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Abstract

Most of P-wave anisotropic kinematic algorithms (modeling, processing, and inversion) have been developed for the case of

Transverse Isotropy (TI). Does it mean that when dealing with more complex symmetry types (Arbitrarily tilted TI,

orthorhombic, monoclinic or even triclinic), all these algorithms are irrelevant? In fact, not at all. It has recently been

demonstrated that in 2D geometry any qP-wave TI kinematic algorithm can be simply generalized to the case of monoclinic

symmetry using the so-called Azimuthally Dependent Anisotropy Parameter Transformation (ADAPT), assuming moderate

anisotropy. The extension of the technique to the case of arbitrary anisotropy type (triclinic) is achieved in this paper. The

method is successfully checked for seismic modeling in a full 2D model with layers of contrasted anisotropy types and with

arbitrary vertical and horizontal velocity variations (non-constant gradient). Typically, the approximate travel times using

ADAPT differ from the exact travel times by a few milliseconds for total travel times of the order of a few seconds.

Applications to seismic processing are also described. The simplicity of the procedure and the generality of the applicability of

the ADAPT recipe are striking and very convenient for practical applications. They certainly deserve further analysis.
D 2003 Published by Elsevier B.V.
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1. Introduction

The presence of seismic anisotropy in sedimentary

basins is now commonly accepted (e.g., Winterstein

and Paulsson, 1996; Thomsen, 1986). For instance,

the fraction of papers involving seismic anisotropy in

international conventions such as those of the Society

of Exploration Geophysicists (SEG) or of the Amer-
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ican Geophysical Union (AGU) is steadily growing,

keeping a seismic anisotropy community very active

(e.g., Brown and Lawton, 1993; Fjaer et al., 1996;

Rasolofosaon, 1998; Ikelle and Gangi, 2000).

Seismic anisotropy, if not correctly taken into

account, can strongly affect many steps of seismic

processing, such as velocity analysis, dip move-out,

time migration, time-to-depth conversion or amplitude

versus offset (e.g., Tsvankin, 1996). That is why

anisotropy is now often integrated in industrial com-

puter codes. However, the anisotropy type commonly

considered is transverse isotropy with a vertical infi-

nite-fold axis of symmetry (VTI). Although VTI is the
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most frequently encountered anisotropy type in sedi-

mentary basins, there may exist some other realistic

cases, for instance the bedding planes can sometimes

substantially dip (tilted TI medium), or in other cases

the presence of one or multiple set of fractures imply

that the medium can apparently exhibit a more com-

plicated symmetry type, even the most complicate

type (triclinic), in the coordinate system of acquisition

of the seismic data (e.g., Helbig, 1994). So a central

question arises: Are all the computer codes developed

for the VTI case totally irrelevant for more complicate

anisotropy types (arbitrarily tilted TI, orthorhombic,

monoclinic or even triclinic)? In fact, not at all, at least

if one restricts the topic to the kinematics of qP-waves

in 2D geometry in moderately anisotropic media. It

has recently been demonstrated (Rasolofosaon,

2000b) that in such cases any qP-wave VTI kinematic

algorithm can be used, just as it is, in media of

monoclinic symmetry with a horizontal symmetry

plane, using the so-called Azimuthally Dependent

Anisotropy Parameter Transformation (ADAPT), as

will be detailed later. This paper is a continuation of

this work.

The outline of the paper is as follows. First, I

summarize the ADAPT technique. This will be fol-

lowed by the extension of ADAPT, initially restricted

to monoclinic media with a horizontal symmetry

plane, to media of arbitrary symmetry type (triclinic).

Then the new procedure is checked on a seismic

modeling. Some applications to seismic processing,

namely velocity analysis, are described in the follow-

ing section. Finally, I will discuss the results and

summarize the most general conclusions.
2. The ADAPT recipe

It has been recently demonstrated that any qP-wave

kinematic algorithm in 2D geometry developed for TI

media can straightforwardly be adapted to monoclinic

media (with a horizontal symmetry plane) (Rasolofo-

saon, 2000b). The method simply consists in replac-

ing the anisotropy parameters e and d of Thomsen

(1986) in the TI kinematic equations by their azi-

muthally dependent counterparts e(k) and d(k) in the

monoclinic equations. These two functions are de-

fined in Appendix A. The transformation (e,k)!
[e(k),d(k)] is called the Azimuthally Dependent An-
isotropy Parameter Transformation (ADAPT) or more

simply the ADAPT recipe. The mathematical justifi-

cation of the method simply comes from the formal

similarity between the qP-wave velocity equation in

transversely isotropic (TI) media and the correspond-

ing qP-velocity equation in media of monoclinic

symmetry with a horizontal symmetry plane. More

precisely, assuming moderate anisotropy, in Trans-

versely Isotropic (TI) media the qP-wave velocity

equation writes (Thomsen, 1986):

