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Abstract

It is recognised that exchange of fluid between fractures and the rock matrix can have a strong impact on a rock’s anisotropic

elastic properties. A recent theoretical advance considers the effect of the scale length of the fractures. We show that under

certain circumstances, this model can be simplified. The simplified model matches laboratory data. A prediction of the model is

that frequency-dependent effects are important for fluid substitution in the anisotropic case.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

It was demonstrated by Thomsen (1995) that the

exchange of fluid between fractures and equant po-

rosity during the passage of a seismic wave could

have a profound effect on the calculated anisotropic

elastic properties. The possibility of flow into equant

porosity increases the compliance of the fracture set.

A consequence of this is that theories, which neglect

fluid flow may predict an incorrect dependence on the

fluid bulk modulus.

Thomsen’s (1995) model was based on the low

frequency limit. Hudson et al. (1996) and Tod (2001)

attempted to extend Thomsen’s ideas to the entire

frequency range. Various flow mechanisms were con-

sidered, including flow on a wavelength scale, flow
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between cracks of different orientations and flow

between the fractures and the rock matrix. A further

model has been presented by van der Kolk et al. (2001).

Chapman (2003) gave a model which focused on

the effect of the scale length of the fractures. In the

absence of the fractures, the model returns to the grain-

scale squirt flow model constructed by Chapman

(2001). With the introduction of a fracture set, we find

that there emerges two characteristics; the traditional

squirt flow frequency, which has been estimated from

laboratory data (Murphy, 1985), together with a lower

characteristic frequency which depends on the size of

the fractures. A consequence of this is that propagation

at seismic frequencies can be very different from that

predicted in the low-frequency limit.

In this paper, we examine further the predictions of

the Chapman (2003) model. We propose a method for

applying the model in the case where high porosity

prevents the identification of the reference elastic

moduli with any physically relevant parameters. With

this technique, the model can often be simplified,
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increasing greatly the practical applicability of the

theory. We test our approximations by applying the

simplified model to the laboratory measurements of

Rathore et al. (1995). The results are satisfactory.

Finally, we examine the effect of saturation on the

predicted anisotropy. Fluid viscosity is found to play

an important role.
2. Parameterisation

The model presented by Chapman (2003), the main

results of which are summarised in Appendix A,

assumed that pore space consisted of an isotropic

distribution of grain-scale cracks and pores and a set

of aligned fractures. The fractures were allowed to be

larger than the grain-scale, but still had to be smaller

than a seismic wavelength.

An advantage of the model was that it offered an

explicit description of the ‘‘equant’’ in the rock. For a

rock without fractures, the model is consistent with

Gassmann’s formulae, allowing account to be taken of

saturation changes. The derivation of the model fol-

lowed Eshelby’s (1957) ‘‘Interaction Energy’’ ap-

proach to finding the elastic constants, and as such,

was formally restricted to low porosities. Techniques

such as the self-consistent method and the differential

scheme (Christensen, 1980; Zimmerman, 1991) have

been proposed to extend the analysis to higher poros-

ities. While these techniques are not mathematically

rigorous, it is hoped that they may be more accurate

for higher porosities.

Hudson et al. (2001) showed that Rathore et al.’s

(1995) velocity measurements on synthetic sandstone

with controlled fracture geometry could be relatively

successfully modelled with an equant porosity model

which did not contain an explicit mechanical descrip-

tion of the porosity. The reference elastic moduli k and

l were taken from the measurements of velocity in the

unfractured medium. This highlights a twin advantage

of the traditional Hudson (1980, 1981) theory. The

reference, or background, elastic moduli, which appear

in the Hudson theory can easily be identified with

physically meaningful quantities in the unfractured

rock velocities. Moreover, it appears that these same

parameters happen to be the correct quantities from

which to calculate the fracture-induced corrections to

the velocities.
As it stands, the model of Chapman (2003) does

not share these advantages. The reference moduli k
and l should be derived from the velocities of rock

without any cracks or pores, in other words, the

grain moduli. However, the restriction to low poros-

ity means that in practice, k and l will themselves

have to be fitted to achieve agreement with the

background velocities. We expect that the use of

these moduli to calculate the effect of fractures could

result in substantial errors. Additionally, it is incon-

venient for the user of the model to have to specify

parameters, which do not have a convenient physical

interpretation.

