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Abstract

Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging

of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated

equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-

consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The

accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these

different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI

approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In

doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be

replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the

stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to

the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000)

919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a

variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al.

(Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin,

A., 2001. Comparison of v(h) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase

velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or

SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and

vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an

explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The

group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54

(1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994)

1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions

and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded

Abstracts, 106–109).
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Table 1

Glossary of symbolic notation

h Phase angle d Dimensionless anisotropy

parameter

/ Group angle e Dimensionless anisotropy

parameter

vP(h) P-wave phase

velocity

g Dimensionless anisotropy

parameter

vSV(h) SV-wave phase

velocity

r Dimensionless anisotropy

parameter

vSH(h) SH-wave phase

velocity

vpe(h) Elliptic part of P-wave

phase velocity

VP(/) P-wave group

velocity

Vpe(/) Elliptic part of P-wave

group velocity

VSV(/) SV-wave group

velocity

tP P-wave travel time

VSH(/) SH-wave group

velocity

tSV SV-wave travel time

aij Density-normalized

stiffnesses

tpe Elliptic part of P-wave

travel time

vpz P-wave vertical

velocity

tsc Circular part of SV-wave

travel time

vpx P-wave horizontal

velocity

x Horizontal distance

vpn P-wave NMO

velocity

z Vertical distance

vsz SV-wave vertical

velocity

sP Vertical P-wave travel

time

vsx SV-wave horizontal

velocity

vp1 First trial P-wave

phase velocity

vsn SV-wave NMO

velocity

vp2 Second trial P-wave

phase velocity

p Horizontal phase

slowness

vpr Reference P-wave

phase velocity

q Vertical phase

slowness

r Normalized vertical

phase slowness
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1. Introduction

Transverse isotropy (TI) often provides a more

accurate model of wave propagation than does simple

isotropy for characterizing surface seismic reflection

data. However, from conventional surface data, it is

sometimes a challenge to determine good subsurface

velocities for even a simple one-parameter (isotropic,

constant density) model of wave propagation, let

alone the more complicated model needed for full

description of waves in TI media. Complete specifi-

cation of a TI medium requires defining seven param-

eters at every subsurface location, namely, five

stiffnesses and two angles specifying the symmetry

axis orientation. Fortunately, modeling the subsurface

by transverse isotropy with a vertical axis of symme-

try (VTI) is often adequate for imaging or inverting

surface seismic data. This eliminates the two angles as

required parameters.

For VTI materials, the dependence of SH-wave

phase velocity vSH on phase angle h is given by

v2SHðhÞ ¼ a66sin
2h þ a44cos

2h; ð1Þ

where the aij coefficients are density normalized

elements of the material stiffness tensor, that is,

aiju cij/q, with cij the stiffnesses and q the density.

(All important symbolic notation used here is sum-

marized in Table 1 for reference.) Normalizing like

this allows specifying phase velocities without intro-

ducing the density as an additional explicit parameter.

The dependence of P-wave and SV-wave phase ve-

locities are given by the considerably more compli-

cated relationship

2v2½P;SV�ðhÞ ¼ a11sin
2h þ a33cos

2h þ a44

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða11�a44Þsin2h�ða33�a44Þcos2h�2þða13 þ a44Þ2sin22h

q
;

ð2Þ

where the plus sign on the radical corresponds to P

waves, and the minus sign to SV waves (Michelena,

1993, after Auld, 1990).

The SH-wave phase velocity equation (Eq. (1)) is a

simple two-parameter elliptical relation that usually

needs no further approximation. However, Eq. (2) for

P-wave and SV-wave velocities is complicated in

form, and still depends on specification of four

independent parameters at every subsurface location.
In practice, one can often use approximations to Eq.

(2) that are simpler in form or lessen the number of

independent parameters needed.

Gaiser (1989) and Schoenberg and de Hoop (2000)

have derived approximations that simplify the form of

Eq. (2), but still retain all four parameters. Several

other authors, including Muir and Dellinger (1985),

Thomsen (1986), Dellinger et al. (1993), Harlan

(1995), Alkhalifah (1998), Zhang and Uren (2001),

and Stopin (2001) have published approximations that

require only three parameters to define the P-wave

phase or group velocity. Schoenberg and de Hoop

(2000) also discuss three-parameter approximations,

as well as the previously mentioned four-parameter

approximations. Because parameter estimation is of-

ten one of the most difficult aspects of seismic
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imaging, I focus here primarily on approximations

like these latter ones that need at most three param-

eters for P-wave imaging.