V ðhÞ
V vertical
P

c1þ d S2h C2
h þ e S4h ð1Þ

For brevity, I use Ch = cosh and Sh = sinh, where h
is angle between the propagation direction and the

vertical direction, or colatitude angle. The qP-wave

velocity in the vertical direction (h = 0), or more

simply the vertical velocity, is denoted by VP
vertical.

The corresponding equation in anisotropic media of

symmetry as complex as monoclinic with a horizontal

symmetry plane is (Rasolofosaon, 2000a):

V ðh; kÞ
V vertical
P

c1þ d ðkÞ S2h C2
h þ e ðkÞS4h ð2Þ

where k is the azimuth angle between the plane

containing the vertical axis z and the direction of

propagation and the coordinate plane xz. The azimuth

dependent functions e(k) and d(k) are defined in

Appendix A.
3. Generalized ADAPT recipe: extension to the

case of arbitrary anisotropy type

In principle, the application of the conventional

ADAPT recipe is restricted to media of symmetry

higher than monoclinic, such as orthorhombic media

or TI media with a horizontal or vertical symmetry

axis. But this does not mean that nothing can be done

when dealing with media of more complicate sym-

metry types (TI with arbitrarily tilted axis or even

triclinic). In such cases, I suggest to operate in steps.

Starting from a medium with the most general an-

isotropy type (triclinic), the first step consists in

replacing the initial triclinic medium by its best
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monoclinic approximation using the method proposed

by Arts (1993) and Arts et al. (1991). As described in

the two previous references, the ‘‘best monoclinic

tensor’’, or target tensor, that best approximates an

arbitrary triclinic tensor, or source tensor, is the

elastic tensor that minimizes the norm of the differ-

ence between the source tensor and the target tensor.

The norm of a fourth rank tensor is equal to the sum

of the squares of its components. Thus, defined it is

independent of the coordinate system. In the second

and last step, the ADAPT recipe is applied to the

approximate monoclinic medium instead of the initial

triclinic medium.

The last step is straightforward and has been

described by Rasolofosaon (2000b). The most unclear

step, up to now, is the first one which is in fact rather

simple. In effect, the approximate monoclinic stiffness

matrix is obtained from the triclinic stiffness matrix

simply by replacing by zero the elastic coefficients

C14, C15, C24, C25, C34, C35, C46 and C56 as explained

in the two previous references. An illustration of this

process is given in Appendix B with the gas-saturated

dolomite reservoir rock, studied by Rasolofosaon
Fig. 1. Complete directional dependence of the exact qP-wave phase vel

colatitude h and the azimuth k. The elastic constants are in Appendix B.
(2000a) for which I give the complete triclinic stiff-

ness matrix and the corresponding approximate mono-

clinic stiffness matrix.

At first sight, the technique adopted in this first

step seems to be quite rough. In fact, as pointed out

by Arts (1993) the kinematics of the P-wave, in

contrast with S-waves, in a triclinic medium and in

its best monoclinic approximation do not differ sub-

stantially, especially when the anisotropy strength is

moderate. This is clearly illustrated in Figs. 1 and 2

corresponding to the over-mentioned dolomite sam-

ple. Fig. 1 shows the complete directional dependence

of the exact qP-wave phase velocity in the rock

sample as function of the colatitude h and the azimuth

k. The anisotropy is moderate, for instance typically

the P-wave velocity roughly varies from 3.9 to 4.4

km/s. The P-wave velocities in the triclinic rock

sample and in the approximate monoclinic medium

typically deviates by a few parts per thousands as

shown in Fig. 2.