We now propose a method, similar in spirit to the

self-consistent scheme, which circumvents these dif-

ficulties. Our assumption is that we know the veloc-

ities in the unfractured rock, Vp
o and Vs

o, at some

frequency x0. From these velocities, we derive mod-

uli ko, lo as:

lo ¼ ðV o
s Þ

2q; ð1Þ

ko ¼ ðV o
p Þ

2q � 2lo; ð2Þ

where q is the density of the saturated rock.

For isotropic unfractured rock, the model of Chap-

man (2003) takes the form:

keff ¼ k � Uc;p½k; l;x0�; ð3Þ

keff ¼ l � Uc;p½k; l;x0�; ð4Þ

where the functions Uc,p are pertubations due to the

presence of micro-cracks and pores. Precise expres-

sions for Uc,p in terms of the porosity Up and crack

density ec follow from the formulae quoted in Appen-

dix A. We wish to ensure that at frequency x0 and in

the absence of fractures:

keff ¼ ko; ð5Þ

leff ¼ lo: ð6Þ

We do not, however, wish to choose non-physical k
and l to ensure that this is so since the corrections to

the velocities, which what we are most interested in,

would then be non-physical. Instead, we insist that the
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corrections are calculated with the physical values ko

and lo. In other words, we must have:

ko ¼ K � Uc;p½ko;lo;x0�; ð7Þ

lo ¼ x � Uc;p½ko; lo;x0�: ð8Þ

It should be noted that K and x are frequency

independent, and represent reference constants. Al-

though they have no direct physical meaning, they can

be calculated from the measurable values Vp
0 and Vs

0.

We now propose to calculate our frequency depen-

dent, anisotropic, elastic tensor as:

CijklðxÞ ¼ Ciso
ijklðK; x Þ � ecC

1
ijklðk

o; lo;xÞ

� /pC
2
ijklðk

o; lo;xÞ

� efC
3
ijklðk

o; lo;xÞ; ð9Þ

where Ciso(K, x ) is the isotropic elastic tensor with

Lame parameters K and x and ef is the density of the

aligned fractures. C1, C2 and C3 are functions of the

Lame parameters, fluid properties, fracture length,

time scale parameter s and frequency. precise forms

of these relationships are given in Appendix A.

The model of Chapman (2003) is fully consistent

with the Brown and Korringa (1975) at zero fre-

quency. However, when we make the above modifi-

cation, the theory is no longer strictly true; the elastic

tensor is the sum of a Brown and Korringa (1975)

anisotropic tensor and an isotropic ‘‘correction’’

tensor. It is easy to overstate importance of consis-

tency with Brown and Korringa (1975). The formula

gives a relationship the dry and saturated anisotropic

elastic tensors. If, as is usually the case when rocks

of high porosity, the dry elastic tensor is wrongly

predicted then, the tensor predictions will also be in

error, even when the relationship is satisfied. We

believe our approach is an acceptable compromise

between the need to account for high porosity and

the need to be consistent with Brown and Korringa

(1975).

Table 1

The fluid properties used in the calculations

Brine Oil Gas

Acoustic velocity (ms� 1) 1710 1250 620

Density (kg m� 3) 1100 800 65

Viscosity (Pa s) 1�10� 3 2� 10� 2 2� 10� 5
3. The effect of micro-crack density

In the attempt to predict velocity from the mineral

moduli and inclusion geometry, the micro-crack den-
sity ec plays a vital role. Despite their lack of porosity,

thin cracks can have a strong impact on the elastic

properties of a rock. The opening and closing of

micro-cracks has long been recognised (Nur, 1971)

as the dominant effect controlling the response of the

elastic properties of rock to changes in effective stress.