Anisotropic approximations can be specified as

explicit formulas for the phase velocity as a function

of phase angle, or equivalently, as dispersion relations

in terms of horizontal and vertical phase velocities.

They can also be specified as formulas for the group

velocity as a function of group angle, or as travel time

or moveout equations. All these forms have been used

previously by various authors. Here I develop approx-

imations first in terms of phase velocity functions, but

for comparison with other papers and also for practical

applications, I also show how to derive corresponding

dispersion relations, group velocity equations, and

travel time equations.
2. VTI parametrizations and useful identities

Before examining VTI approximations, I summa-

rize here some of the notation used. Three of density-

normalized stiffnesses in Eq. (2) have simple inter-

pretations in terms of measurable velocities:

a11 ¼ v2px ð3Þ

a33 ¼ v2pz ð4Þ

a44 ¼ v2sz ¼ v2sx; ð5Þ

where vpz is the vertical P-wave velocity, vpx is the

horizontal P-wave velocity, and vsz is the vertical SV-

wave velocity, which for VTI will always equal the

horizontal SV-wave velocity vsx. The fourth normal-

ized stiffness, a13, also has dimensional units of

velocity squared, but is not so easily interpreted.

Thomsen (1986) introduced the dimensionless

parameters e and d for describing VTI. They are

defined in terms of the stiffnesses by

e ¼ a11 � a33

2a33
ð6Þ

d ¼ ða13 þ a44Þ2 � ða33 � a44Þ2

2a33ða33 � a44Þ
: ð7Þ
The Thomsen parameter e relates the vertical P-

wave velocity vpz to the horizontal P-wave velocity

vpx via

v2px ¼ ð1þ 2eÞv2pz: ð8Þ

Similarly, the Thomsen parameter d relates vpz to vpn,

the paraxial curvature of the P wave front around the

vertical axis, or equivalently, the small-offset P-wave

normal moveout velocity, via

v2pn ¼ ð1þ 2dÞv2pz: ð9Þ

Alkhalifah and Tsvankin (1995) introduced another

useful dimensionless parameter g, defined as

g ¼ e� d
1þ 2d

; ð10Þ

that links vpx and vpn via

v2px ¼ ð1þ 2gÞv2pn: ð11Þ

A corresponding vertical shear NMO velocity param-

eter vsn can also be defined (Thomsen, 1986) as

v2sn ¼ a33 �
ða13 þ a44Þ2

a11 � a44
ð12Þ

¼ ð1þ 2rÞv2sz; ð13Þ

where the parameter r for SV waves is defined by

r ¼ ða33 � a44Þða11 � a44Þ � ða13 þ a44Þ2

2a44ða11 � a44Þ
ð14Þ

¼
v2pz

v2sz
ðe� dÞ: ð15Þ

(Tsvankin and Thomsen, 1994).

The P-wave and SV-wave NMO velocities vpn and

vsn are closely related, as shown by the relation

v2pn � v2px ¼ v2sx � v2sn: ð16Þ



Fig. 1. P-wave phase velocity curves for varying values of vsz. The

parameters vpz= 4 km/s, e= 0.2, and d=� 0.05 are kept fixed and

vsz is allowed to vary from 1.0 to 2.6 km/s. In the upper plot, the P-

wave phase velocity is parametrized by the fixed value of

a13 = 13.18 km2/s2, whereas in the lower plot a parametrization

with a fixed value of vpn= 3.79 km/s is used instead. The second

parametrization removes nearly all the overt dependence on vsz.
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The P-wave NMO velocity vpn also provides a poten-

tial template for replacing the stiffness parameter a13,

using the relation

ða13 þ v2szÞ
2 ¼ ðv2pz � v2szÞðv2pn � v2szÞ: ð17Þ

Substituting the squared velocities vpx
2 , vpz

2 , and vsz
2

for the stiffnesses a11, a33, and a44 in the phase

velocity equation (Eq. (2)) converts it into

2v2½P;SV�ðhÞ ¼ v2pxsin
2h þ v2pzcos

2h þ v2sz

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðv2px�v2szÞsin2h�ðv2pz�v2szÞcos2h�

2þða13þv2szÞ
2
sin22h

q
ð18Þ

¼ v2pxsin
2h þ v2pzcos

2h þ v2szFf½ðv2px�v2szÞsin2h
þ ðv2pz � v2szÞcos2h�

2 þ ½ða13 þ v2szÞ
2

� ðv2px � v2szÞðv2pz � v2szÞ�sin22hg
1=2 ð19Þ

¼ v2peðhÞ þ v2szFf½ðv2px � v2szÞsin2h
þ ðv2pz � v2szÞcos2h�

2 þ ½ða13 þ v2szÞ
2

� ðv2px � v2szÞðv2pz � v2szÞ�sin22hg
1=2 ð20Þ

¼ v2peðhÞ þ v2szFfðv2peðhÞ�v2szÞ
2þ½ða13 þ v2szÞ

2

� ðv2px � v2szÞðv2pz � v2szÞ�sin22hg
1=2: ð21Þ

Here the plus sign on the radical again gives the P-wave

velocity, the minus sign gives the SV-wave velocity,

and I define for convenience the elliptic component of

the P-wave velocity vpe
2 (h)u vpx

2 sin2h+ vpz
2 cos2h.