The main conclusion of this part is that the ADAPT

recipe initially restricted to monoclinic media have

been extended to media of arbitrary anisotropy type,
ocity in a gas-saturated dolomite reservoir rock as function of the



Fig. 2. Complete directional dependence of the deviation between the exact qP-wave phase velocity and its best monoclinic approximation

normalized by the exact qP-wave phase velocity as function of the colatitude h and of the azimuth k in a gas-saturated dolomite reservoir rock.

The elastic constants are in Appendix B.
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however of moderate anisotropy strength. As a con-

sequence, any qP-wave kinematic algorithm devel-

oped for TI media can straightforwardly be adapted to

triclinic media simply by using the modified ADAPT

recipe described above. This will be applied to 2D

seismic modeling in the next section.
4. Application of the generalized ADAPT recipe to

seismic modeling in triclinic media

4.1. General procedure

A simple way to explain the general procedure for

the application of the ADAPT recipe to qP-wave

kinematics modeling is to start from an example.

Assume that one has a computer code for computing

the travel times of qP-waves in 2D models constituted

by TI media exclusively. At first sight, and in

principle, such a computer code cannot deal with

models constituted by media of anisotropy type more

complicate than TI, such as orthorhombic (outside the
symmetry planes), monoclinic or triclinic. In fact this

is wrong if the anisotropy strength is moderate. In

other words, this computer code can also be used for

2D models constituted by media of arbitrary anisot-

ropy type, as far as the anisotropy strength is mod-

erate. The general procedure, inspired from the

previous section, is described by the flow chart in

Fig. 3. First of all, let us start with a 2D model made

of media of general anisotropy type (top of the

diagram). In the first step, while keeping the geom-

etry of the model strictly unchanged, one replaces

each triclinic medium constituting the model by its

‘‘best monoclinic approximation’’ with a horizontal

symmetry plane as described in the previous section.

Without restriction, one can assume that the 2D

geometry plane is a vertical, of azimuth k. Since

the anisotropy strength is assumed moderate, the

kinematic equations of qP-wave in this plane is

formally identical to the kinematic equations of qP-

wave in the vertical plane of a VTI medium charac-

terized by the anisotropy parameters e= e(k) and

d = d(k), and by the same vertical velocity VP
vertical,



Fig. 3. Flow chart for modeling showing how to replace an

anisotropic 2D model made of media of arbitrary anisotropy type by

a kinematically equivalent 2D model made of transversely isotropic

media with a vertical symmetry axis using the ADAPT recipe.

Fig. 4. Geometry of the 2D blocky model containing 10 layers of contra

arbitrary vertical variation, respectively, horizontal variation, of velocity.
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as illustrated in Fig. 1 and the corresponding com-

ments. As a consequence, the approximate monoclin-

ic model can be replaced by an equivalent VTI model

on which the available modeling code can be applied.

The numerical test of this procedure is described in

the next section.

4.2. Numerical test

The procedure previously described is tested on the

model sketched in Fig. 4. The model is two-dimen-

sional (2D) invariant in the Y direction. It is 10-layer

model including TI media with symmetry axes in

general arbitrarily oriented. Since the TI symmetry axis

is not aligned with the axes XYZ of description of the

problem, the media exhibit in appearance more com-

plicate symmetry types, for instance monoclinic or

even triclinic (e.g., Helbig, 1994). In other words, it

is a model including media with contrasted symmetry

types (vertical TI, horizontal TI, orthorhombic, mono-

clinic and even triclinic). The physical parameters are
sted anisotropy types. Two layers, namely layers 4 and 5, exhibit
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listed in the table on the right side in Fig. 5. The table