In our model, moreover, ec plays a controlling role,

with porosity, in determining the magnitude of dis-

persion at the squirt flow frequency.

Our model will often be applied, however, at

seismic frequencies which are believed to usually be

below the squirt flow frequency (Mavko et al., 1998).

Requiring the unfractured velocities as inputs circum-

vent the problem of attempting to predict velocity

from the mineral moduli and microstructure. Predic-

tion of the effect of stress changes will only be

required in time-lapse studies.

There is, therefore, a class of problems for which ec
appears to be irrelevant. It is hard to estimate ec in

practice, and requiring to do this complicates consid-

erably the use of the model. For these reasons, we

wish to investigate the feasibility of removing ec from

the model.

We assume first a brine-saturated rock, the brine

properties following from Table 1, with unfractured

velocities Vp = 4000 ms� 1 and Vs = 2500 ms� 1 at 100

Hz. The grain size is 200 Am, and we consider the

case of zero porosity. We take the time scale param-

eter sm to be 2� 10� 5 s to simulate the case where

squirt flow frequency lies between the sonic and

ultrasonic bands (Thomsen, 1995). (Note that the

identification of 1/sm with the accepted notion of

‘‘squirt flow frequency’’ has been discussed by Chap-

man et al. (2002).) We now introduce a set of aligned

fractures with density 0.05 and radius 1 m.

In Fig. 1, we plot percentage shear wave splitting

(defined to be 100� (S1� S2)/S1, where S1 is the

pure-shear velocity and S2 is the quasi-shear velocity)

at an angle of 70j to the fracture normal for a range of

frequencies. We consider the cases where ec is set at

0.02, 0.04, 0.06 and 0.08. It can be seen that the



Fig. 3. qP velocity as a function of angle for 10% equant

porosity,Vp
o = 4000 ms� 1, Vs

o = 2500 ms� 1, and frequency 40 Hz.

The dashed line assumes ec = 0.05, the solid line assumes ec = 0.

Fig. 1. Shear-wave anisotropy for propagation at 70 degrees to the

fracture normal for ec of (A) 0.08, (B) 0.06, (C) 0.04, (D) 0.02.

Equant porosity is 0%.
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model exhibits substantial sensitivity to ec. Similar

sensitivity can be observed in the variations of veloc-

ity with frequency and angle over the seismic fre-

quency band. Clearly in this case, it is important not to

attempt to simplify the model by setting ec equal to

zero arbitrarily.

In Fig. 2, we repeat the analysis, with the porosity

changed to 10%. The sensitivity seen in the previous

example largely disappears. In this case, it appears
Fig. 2. Shear-wave anisotropy for propagation at 70 degrees to the

fracture normal for ec of (A) 0.08, (B) 0.06, (C) 0.04, (D) 0.02.

Equant porosity is 10%.
that there is a possibility of being able to simplify the

model.

We now assume that in fact ec = 0.05 and investi-

gate the error which would accrue from assuming

ec = 0. In Fig. 3, we reproduce the angular variation

of the qP velocity at a frequency of 40 Hz assuming

ec = 0.05 (dashed line) and ec = 0 (solid line). It can be

seen that there is only a small difference between the

two cases, with the maximum error occurring at angles

close to 0j. Fig. 4 shows the results for shear wave

propagation. The velocity of the pure-shear wave is
Fig. 4. Shear velocity as a function of angle for 10% equant

porosity, Vp
o = 4000 ms� 1, Vs

o = 2500 ms� 1, and frequency 40 Hz.

The dashed lines assume ec = 0.05, the solid lines assume ec = 0.