The P-wave phase velocity is thus a perturbation

away from an elliptic velocity function, and the SV-

wave phase velocity is similarly a perturbation away

from a circular velocity function. These perturbations

are of the same magnitude but opposite sign, as shown

by the simple relation

v2PðhÞ � v2peðhÞ ¼ v2sz � v2SVðhÞ: ð22Þ

Although this relation is strictly derived for the exact

P-wave and SV-wave velocities, I show later how it

can also be used to convert P-wave approximations

into formally symmetric SV-wave approximations and

vice-versa.
3. Phase velocity approximations

It is sometimes asserted that the P-wave phase

velocity in VTI media is only weakly affected by the

shear velocity vsz. However, as pointed out by Tsvankin

(2001), the truth of this assertion actually depends on

the specific parametrization used. The upper plot in

Fig. 1 shows vP(h) from Eq. (18). The various curves

represent different values of vsz ranging from 1.0 to 2.6

km/s, with vpz = 4.0 km/s, vpx = 4.73 km/s, and

a13 = 13.18 km2/s2. Clearly, the P-wave phase velocity

here depends strongly on vsz. However, if one uses Eq.

(17) to replace a13 in Eq. (18) with vpn, this dependence

on the value of vsz is nearly eliminated. The lower plot

in Fig. 1 shows various curves representing the same

range of vsz from 1.0 to 2.6 km/s, with vpz = 4.0 km/s

and vpx = 4.73 km/s again, but with vpn = 3.79 km/s held
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constant now, instead of a fixed value for a13. (The

values used for a13 and vpn are chosen so that the curves

for vsz = 1.0 km/s are identical in upper and lower

figures by design, with both corresponding to setting

d =� 0.05.) The curves for different values of vsz are

now nearly identical.

The curves in the two plots in Fig. 1 coincide for

vsz = 1.0 km/s by design, but otherwise differ widely

between the two figures. The large difference in be-

havior is caused solely by the change in parametriza-

tion. The definition of vpn in Eq. (9) depends on d,
which itself contains both a13 and several occurrences

of a44, or equivalently, vsz. In effect, the definitions of d
and vpn have isolated those occurrences of vsz that have

a significant impact on vP(h) from those that do not.

To derive general P-wave phase velocity approx-

imations that do not depend on vsz, I begin by rewriting

Eq. (20) as

2½v2PðhÞ � v2sz�
¼ ðv2px � v2szÞsin2h þ ðv2pz � v2szÞcos2h
þ f½ðv2px � v2szÞsin2h þ ðv2pz � v2szÞcos2h�

2

þ ½ða13þv2szÞ
2�ðv2px�v2szÞðv2pz � v2szÞ�sin22hg

1=2:

ð23Þ
I next replace a13 using a factorization of the form

ða13 þ v2szÞ
2 ¼ ðv2p1 � v2szÞðv2p2 � v2szÞ: ð24Þ

Here vp1
2 is a general parameter that could take many

forms. From Eq. (17), setting vp1
2 = vpz

2 and vp2
2 = vpn

2 is

one possible choice, but it is not the only one. Once a

particular parameter vp1
2 is chosen, the second para-

meter vp2
2 is then determined as

v2p2 ¼
ða13 þ v2szÞ

2

v2p1 � v2sz
þ v2sz ð25Þ

¼
ðv2pz � v2szÞðv2pn � v2szÞ

v2p1 � v2sz
þ v2sz: ð26Þ

In terms of this new parametrization, Eq. (23)

becomes

2½v2PðhÞ � v2sz� ¼ ðv2px � v2szÞsin2h þ ðv2pz � v2szÞcos2h
þ f½ðv2px�v2szÞsin2hþðv2pz�v2szÞcos2h�

2

þ ½ðv2p1�v2szÞðv2p2�v2szÞ�ðv2px�v2szÞ


 ðv2pz � v2szÞ�sin22hg
1=2 ð27Þ
or

2v2PðhÞ 1� v2sz
v2PðhÞ

� �

¼ v2px 1� v2sz
v2px

 !
sin2h þ v2pz 1� v2sz

v2pz

 !
cos2h

þ v2px 1� v2sz
v2px

 !
sin2hþv2pz 1� v2sz

v2pz

 !
cos2h

" #28<
:

þ v2p1v
2
p2 1� v2sz

v2p1

 !
1� v2sz

v2p2

 !"