include the layer number (first column) [note that

reflector number N, the free surface being the first

reflector, is the interface above layer number N], the

apparent anisotropy type (second column), the orien-

tation of the TI axis (referenced by the colatitude h in

column 3, and the azimuth k in column 4, the con-

ventions being given on the left of the table), the qP-

wave vertical velocity VP
vertical (fifth column), the an-

isotropy parameters e, d and c (columns 6 to 8), the

squared ratio (VS
vertical/VP

vertical)2 between the S-wave

and P-wave vertical velocities (column 9), and the

density (column 10). Note that the anisotropy strength

is not weak but moderate (with anisotropy parameters

as large as 15%, and the anellipticity e� d can be

positive (layers 2, 3, 7 and 10), negative (layers 4, 6 and

9) or equal to zero (layers 5 and 8). Furthermore, the

layers 4 and 5 are heterogeneous. The fourth layer

exhibits a horizontal velocity variation with a non-

constant gradient (VP
vertical = 2.2, 2.05, 1.9, 1.85, 1.8,

1.9, 1.95, 2.05, 2.2 km/s for X =� 8, � 6, � 4, � 2, 0,

2, 4, 6, 8 km, respectively). Note that the non-constant

lateral gradient varies around 0.5 s� 1 in the region of

interest of the experimental configuration in Fig. 4.

The fifth layer is characterized by a vertical velocity

variation with a non-constant gradient, (VP
vertical = 2.2,

2.3, 2.5, 2.5, 2.4, 2.4, 2.3, 2.2, 2.2 km/s for Z = 0.66,
Fig. 5. Physical parameters of the 10-layer m
0.74, 0.82, 0.90, 0.98, 1.06, 1.14, 1.22, 1.30 km,

respectively).

The source is located at the origin of the coordinate

system and the 60 receivers are on the surface (Z = 0)

along a seismic line parallel to the X-axis. Offsets

range from � 3 to 3 km. I mainly focus on the P-wave

reflected on the reflectors 3 to 9. The maximum offset

to depth ratio roughly ranges from 1.5 (ninth reflector)

to 6 (third reflector).

I compare the exact travel times computed for the

original model in Fig. 5 with the approximate travel

times corresponding to the equivalent Vertical TI

model (see Fig. 4 and the corresponding comments

in the text). In both cases, I used the ray-tracing code

Anisamp of Farra (1989, 1999). The results are

illustrated in Figs. 6 and 7. In Fig. 6, the approximate

travel times are plotted as functions of the offset. It is

worth noting that at the scale of the plot curves

corresponding to the exact travel times, not shown

on this figure, are hardly separable from the curves

corresponding to the approximate travel times. Fig. 7

which shows the travel time error, or the difference

between the exact and the approximate travel times, as

function of the offset illustrates this. Note the differ-

ence between the scales of the y-axis of the two

previous figures, namely the travel times are

expressed in seconds in Fig. 6 and the travel time
odel in Fig. 4. See details in the text.



Fig. 6. Travel time as function of the offset in the VTI 2D model kinematically equivalent to the triclinic model in Fig. 4. This model is deduced

by the technique described by the flow chart shown in Fig. 3.
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errors in milliseconds in Fig. 7. One clearly notice that

the travel time errors induced by using the ADAPT

recipe is quite small and hardly exceeds 4 ms for

travel times of roughly 2 s.

Many different simulations were performed on

various types of models. For concision, the results

are not reported in this paper but the conclusions are
Fig. 7. Difference between the approximate travel time in the equivalent V

function of the offset.
very similar to what has been said here. For 2D

kinematic modeling of qP-wave, the VTI approxima-

tion sketched in Fig. 4 and based both on the ‘‘mono-

clinic approximations’’ of the media and on the use of

the ADAPT recipe is quite accurate and allows to

extend the applicability of modeling codes initially

designed for VTI media to the case of media of
TI model and the exact travel time in the triclinic model in Fig. 4 as
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arbitrary symmetry type (triclinic), as far as the

anisotropy strength is moderate and the geometry is

two-dimensional. In the next section, some applica-

tions of the same idea to seismic processing are

described.
5. Some applications to seismic processing

The generalized ADAPT recipe introduced in

Section 3 is applicable not only to seismic model-

ing, as described in the previous section, but also to

any ramification of kinematic processing. We illus-

trate this point by two examples related to a

particular aspect of seismic processing, namely ve-

locity analysis.