Fig. 5. Comparison of the Rathore et al. (1995) data set for saturated
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independent of our assumption of ec, and the quasi-

shear wave shows only small dependence.

The reason for the difference between the 0% and

10% cases is physically clear. For the equant porosity

effect to operate, fluid has to be able to flow out of the

fracture into the background rock. This requires that

there is sufficient porosity to accommodate the ex-

pelled fluid. When porosity is high, this condition is

met satisfactorily. For the case of zero porosity,

however, the expelled fluid is forced into the micro-

cracks. The extent to which this is possible depends

on the density of the micro-cracks, and this leads to

the dependence of the behaviour on ec.

We expect that, in most cases, the background

porosity should be larger than the porosity associated

with the fractures, and therefore, the assumption that

ec = 0 should be reasonable. Nevertheless, it should be

borne in mind that this simplification is only valid if

there is sufficient porosity. For rocks of very low

porosity, the dependence of the behaviour of the

fractures on ec gives rise to a novel time-lapse effect.

Even under the assumption that the fractures them-

selves do not respond to pressure changes, changes in

the micro-crack density can cause the behaviour of the

fractures to change.

synthetic sandstone with our modelling. The curves were fit by

setting sm= 7.7� 10� 7 s.
4. Application of the model to laboratory data

We used the above interpretation of Chapman’s

(2003) theory to model the data presented by Rathore

et al. (1995). The phase velocity measurements were

performed on synthetic sandstone samples with

known fracture geometry and porosity. Data for an

unfractured but porous dummy sample were also

provided. Thus, most parameters required by the

model are. In fact, the approach described above

allows us to reduce the fitting to one free parameter,

which is the relaxation time sm.
Fig. 5 shows the results of the modelling for fluid-

filled fractures. We have chosen a matrix with only

circular pores and no micro-cracks. Since the equant

porosity in the synthetic samples is very high (35%), it

makes hardly any difference in the modelling if part of

the spherical pores is replaced with micro-cracks.

Overall, the modelled velocities shown in Fig. 5

match the measured data reasonably well. The time

scale parameter sm, which has a value of 7.7� 10� 7 s
in the presented results, has a strong influence on the

degree of polar variation of qP and qS velocities in the

saturated case. The deduced value fits the data slightly

better than the sm = 0 limit, which must be emphas-

ised, gives a good fit to the data itself.

Hudson et al. (2001) discussed in great detail the

differences between the equant porosity models given

by Thomsen (1995) and Hudson et al. (1996), as well

as the results of fitting the theories to the above data

for fluid-saturated fractures. It was found that first-

order expressions gave a better match than second-

order ones. Hudson et al. (2001) also pointed out that

the wavelengths used in the measurements are not

long enough compared to the size of the fractures for

effective medium theories to be strictly applicable.

Therefore, a detailed quantitative comparison of data

and modelling cannot be made. Nevertheless, the

experiments provide a good tool to check predictions

of effective medium theories in a more qualitative
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way. With that in mind, the results shown here support

our proposed methodology.
Fig. 6. qP velocity for propagation at 45j to the fracture normal as a

function of frequency for three different saturations. Fracture size is

1 m.
5. The effect of saturation

We now proceed to consider the effect of saturation

on the anisotropy. Three different saturating fluids

will be considered; brine, oil and gas. The physical

properties, which we assume for these fluids, are

given in Table 1.

In general, there are three physical effects which the

model takes into account in the fluid substitution

problem. The first is the density effect. When one fluid

is replaced by another, the density of the saturated rock

changes and this results in variations in all the veloc-

ities. There is also a fluid bulk modulus effect, in that

the incompressibility the fluid contributes to the incom-

pressibility of the composite. This is the traditional

Gassmann (1951), or in the anisotropic case, Brown

and Korringa (1975) effect. However, the fluid viscos-

ity also makes a contribution to the fluid substitution

problem. The time scale constant sm is proportional to

fluid viscosity, implying that the effect of changing

viscosity is similar to the effect of changing frequency.