� v2pxv
2
pz 1� v2sz

v2px

 !
1� v2sz

v2pz

 !#
sin22h

)1=2

: ð28Þ

The purpose of converting the phase velocity

equation (Eq. (20)) into the considerably more com-

plicated form of Eq. (28) is to isolate all the explicit

occurrences of vsz
2 into factors of the common general

form (1� vsz
2 /vp

2). The next step is to pick a constant

reference velocity vpr. The value of this reference

velocity is somewhat arbitrary, but should usually lie

somewhere within the range of vP(h). Using this

reference velocity vpr, one can then make the approx-

imations that

1� v2sz
v2ðhÞ

� �
c 1� v2sz

v2pr

 !
ð29Þ

1� v2sz
v2pz

 !
c 1� v2sz

v2pr

 !
ð30Þ

1� v2sz
v2px

 !
c 1� v2sz

v2pr

 !
ð31Þ

1� v2sz
v2p1

 !
c 1� v2sz

v2pr

 !
ð32Þ

1� v2sz
v2p2

 !
c 1� v2sz

v2pr

 !
: ð33Þ
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If these approximations are all valid, then all the terms

of this form in Eq. (28) can be replaced with similar

ones using only the reference velocity, leaving

2v2PðhÞ 1� v2sz
v2pr

 !

¼ v2px 1� v2sz
v2pr

 !
sin2h þ v2pz 1� v2sz

v2pr

 !
cos2h

þ v2px 1� v2sz
v2pr

 !
sin2h þ v2pz 1� v2sz

v2pr

 !
cos2h

" #28<
:

þ v2p1v
2
p2 1�v2sz

v2pr

 !2
�v2pxv

2
pz 1� v2sz

v2pr

 !22
4

3
5sin22h

9=
;
1=2

:

ð34Þ

All the terms involving the reference velocity now

cancel out to give the simpler three-parameter

approximation

2v2PðhÞ ¼ v2pxsin
2h þ v2pzcos

2h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v2pxsin2h þ v2pzcos

2h�2 þ ðv2p1v2p2 � v2pzv
2
pxÞsin22h

q
ð35Þ

¼ v2peðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4peðhÞ þ ðv2p1v2p2 � v2pzv

2
pxÞsin22h

q
ð36Þ

¼ v2peðhÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ðv2p1v2p2 � v2pzv
2
pxÞsin22h

v4peðhÞ

s" #
:

ð37Þ

The simplified approximation in Eq. (35) is for-

mally the same result that one could have obtained by

just setting vsz
2 = 0 in Eq. (27). However, deriving the

result as above demonstrates that one does not actu-

ally have to make the unphysical assumption that the

shear velocity is identically zero. Both Alkhalifah

(1998) and Schoenberg and de Hoop (2000) referred

to the step of setting vsz = 0 as an ‘‘acoustic’’ approx-

imation, but it might better be called ‘‘quasi-acous-

tic’’, because some of the influence of a44 actually still

remains, hidden away now in combination with a13
inside the parameter vp1

2 .
The reference velocity vpr used above can usually

be chosen so that the approximations in Eqs. (29)–

(31) will be valid either if the shear velocity is

relatively small, or if the P-wave anisotropy is not

too great. The smaller the shear velocity, the larger the

P-wave anisotropy can become while retaining a

specified level of accuracy in the approximation,

and likewise, the less the P-wave anisotropy, the

larger the shear velocity can be.

The approximations in Eqs. (30) and (31) are

usually reasonable if the ellipticity of the phase

velocity is not too large. The validity of the

approximations in Eqs. (32) and (33) obviously

depends on how one chooses the parameter vp1
2 .

There are an unlimited number of ways to make

this choice. In general, one should try to bound vp1
2

so that vpmin
2 V vp1

2 V vpmax
2 and vpmin

2 V vp2
2 V vpmax

2 ,

where vpmin and vpmax are the minimum and max-

imum values of vP(h), respectively. This bound will

ensure that Eq. (29) will limit the accuracy of the

overall approximation rather than either Eq. (32) or

Eq. (33).