The first example is Tabti and Rasolofosaon (1998)

who derived a quartic-corrected time–distance equa-

tion, and its corresponding Dix formalism for interval

parameters inversion, for reflected qP-wave in hori-

zontally multilayered anisotropic media of arbitrary

anisotropy type:

T2ðX ; kÞ

¼ T2
0 þ X 2

½VnmoðkÞ�2

� 2gðkÞX 4

½VnmoðkÞ�2fT2
0 ½VnmoðkÞ�2 þ ½1þ 2gðkÞ�X 2g

ð3Þ

where T2(X,k) is the squared travel time for the offset

X and for the azimuth k, T0
2 the squared zero-offset

travel time, and Vnmo(k) the Normal Moveout (NMO)

velocity for a seismic line along the azimuth k. The
functions Vnmo(k) and g(k) are defined by:

ðVnmoðkÞÞ2 ¼ ðV vertical
P Þ2 ð1 þ 2 dðkÞÞ

gðkÞ ¼ ðVHðkÞÞ2 � ðVnmoðkÞÞ2

2 ðVnmoðkÞÞ2

8>><
>>:

ð4Þ

where (VH(k))
2=(VP

vertical)2(1 + 2e(k)) is the squared

qP-wave velocity in the horizontal direction of

azimuth k. Eq. (4) is written for a single layer, the

corresponding expression for a stack of layers can

be found in the previous reference. In the VTI
version of Eq. (3), the denominator of the quartic

term contains a correction term in X2 in order to

produce finite errors for X infinitely large. In this

limit, one has T2cX2/(VH)
2. By taking definition

(4), the same property is preserved for the case of

weakly anisotropic media of arbitrary symmetry

type. Eq. (3) is straightforwardly obtained from the

corresponding TI equation obtained by Alkhalifah

(1997) and Alkhalifah and Tsvankin (1995), using

the ADAPT recipe.

Strictly speaking, Eq. (3) is applicable to media

of at least monoclinic symmetry with a horizontal

symmetry plane. But as pointed out by Rasolofo-

saon (2000b) this equation is also applicable to

media of arbitrary anisotropy type (triclinic) be-

cause of the symmetry with respect to the vertical

axis of the geometry of the seismic rays in the

unperturbed isotropic model (obtained by putting to

zero all the anisotropy parameters). However, with

the use of the generalized ADAPT recipe the last

geometrical property is no longer necessary. In

other words the recipe is applicable in any 2D

geometry.

The second example is de Bazelaire et al. (2000)

who studied the same problem as the one considered

by Tabti and Rasolofosaon (1998). They proposed an

azimuth-dependent time–distance equation different

from Eq. (3). They derived an equation of a time-

shifted hyperbola type based on the work of de

Bazelaire (1988) and de Bazelaire and Viallix

(1994). The details of their approach will not be

given here, for reason of conciseness (details can be

found in the original paper). They used a long and

sophisticated mathematical derivation based on the

analogy between geometrical optics and ray seismics.

However, their result could have been straightfor-

wardly obtained using the ADAPT recipe. Further-

more, de Bazelaire et al. (2000) restricted their

analysis to monoclinic media with a horizontal

symmetry plane. In fact by using the generalized

ADAPT recipe introduced in this paper, their equa-

tion can also be applied to media of arbitrary

symmetry type (triclinic).

Considering the generality of the method, as pre-

viously said, there are many potential applications to

any type of kinematic algorithm. However, for conci-

sion this will not be discussed in this paper but will be

the topic of a future paper.
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6. Discussion

6.1. The striking generality of the adapt recipe and its

corollary

The main conclusion of this paper is contained in

the title. In 2D geometry, any qP-wave kinematic

algorithm (such as velocity analysis, dip move-out,

time migration, e.g., Tsvankin, 1996) designed for

Transversely Isotropic media with a Vertical symme-

try axis (VTI) can be straightforwardly adapted to the

case of media of arbitrary anisotropy type, provided

that the anisotropy strength is moderate. The corollary

of this is that, in practical situations, with qP-wave

kinematic data along a single azimuth it is impossible

to separate the VTI case from a monoclinic case or a

triclinic case. As a consequence, in such cases, it is

useless to assume that the studied medium is more

complicate than VTI. Only additional seismic profiles

in planes of different azimuths will allow to either

validate the VTI assumption or to justify the use of

more complicate assumptions on the symmetry type

(TI with a horizontal symmetry axis, orthotropic,

monoclinic, etc.).

6.2. Limitations of the generalized ADAPT recipe and

comments

As a reminder, I summarize here the main assump-

tions for the generalization of the ADAPT recipe to

triclinic media proposed in this paper, with some

additional comments:

– The anisotropy strength is assumed to be moderate

(anisotropy parameters typically smaller than 20%).