Understanding frequency dependence is therefore im-

portant to perform fluid substitution correctly.

In the calculations we have performed so far, we

have begun with ‘‘unfractured rock’’ velocities Vp
o and

Vs
o. These typically depend on saturation. Our model,

however, takes account of saturation through variation

in the fluid density, bulk modulus and viscosity, not

through variation in Vp
o and Vs

o. We therefore demand

that the same ko, lo, K and x are used for each

saturation. If we failed to impose this condition, we

would, in effect, be including the same compressibil-

ity effect twice, once to change Vp
o and Vs

o and then

again in the correction proportional to Up.

We assume, once again, Vp
o = 4000 ms� 1 and

Vs
o = 2500 ms� 1, a 10% porosity and for brine satu-

ration, sm= 2� 10� 5 s. Since sm is directly propor-

tional to fluid viscosity, we have from Table 1 that the

sm for oil saturations is 4� 10� 4 s and for gas

saturation sm must be 4� 10� 7 s. Vp
o and Vs

o are

converted to ko and lo with the properties of the brine-

saturated rock. We introduce a fracture set with

fracture density 0.05 and fracture radius 1 m. The

fracture density controls only the strength of the
anisotropy; the qualitative behaviour of the model is

insensitive to this parameter. Crack density is set to

zero following the discussion in Section 3.

Fig. 6 shows the predicted variation of qP-velocity

with frequency for propagation at an angle of 45j to

the fracture normal for the three saturations. The gas-

saturated velocity is substantially lower than the oil-

and brine-saturated velocities at low frequencies. This

is due to the Gassmann effect in the pores; the gas has

a lower bulk modulus than the oil and brine, and this

dominates the smaller density of the gas. In the zero

frequency limit, the brine-saturated velocity is higher

than the oil-saturated, but at higher frequencies, the

effect of the higher oil viscosity becomes important

and the oil-saturated velocity overtakes the brine-

saturated velocity.

In Fig. 7, we repeat the analysis for the quasi-shear

wave. For an isotropic rock, Gassmann’s formulae

predict that the shear modulus is unaffected by satu-

ration. This is no longer true in the anisotropic case;

Brown and Korringa (1975) showed that fluid com-

pressibility can affect shear wave propagation in this

case. For this reason, brine-saturated and oil-saturated

velocities are higher than the gas-saturated velocity at

low frequency. The high viscosity of the oil leads to

that velocity being the highest for frequencies around

1 Hz. At higher frequencies, the fluid compressibility

contrast becomes less important (Chapman, 2001).

For this reason at a frequency of 1 kHz, the lower

density of the gas begins to dominate the higher bulk



Fig. 9. qP velocity as a function of angle for three saturations. The

frequency is 10 Hz and the fracture size is 1 m.

Fig. 7. Quasi-shear velocity for propagation at 45j to the fracture

normal as a function of frequency for three different saturations.

Fracture size is 1 m.
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moduli of the oil and brine and the gas-saturation has

the highest velocity.

Fig. 8 shows the analysis for the pure shear wave.

A pure shear wave does not compress the fractures, so

fluid flow between the fractures and the rest of the

rock is not an important mechanism. The differences

in the velocities reflect the different densities of the

pore fluids, with the exception of the increase in oil

velocity below 1 kHz. This is the standard squirt flow

effect between micro-cracks and pores. It is indepen-

dent of the fractures, and occurs for oil saturation at

low frequency because of the high viscosity of the oil.
Fig. 8. Pure-shear velocity for propagation at 45j to the fracture

normal as a function of frequency for three different saturations.

Fracture size is 1 m.
In Fig. 9, we show qP velocity as a function of

angle for the three saturations, at frequency of 10 Hz.