A few specific choices for the parameter vp1
2 are of

particular interest here. First, setting vp1
2 = vp2

2 =� a13
is equivalent to what one would get by skipping the

factorization in Eq. (27) and just setting vsz = 0 in the

original Eq. (23). As was shown in Fig. 1, this is a

poor approximation, because � a13 usually will not

fall within the range of vP
2(h), so I will not consider it

further here. Next, one could set vp1
2 = vpz

2 and

vp2
2 = vpn

2 . This is equivalent to the approximation used

(in somewhat different form) by Alkhalifah (1998).

With a bit of algebra, it can also be shown to be

equivalent to the approximation used in Eq. (8) of

Stopin (2001). Another reasonable choice might be to

set vp1
2 = vp2

2 = a13 + 2vsz
2 , as suggested in Schoenberg

and de Hoop (2000).Many other choices are also

possible. For example, one could set vp1
2 = vpx

2 , or

vp1
2 = vpzvpx, or vp1

2 = (vpz
2 + vpx

2 )/2, or vp1
� 2=(vpz

� 2 +

vpx� 2) /2. In each of these cases, vp2
2 is then found

from Eq. (25) or Eq. (26). Since each of these

choices would usually satisfy the requirement that

vp1
2 and vp2

2 lie within the range of vP
2(h) one could

expect that they all would lead to reasonable

approximations.

Fig. 2 compares these different choices for the

parameter vp1
2 . The figure has two parts: the first

shows P-wave phase velocity over a range of 0j to



Fig. 2. P-wave phase velocity curves for different choices of the

parameter vp1. The upper plot shows the phase velocity curves, and

the second one shows the errors relative to the exact phase velocity.

The black line is the exact phase velocity for vpz = 4 km/s, vsz = 1

km/s, e= 0.2, and d=� 0.05. The colored lines are different choices

of vp1; the specific values are detailed in the main text. For this

example, all the vp1 choices produce excellent approximations, and

the different lines in the top plot are barely distinguishable.
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90j, and the second shows the relative errors of each

approximation compared to the exact P-wave phase

velocity. The curves are all computed for vpz= 4 km/s,

vsz = 1 km/s, e = 0.2, and d =� 0.05, as are all similar

plots for the rest of this paper. The black curve

represents the exact P-wave phase velocity, so in the

relative error plot it is a horizontal line at value zero.

The first approximation (vp1
2 = vpz

2 ) is the red line, the

second approximation (vp1
2 = a13 + 2vsz

2 ) is the dark

blue line, the third approximation (vp1
2 = vpx

2 ) is the

green line, the fourth approximation (vp1
2 = vpzvpx) is

the yellow line, the fifth approximation (vp1
2 = (vpz

2 +

vpx
2 )/2) is light blue line, and the sixth approxima-

tion (vp1
� 2 = (vpz

� 2 + vpx
� 2 )/2) is the brown line. All

the approximations work very well for this exam-

ple, so well in fact that the curves in the upper plot
are essentially indistinguishable, and all have a

maximum relative error of a small fraction of a

percent.

Eq. (37) can be approximated further by expand-

ing the square root in a Taylor expansion. Note

from Eq. (26) that in the limit of vsz#0 one gets

vp1
2 vp2

2 = vpz
2 vpn

2 independent of the particular choice

of vp1
2 . Thus it should usually be reasonably accu-

rate to expect that Avp1
2 vp2

2 � vpz
2 vpx

2 Abvpe
4 (h), so

only the first linear term of the Taylor expansion

should be needed. The resulting error can be

estimated from the standard Taylor expansion error

expression if required.

Linearizing Eq. (37) in this manner then gives

v2PðhÞ ¼ v2peðhÞ 1þ
v2p1v

2
p2 � v2pzv

2
pxÞsin2hcos2h

v4peðhÞ

" #

ð38Þ

¼
v4pzcos

4h þ v2pzv
2
px 1þ v2

p1
v2
p2

v2pzv
2
px

� �
sin2hcos2h þ v4pxsin

4h

v2pzcos
2h þ v2pxsin

2h
:

ð39Þ

This is now in exactly the general Muir–Dellinger

rational fraction form (Muir and Dellinger, 1985;

Dellinger et al., 1993). Linearizing the three-parame-

ter P-wave approximation thus gives this rational

fraction form independent of the particular choice of

the parameter vp1.

