1:112 . . . ;

and in the second,

R ¼ 1:317 . . . :

Both values of R are in the neighborhood of the

upper limit of the values observed by Prince B.

Galitzin, which lie between 0.46 and 1.26 (Observa-

tions of the vertical component of the ground’s motion

(in German), Bull de l’Acad. d. Sc. de St. Petersbourg,

1911, 983–1006). What is the cause of this disagree-

ment? We do not know. There may be various causes.

Prince Galitzin thinks of extinction and of interference

by Wiechert’s ‘‘transverse surface waves’’. I doubt the

efficacy of this second cause, since the ‘‘transverse

surface waves’’ are evanescent (see the discussion in

Section 4 concerning the root of Eq. (15)).

One might wonder what would happen if the axis

of symmetry of the medium is horizontal instead of

being vertical (a geologist would say that the layers

are turned up). We shall not endeavor to discuss this

problem, which should, by the way, not be difficult.
6. Case of an isotropic medium

For an isotropic medium , Eq. (17) should repro-

duce the simple Eq. (26) on page 154 of my ‘‘Physics

of the Earth’’ (Ch. H. Tauchnitz, Ed., Leipzig 1911).

In view of certain reduction applied in the deduction

of Eq. (17), it is rather difficult to pass directly from

Eq. 17 to the equation in ‘‘Physics of the Earth’’. A

roundabout track easier to follow is to go back to Eqs.

(10) and (13). One uses the abbreviations

A1 ¼ V 2 þ c13 þ c33q
2
1

B1 ¼¼ c13ðV 2 � c44Þ � c33c44q
2
1

L1 ¼¼ V 2 � c44 þ c33q
2
1

and writes

R ¼ w01 þ w02

u01 þ u02
¼ ðc13 þ c44Þ

q1B2 � q2B1

L1B2 � L2B1

;

where B2, L2, A2 are similar to B1, L1, A1 and differ

only in that they contain q2 instead of q1. Now Eq.

(12) has the form

q1A1B2 ¼ q2A2B1:

With the help of the last equation, one brings the

expression for R into the form

R ¼ ðc13 þ c44Þq1

B2

A2

A2 � A1

L1B2 � L2B1

:

After some simple reductions, one finds an expres-

sion that is equivalent to Eq. (17), namely

R ¼ q1

c13ðV 2 � c44Þ � c33c44q2
2

ðV 2 � c44ÞðV 2 þ c13 þ c33q2
2Þ

ð17 bisÞ

For an isotropic medium

c33 ¼ c11; c13 ¼ c11 � 2c44;

the roots of Eq. (7) are thus

q2
1 ¼ 1� V 2

c44
; q2

2 ¼ 1� V 2

c11
:

With these identities, Eq. (17 bis) reduces to

R ¼
1� 1

2

V 2

c44ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

c44

s : ð17 terÞ

With the notation of ‘‘Physics of the Earth’’, one

has

p2

m2
¼ V 2; h2 ¼ 1

c11
; k2 ¼ 1

c44

and one sees that Eq. (17 ter) and Eq. (26) on page

154 of my ‘‘Physics of the Earth’’ are identical.
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