As expected, the gas saturation has the lowest velocity

due to the Gassmann effect. For propagation at 90j
which is less affected by the fractures, brine saturation

has a higher velocity than oil saturation due once

again to the Gassmann effect. At lower angles, how-

ever, the fractures begin to play a role and therefore

fluid viscosity becomes important. For angles of 0j,
the oil-saturated velocity is higher than the brine-

saturated velocity.

Fig. 10 shows identical analysis for the case of

the quasi-shear wave. When propagation is at 90j
Fig. 10. Quasi-shear velocity as a function of angle for three

saturations. The frequency is 10 Hz and the fracture size is 1 m.



Fig. 11. Pure-shear velocity as a function of angle for three

saturations. The frequency is 10 Hz and the fracture size is 1 m.

Fig. 13. Quasi-shear velocity as a function of angle for three

saturations. The frequency is 40 Hz and the fracture size is 1 m.
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to the fracture normal, only density differences are

important. The higher viscosity of the oil causes this

velocity to be the highest at intermediate angles. Fig.

11 gives the analysis for the pure shear wave. In this

case, only density differences are important.

Figs. 12 and 13 repeat the analysis with the fre-

quency raised to 40 Hz. At this higher frequency, the

viscosities of both the oil and the brine are important.

Fig. 12 demonstrates that in this case the brine-satu-

rated qP-velocity is now always comparable to the oil

saturated qP-velocity. Fig. 13 shows that the brine-

saturated quasi-shear velocity is closer to the oil-

saturated velocity than was the case at 10 Hz, although
Fig. 12. qP velocity as a function of angle for three saturations. The

frequency is 40 Hz and the fracture size is 1 m.
the smaller density of the oil is still dominant. The

behaviour of the pure shear wave is unchanged.

It is clear from the above discussion that we must

expect the change in anisotropy between different

saturations to depend on frequency. We conclude with

an example to illustrate this effect. Assuming a frac-

ture density of 0.1, we calculate percentage shear-

wave splitting at an angle of propagation of 70j under

brine and gas saturation for a range of fracture sizes

and frequencies.
Fig. 14. Difference is percentage shear-wave splitting under brine

and gas saturation as a function of the fracture radius for two

different frequencies. Angle of propagation is 70j to the fracture

normal, and fracture density is 0.1.
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Fig. 14 shows the difference in anisotropy (per-

centage shear wave splitting under gas saturation

minus percentage shear-wave splitting under brine

saturation) as a function of the fracture radius for an

assumed frequency of 40 Hz and the low-frequency

limit of 0 Hz. For 40 Hz, there is a peak in the

difference between the saturations for a fracture

radius of 1m, while if we assume the low-frequency

limit, there is no such peak. This highlights the

dangers in assuming that seismic frequencies repre-

sent a low frequency, even when, as in this case, the

squirt flow frequency as deduced from laboratory

measurement lies above the sonic frequency band.

The effect we demonstrate is consistent with the

observations of Guest et al. (1998) concerning strong

changes in shear wave splitting between brine and

gas saturations.
6. Conclusions

We have given an alternative parameterisation for

the model of Chapman (2003). Our method recognises

the difficulties involved in predicting velocity from

micro-structural information when porosity is high, and

offers an alternative approach when ‘‘unfractured’’

velocities are known with reasonable precision. An

advantage of the method is that it is not necessary to

specify a ‘‘reference’’ elastic tensor, which cannot be

measured.

The micro-structural isotropic crack density plays

an important role in rock physics, but for certain

applications, when the frequency is below the mi-

cro-structural squirt flow, the background velocities

are known and matrix porosity is greater than

fracture, it can be neglected. This is an important

observation since it permits the elimination from the

analysis of a further parameter, which can be

difficult to estimate.

We test our approximations against the laboratory

measurements on synthetic sandstone of Rathore et al.

(1995). The only fitting parameter was the time scale

constant sm. Measured values were taken for all other

parameters. A reasonable agreement is achieved, sug-

gesting the validity of our approximations.