The parametrization choice vp1 = vpz and vp2 = vpn is

particularly convenient because vpn has a familiar

interpretation as a moveout velocity and can often be

measured from surface seismic data. With this choice,

the first approximation in Eqs. (36) and (37) becomes

Approximation P1

2v2PðhÞ ¼ v2peðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4peðhÞ þ v2pzðv2pn � v2pxÞsin22h

q
ð40Þ

¼ v2peðhÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

v2pzðv2pn � v2pxÞsin22h
v4peðhÞ

s" #
:

ð41Þ

This is equivalent to the ‘‘empirical approximation’’ of

Stopin (2001), and also corresponds to the dispersion

relation approximation used by Alkhalifah (1998).
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With the same parameter choice of vp1 = vpz the

Muir–Dellinger approximation in Eq. (38) simplifies

to

Approximation P2

v2PðhÞ ¼ v2peðhÞ þ
v2pzðv2pn � v2pxÞ

v2peðhÞ
sin2hcos2h: ð42Þ

This is equivalent to the specific parametrization used

in Dellinger et al. (1993). It is also equivalent to the

dispersion relation approximation derived by Klie and

Toro (2001).

This approximation can be carried one step further

by writing Eq. (42) as

v2PðhÞ ¼ v2peðhÞ 1þ
v2pzðv2pn � v2pxÞ

v4peðhÞ
sin2hcos2h

" #
: ð43Þ

Taking the square root of both sides and linearizing

the resulting radical on the right side then gives

Approximation P3

vPðhÞ ¼ vpeðhÞ þ
v2pzðv2pn � v2pxÞ

2v3peðhÞ
sin2hcos2h: ð44Þ

Another useful approximation can be derived by

setting vpe(h)c vpz in the denominator of the second

(anelliptic) term of Eq. (42), yielding

Approximation P4

v2PðhÞ ¼ v2peðhÞ þ ðv2pn � v2pxÞsin2hcos2h ð45Þ

¼ v2pzcos
2h þ v2pnsin

2hcos2h þ v2pxsin
4h: ð46Þ

This is the simple form suggested by Harlan (1995),

and is also equivalent to the ‘‘weak-anisotropy-

squared’’ approximation of Stopin (2001). The nature

of the approximation vpe(h)c vpz suggests that this

form is most accurate near vertical, and for media in

which the ellipticity e is small. Note that approxima-

tion P4 is linear if one uses the squared velocities as

material parameters.

Approximation P4 can be linearized one step

further just as P2 was, giving

Approximation P5

vPðhÞ ¼ vpeðhÞ þ
ðv2pn � v2pxÞ
2vpeðhÞ

sin2hcos2h: ð47Þ
Many slightly different perturbations in the anel-

liptic term in approximation P2 can also lead to other

reasonable approximations. One possibility is to mod-

ify the vpe
2 (h) factor in the denominator by replacing

vpx
2 with (vpn

4 /vpx
2 ) to get

Approximation P6

v2PðhÞ ¼ v2peðhÞ þ
v2pzðv2pn � v2pxÞ

v2pzcos
2h þ

v4pn

v2px
sin2h

sin2hcos2h:

ð48Þ
The motivation for this particular approximation is

probably not apparent now, but it will be shown later

to lead to the moveout approximation used by Tsvan-

kin and Thomsen (1994). Approximation P6 can also

again be further linearized, yielding

Approximation P7

vPðhÞ ¼ vpeðhÞ þ
v2pzðv2pn � v2pxÞ

2vpeðhÞ v2pzcos
2h þ v4pn

v2px
sin2h

h i

 sin2hcos2h:

ð49Þ
One can also derive approximations directly from

the exact phase velocity expression without suppress-

ing vsz as a parameter. The exact P-wave phase

velocity expression from Eq. (21) can be rewritten as

2v2PðhÞ ¼ v2peðhÞ þ v2sz þ ½v2peðhÞ � v2sz�




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ða13 þ vszÞ2 � ðv2pz � v2szÞðv2px � v2szÞ
½v2peðhÞ � v2sz�

2
sin22h

vuut :

ð50Þ
Linearizing the radical on the right then gives

2v2PðhÞ ¼ v2peðhÞ þ v2sz þ ½v2peðhÞ � v2sz�


 1þ
ða13þvszÞ2�ðv2pz� v2szÞðv2px�v2szÞ

2½v2peðhÞ�v2sz�
2

sin22h

( )
:

ð51Þ
Using the substitution from Eq. (17) this simplifies to

Approximation P8

v2PðhÞ ¼ v2peðhÞ þ
ðv2pz � v2szÞðv2pn � v2pxÞ

v2peðhÞ � v2sz
sin2hcos2h:

ð52Þ

This can again be linearized one more time to yield.
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Approximation P9

vPðhÞ ¼ vpeðhÞ þ
ðv2pz � v2szÞðv2pn � v2pxÞ
2vpeðhÞ½v2peðhÞ � v2sz�

sin2hcos2h:

ð53Þ
Approximations P8 and P9 are very similar to approx-

imations P2 and P3, but without the simplifying

elimination of the extra vsz parameter.