This is most of the time the case if one refers to

field studies (e.g., Berthet et al., 1998; Tabti and

Rasolofosaon, 1998).

– In the case of a medium of symmetry as low as

triclinic, or of an apparently triclinic medium (with

symmetry directions misaligned with the axes of

description of the problem), the elastic tensor is

approximated by a monoclinic tensor with a

horizontal symmetry plane. However, in the case

of a moderately anisotropic media the difference in

terms of qP-wave velocity is negligible.

– The justification of the ADAPT technique comes

from the formal similarity between the qP-wave
velocity equation (Eq. (1)) in transversely isotropic

(TI) media and the corresponding equation (Eq. (2))

in media of monoclinic symmetry with a horizontal

symmetry plane. As a consequence, a natural

limitation of ADAPT is imposed by the limitations

of Eq. (1) itself, and will not be repeated here for

reason of concision (for more details, see Thomsen

(1986)).

– Only P-waves are considered. This is a serious

limitation. It is known that the S-waves signatures

to seismic anisotropy is often more pronounced

(e.g., Helbig, 1994) but the theoretical results for S-

waves are often much more complicate and, as a

consequence, not as easily tractable as those for P-

waves (e.g., Mensch and Rasolofosaon, 1997).

However, it is worth noting that P-waves constitute

the great majority of data acquisition in seismic

exploration and as a consequence the essential of

available data.

– The geometry of the problem is 2D. This is another

serious limitation. However, if one refers to the

processing tools available in the industry, 3D tools

often actually means multi 2D. In other words, true

3D tools are quite rare.

– Only kinematic aspect is considered in this paper

mainly because, compared to dynamic equations,

kinematic equations are much easier to generalize.

Very few dynamic equations have a similar form in

the TI case and in cases of more complicate

anisotropy types (Rasolofosaon, 2000b).

6.3. Arbitrary anisotropy hypothesis: a sophistication

for experts or a practical necessity?

Considering that seismic anisotropy is a necessary

ingredient for better exploiting the field data, those

who are quite unfamiliar with seismic anisotropy are

encouraged to consult some excellent recent referen-

ces in the non-specialized literature (e.g., Hake and

Helbig, 2000; Thomsen, 2002). Now for those who

are familiar with seismic anisotropy, however restrict-

ed to the VTI case, I would say that the rewards of

getting interest in more complicate type of anisotropy

may be great. Arbitrary anisotropy is not only sophis-

tication restricted to experts. Evidently highly degen-

erate cases, such as isotropy or transverse isotropy

(TI), are contained in this general formalism, as

special cases. The general formulation is necessary
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in practice to adapt the sophistication of the model to

the quality and to the complexity of the data. For

instance, the symmetry axes of the media of propa-

gation are not necessarily aligned with the coordinate

axes of acquisition of the seismic data. As a conse-

quence because of the ‘‘apparent’’ triclinic behavior of

the media, a triclinic description is necessary (e.g.,

Helbig, 1994). From another point of view, as previ-

ously said, the simple result stating that if one azimuth

is investigated on the field it is not necessary to

assume a model more complicated than VTI that is

evidently unpredictable even by the smartest research-

er who restricts himself to the VTI world. Only a

general triclinic analysis can achieve such kind of

result.
ðA:1Þ
7. Conclusion

In a previous paper (Rasolofosaon, 2000b), it has

been demonstrated that in 2D geometry and assum-

ing moderate anisotropy strength any qP-wave kine-

matic algorithm developed for TI media with a

vertical symmetry axis can straightforwardly be

adapted to monoclinic media (with a horizontal

symmetry plane) simply by using the ADAPT recipe,

consisting nothing but the replacement of the anisot-

ropy parameters d and e in the TI equations by their

azimuthally dependent counterparts d(k) and e(k)
defined in Appendix A. ADAPT is an acronym for

the Azimuthally Dependent Anisotropy Parameter

Transformation.