In the model, the elastic constants depend on

frequency only through a non-dimensional parame-

ter proportional to the product of frequency and
viscosity. Changing fluid viscosity therefore has a

similar effect to changing the frequency of the

wave. We argue that fluid viscosity effects should

be taken into account when performing fluid sub-

stitution in anisotropic media. The change in shear-

wave splitting between brine and gas saturation at

seismic frequencies can be very much larger than is

predicted by theories, which assume the low-fre-

quency limit.
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Appendix A

This appendix summarises the formulae given for

the frequency-dependent, transversely isotropic elas-

tic tensor given by Chapman (2003). The pore space

in the rock was considered to consist of three

components, a porosity associated with spherical

pores, Up, an isotropic collection of microcracks

with density ec and a set of aligned spheroidal

penny-shaped fractures with density ef and radius

(length of the major axis) af. The crack density is

defined, following Hudson (1981) as Na3/V, where N

is the number of cracks in a volume V and a is the

crack radius. The radii of the microcracks and pores

are identified with the grain size e.
Two-time scale constants emerge from the analysis,

sm and sf. The first constant sm is the standard micro-

structural squirt flow frequency. It was demonstrated

by Chapman (2003) that:

sf ¼
af

1

� �
sm: ðA:1Þ
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Chapman (2003) further defined:

c ¼ 3p
8ð1� vÞ 1þ 4

3

qs

qf

Vs

Vf

� �2
 !

; ðA:2Þ

where Vs is a representative shear velocity, Vf is the

acoustic velocity in the fluid, qf and qs are the densities
of the fluid and saturated rock, respectively, and v is

the Poisson’s ratio. When the method presented in the

text of this paper is used, Vs should be identified with

Vs
o and the Poisson’s ratio calculated from ko and lo. If

jf denotes the fluid bulk modulus, we define:

Kc ¼
plr

2jf ð1� vÞ ; ðA:3Þ

Kp ¼
4l
3jf

; ðA:4Þ

cV ¼ c
1� v

1þ v

1

1þ Kp

: ðA:5Þ

For sufficiently small aspect ratios, we can take Kc = 0.

We introduce the further notation:

i ¼
4

3
pec

4

3
pec þ /p

; ðA:6Þ

b ¼
4

3
pef

4

3
pec þ /p

: ðA:7Þ

Introducing x for the angular frequency, the fre-

quency dependence is expressed through the functions:

D1 ¼ ð1� iÞc þ ð1� iÞb
1þ ixsf

þ i þ ib
1þ ixsf

� ��

� 1þ ixcsm
1þ ixsm

� ���1

� i
3ð1þ KcÞ

þ ð1� iÞcV
�

� ixsm
1þ ixsm

1

3ð1þ KcÞ
� cV

� �

� i þ ib
1þ ixsf

� ��
; ðA:8Þ
D2 ¼ ð1� iÞc þ ð1� iÞb
1þ ixsf

þ i þ ib
1þ ixsf

� ��

� 1þ ixcsm
1þ ixsm

� ���1

� b
ð1þ KcÞð1þ ixsf Þ

� �
;

ðA:9Þ

G1 ¼
ixsm

ð1þ KcÞð1þ ixsmÞ
; ðA:10Þ

G2 ¼
1þ ixcsm
1þ ixsm

D1 �
ixsmcV
1þ ixsm

; ðA:11Þ

G3 ¼
1þ ixcsm
1þ ixsm

D2; ðA:12Þ

F1 ¼
1

1þ ixsf

1þ ixcsm
1þ ixsm

iD1 þ ð1� iÞD1

�

þ iixsm
1þ ixsm

1

3ð1� KcÞ
� cV

� ��
; ðA:13Þ

F2 ¼
1

1þ ixsf

� ixsf
1þ Kc

þ i
1þ ixcsm
1þ ixsm

D2 þ ð1� iÞD2

� �
:

ðA:14Þ

With the final notations (k and l being reference

elastic moduli, j the reference bulk modulus):

L2 ¼ k2 þ 4

3
kl þ 4

5
l2; ðA:15Þ

L4 ¼ k2 þ 4

3
kl þ 4

5
l2; ðA:16Þ

we can give expressions for the frequency dependent

elastic tensor. Taking the x3 direction as the axis of

symmetry (corresponding to the direction of the
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fracture normals), the five independent elastic con-

stants are:

C1111 ¼ ðk þ 2lÞ � ec
8L2ð1� vÞ

3l
þ 128

45

1� v

ð2� vÞ l

�

� 8L2ð1� vÞ
l

G1 �
8j2ð1� vÞ

l
G2

� 8kjð1� vÞ
3l

G3

�
� /p

3

4l
1� v

1þ v

�

� 3k2 þ 4kl þ 36þ 20v

7� 5v
l2

� �

� 1þ 3j
4l

� �
ð3jD1 þ kD2Þ

�

� ef
8k2ð1� vÞ

3l
� 8kjð1� vÞ

l
F1

�

� 8k2ð1� vÞ
3l

F2

�
; ðA:17Þ

C3333 ¼ ðk þ 2lÞ � ec
8L2ð1� vÞ

3l
þ 128

45

1� v

ð2� vÞ l

�

� 8L2ð1� vÞ
l

G1 �
8j2ð1� vÞ

l
G2

� 8ðk þ 2lÞjð1� vÞ
3l

G3

�
� /p

3

4l
1� v

1þ v

�

� 3k2 þ 4kl þ 36þ 20v

7� 5v
l2

� �

� 1þ 3j
4l

� �
ð3jD1 þ ðk þ 2lÞD2Þ

�

� ef
8ðk þ 2lÞ2ð1� vÞ

3l

"

� 8ðk þ 2lÞjð1� vÞ
l

F1

� 8ðk þ 2lÞ2ð1� vÞ
3l

F2

#
; ðA:18Þ

C2323 ¼ l � ec
32

45
lð1� vÞð1� G1Þ þ

32

45

1� v

2� v
l

� �

� 15/p
1� v

7� 5v
l � ef

16ð1� vÞ
3ð2� vÞ l; ðA:19Þ
C1122 ¼ k � ec
8L4ð1� vÞ

l
� 64

45

1� v

ð2� vÞ l

�

� 8L4ð1� vÞ
3l

G1 �
8j2ð1� vÞ

l
G2

� 8kjð1� vÞ
3l

G3

�
� /p

3

4l
1� v

1þ v

�

� 3k2 þ 4kl � 4ð1þ 5vÞ
7� 5v

l2

� �

� 1þ 3j
4l

� �
ð3jD1 þ kD2Þ

�

� ef
8k2ð1� vÞ

3l
� 8kjð1� vÞ

l
F1

�

� 8k2ð1� vÞ
3l

F2

�
; ðA:20Þ

C1133 ¼ k � ec
8L4ð1� vÞ

l
� 64

45

1� v

ð2� vÞ l

�

� 8L4ð1� vÞ
3l

G1 �
8j2ð1� vÞ

l
G2

� 8ðk þ lÞjð1� vÞ
3l

G3

�
� /p

3

4l
1� v

1þ v

�

� 3k2 þ 4kl þ 4ð1þ 5vÞ
7� 5v

l2

� �

� 1þ 3j
4l

� �
ð3jD1 þ ðk þ lÞD2Þ

�

� ef
8kðk þ lÞð1� vÞ

3l

�

� 8ðk þ lÞjð1� vÞ
l

F1

� 8kðk þ lÞð1� vÞ
3l

F2

�
: ðA:21Þ

The symbol Uc,p used in the main body of the text

refers to the corrections to the elastic tensor propor-

tional to ec and Up.
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