All of the preceding approximations take the form

of anelliptic perturbations away from the elliptical

velocity vpe(h) or its square vpe
2 (h). It is also possible

to derive alternative approximations based on other

expansions. As an example, approximation P4 in Eq.

(46) can be expanded around the vertical velocity vpz
instead of the elliptical velocity vpe(h), giving

v2PðhÞ ¼ v2pz 1þ
v2pn

v2pz
� 1

 !
sin2hcos2h

"

þ
v2px

v2pz
� 1

 !
sin4h�: ð54Þ

Taking the square root of each side and linearizing the

resulting radical then gives

Approximation P10

vPðhÞ ¼ vpz 1þ 1

2

v2pn

v2pz
� 1

 !
sin2hcos2h

"

þ 1

2

v2px

v2pz
� 1

 !
sin4h

#
ð55Þ

¼ vpz 1þ cos2h þ
v2pn

v2pz
sin2hcos2h þ

v2px

v2pz
sin4h

 !

ð56Þ

¼ vpz 1þ dsin2hcos2h þ esin4h
� �

: ð57Þ

This is now the approximation suggested by Thom-

sen (1986). Unfortunately, expanding around the

vertical velocity vpz has made approximation P10

no longer fit the horizontal P-wave velocity vpx
correctly, which makes wide angle propagation less

accurate.

All these various P-wave phase velocity

approximations are summarized in Table 2.
Corresponding approximations can be developed

expressing the SV-wave phase velocity as per-

turbations away from a circular velocity function.

These SV-wave approximations are also summari-

zed in Table 2. In deriving these SV-wave phase

velocity approximations, I used Eq. (22) to asso-

ciate a matching vSV
2 (h) approximation with each

of the vP
2(h) approximations P1, P2, P4, P6, and

P8. Approximations SV2, SV4, SV6, and SV8 can

in turn each be further linearized to get the other

vSV(h) approximations SV3, SV5, SV7, and SV9.

For convenience in comparing with other pub-

lished approximations, and for later use in deriv-

ing group velocity approximations, I have also

used Eq. (16) to replace the factors of vpn
2 � vpx

2

with equivalent factors of vsz
2 � vsn

2 in all the SV-

wave phase velocity approximations.

Several features of these SV-wave phase velocity

approximations are worth noting. Approximation SV1

is equivalent to the ‘‘empirical approximation’’ of

Stopin (2001). Similarly, approximation SV4 is equiv-

alent to the ‘‘weak anisotropy squared’’ SV approxi-

mation of Stopin (2001). Approximation SV4 has

other properties worth noting. It is linear in the

squared velocity parameters, and requires only the

two shear wave velocities vsn and vsz as parameters.

Approximation SV4 can also be cast into the equiv-

alent rational fraction form

v2SVðhÞ¼
v4sxsin

4hþv2szv
2
sx 1þ v2sn

v2sx

� �
sin2hcos2hþv4szcos

4h

v2szcos
2h þ v2sxsin

2h
;

ð58Þ

in which form it can be recognized as also equivalent

to the SV-wave phase velocity approximation of

Dellinger et al. (1993). Approximation SV5, the result

of further linearization of approximation SV4, can

also be written as

vSVðhÞ ¼ vszð1þ rsin2hcos2hÞ; ð59Þ

which is just the SV-wave approximation intro-

duced by Thomsen (1986). Because the horizontal

and vertical velocities are the same for SV waves,

unlike the P-wave case, there is now no need to

distinguish a separate expansion around vertical



Table 2

Phase velocity approximations

P1
2v2PðhÞ ¼ vpeðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4peðhÞ þ v2pzðv2pn � v2pxÞsin22h