Here, an extension of this transformation to media

of arbitrary anisotropy type (triclinic), called the

generalized ADAPT recipe, is proposed. The tech-

nique is based first on the approximation of the initial

triclinic media by their ‘‘best monoclinic replacement

medium’’ (Arts et al., 1991; Arts, 1993) and then on

the application of the conventional ADAPT recipe on

this replacement medium. In contrast to the conven-

tional procedure, this technique is applicable even if

the seismic rays in the unperturbed isotropic rays from

the source to the receivers are not symmetrical with

respect to the vertical axis.

The technique is successfully tested in seismic

modeling on a complete 2D model with layers exhib-

iting moderate anisotropy strength (anisotropy param-

eters typically smaller than 20%), contrasted anisot-
ropy types (orthotropic, monoclinic and triclinic) and

complex velocity variations (e.g. horizontal and ver-

tical velocity variations with non-constant gradients).

Typically for travel times larger than 2 s, the differ-

ence between the exact travel times and the corre-

sponding approximate travel times using the general-

ized ADAPT recipe do not exceed 4 ms, which is

more than reasonable for practical applications.

Some examples of application to velocity analyses

are given. The main result is that the kinematic

equations found in the literature (de Bazelaire et al.,

2000; Tabti and Rasolofosaon, 1998) obtained by

complicate algebraic manipulations using very differ-

ent techniques can be derived straightforwardly using

the generalized ADAPT recipe.

As pointed out in a previous publication (Rasolo-

fosaon, 2000b), the simplicity of the procedure and

the generality of the applicability of the ADAPT

recipe is striking, is very convenient for practical

applications and certainly deserve further analyses.

We warmly encourage such kind of work.
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Appendix A . Definitions of the anisotropy

functions and parameters used for the ADAPT

recipe

In the Azimuthally Dependent Anisotropy Param-

eter Transformation (ADAPT), the transversely iso-

tropic parameters e and d of Thomsen (1986) are

replaced by azimuthally dependent functions e(k) and
d(k) defined by:

eðkÞ¼ exC
4
k þdzC

2
kS

2
k þ 2CkSkðe16C2

k þ e26S
2
kÞ þ eyS

4
k
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and

dðkÞ ¼ dxC
2
k þ 2vzCkSk þ dyS

2
k ðA:2Þ

where k designates the azimuth and where for brevity

I use the notations Sk = sink, and Ck= cosk. In the two

previous equations, all the weighting factors in front

of the directional functions Sk = sink and Ck = cosk are

new anisotropy coefficients, introduced by Mensch

and Rasolofosaon (1997) and Rasolofosaon (2000a),

and generalizing Thomsen’s anisotropy parameters e
and d. For convenience, their definitions are given

here.

ex ¼
c11 � c33

2c33
; ey ¼

c22 � c33

2c33
;

dx ¼
c13 � c33 þ 2c55

c33
; dy ¼

c23 � c33 þ 2c44

c33
;

dz ¼
c12 � c33 þ 2c66

c33
and vz ¼

c36 þ 2c45

c33
;

e16 ¼
c16

c33
; e26 ¼

c26

c33
:

where the cij are the stiffness coefficients of the

considered medium in the conventional two-index

notation of Voigt (e.g., Helbig, 1994).
Appendix B. Matrix of the stiffness coefficients of

the gas-saturated dolomite reservoir rock

The stiffness matrix of the gas-saturated dolomite

reservoir rock (density q = 2300 kg/m3) considered in

Figs. 1 and 2 is equal to:

ðCIJ ÞTRICLINIC

¼

41:411 7:410 7:896 0:114 �0:267 1:914

7:410 37:227 7:451 0:239 0:194 1:567

7:896 7:451 41:267 0:276 �0:138 0:337

0:114 0:239 0:276 14:968 0:632 0:465

�0:267 0:194 �0:138 0:632 15:824 0:189

1:914 1:567 0:337 0:465 0:189 15:235

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

GPa
After Arts (1993), the monoclinic medium with a

horizontal symmetry plane that best approximates this

rock sample has the following stiffness matrix:

ðCIJ ÞMONOCLINIC

¼

41:411 7:410 7:896 0:000 0:000 1:914

7:410 37:227 7:451 0:000 0:000 1:567

7:896 7:451 41:267 0:000 0:000 0:337

0:000 0:000 0:000 14:968 0:632 0:000

0:000 0:000 0:000 0:632 15:824 0:000

1:914 1:567 0:337 0:000 0:000 15:235

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

GPa
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