q

P2
v2PðhÞ ¼ v2peðhÞ þ

v2pzðv2pn � v2pxÞ
v2peðhÞ

sin2hcos2h

P3
vPðhÞ ¼ vpeðhÞ þ

v2pzðv2pn � v2pxÞ
2v3peðhÞ

sin2hcos2h

P4 v2PðhÞ ¼ v2peðhÞ þ ðv2pn � v2pxÞsin2hcos2h

P5
vPðhÞ ¼ vpeðhÞ þ

ðv2pn � v2pxÞ
2vpeðhÞ

sin2hcos2h

P6
v2PðhÞ ¼ v2peðhÞ þ

v2pzðv2pn � v2pxÞ
v2pzcos

2h þ v4pnv
�2
px sin

2h
sin2hcos2h

P7
vPðhÞ ¼ vpeðhÞ þ

v2pzðv2pn � v2pxÞ
2vpeðhÞðv2pzcos2h þ v4pnv

�2
px sin

2hÞ

 sin2hcos2h

P8
v2PðhÞ ¼ v2peðhÞ þ

ðv2pz � v2szÞðv2pn � v2pxÞ
v2peðhÞ � v2sz

sin2hcos2h

P9
vPðhÞ ¼ vpeðhÞ þ

ðv2pz � v2szÞðv2pn � v2pxÞ
2vpeðhÞ½v2peðhÞ � v2sz�

sin2hcos2h

P10
2vPðhÞ ¼ vpz 1þ cos2h þ

v2pn

v2pz
sin2hcos2h þ

v2px

v2pz
sin4h

 !

SV1 2v2SVðhÞ ¼ 2v2sz þ v2peðhÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4peðhÞ þ v2pzðv2sz � v2snÞsin22h

q

SV2
v2SVðhÞ ¼ v2sz �

v2pzðv2sz � v2snÞ
v2peðhÞ

sin2hcos2h

SV3
vSVðhÞ ¼ vsz �

v2pzðv2sz � v2snÞ
2vszv2peðhÞ

sin2hcos2h

SV4 v2SVðhÞ ¼ v2sz � ðv2sz � v2snÞsin2hcos2h

Table 2 (continued)

SV5
vSVðhÞ ¼ vsz �

v2sz � v2sn
vsz

sin2hcos2h

SV6
v2SVðhÞ ¼ v2szðhÞ �

v2pzðv2sz � v2snÞ
v2pzcos

2h þ v4pnv
�2
px sin

2h


 sin2hcos2h

SV7
vSVðhÞ ¼ vszðhÞ �

v2pzðv2sz � v2snÞ
2vszðv2pzcos2h þ v4pnv

�2
px sin

2hÞ

 sin2hcos2h

SV8
v2SVðhÞ ¼ v2sz �

ðv2pz � v2szÞðv2sz � v2snÞ
v2peðhÞ � v2sz

sin2hcos2h

SV9
vSVðhÞ ¼ vsz �

ðv2pz � v2szÞðv2sz � v2snÞ
2vsz½v2peðhÞ � v2sz�

sin2hcos2h
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velocity for SV waves as was done to derive

approximation P10.

These are of course not the only possible P-wave or

SV-wave approximations. Further approximations

could be derived by various other modifications of

the anelliptic terms. One could also potentially gain

greater accuracy by retaining higher order terms in a

Taylor, Padé, or similar expansion to replace the

various square roots. Some examples of higher order

approximations are presented by Gaiser (1989), Del-

linger et al. (1993), and Schoenberg and de Hoop

(2000).

Fig. 3 compares the different P-wave phase

velocity approximations P1 through P10.The mod-

el parameters used are again vpz = 4 km/s, vsz = 1

km/s, e = 0.2, and d =� 0.05. In this figure, there

are 11 curves. The solid black line represents the

exact P-wave phase velocity, approximation P1 is

the black dashed line, P2 is solid red, P3 is

dashed red, P4 is solid blue, P5 is dashed blue,

P6 is solid green, P7 is dashed green, P8 is solid

yellow, P9 is dashed yellow, and P10 is dashed

light blue. The upper plot compares the different

phase velocity approximations, and the second

shows the errors relative to the exact phase

velocity. Note, however, that both the patterns of



Fig. 3. P-wave phase velocity approximations. The upper plot

shows various P-wave phase velocity approximations, and the lower

plot shows the relative errors compared to the exact P-wave phase

velocity. The black line is the exact P-wave phase velocity for

vpz= 4 km/s, e= 0.2, and d=� 0.05, and vsz= 1 km/s. Approxima-

tion P1 is the black dashed line, P2 is solid red, P3 is dashed red, P4

is solid blue, P5 is dashed blue, P6 is solid green, P7 is dashed

green, P8 is solid yellow, P9 is dashed yellow, and P10 is dashed

light blue.

Fig. 4. SV-wave phase velocity approximations. The upper plot

shows various SV-wave phase velocity approximations, and the

lower plot shows the relative errors compared to the exact SV-wave

phase velocity. The black line is the exact SV-wave phase velocity

for vpz = 4 km/s, e= 0.2, and d=� 0.05, and vsz = 1 km/s.

Approximation SV1 is the black dashed line, SV2 is solid red,

SV3 is dashed red, SV4 is solid blue, SV5 is dashed blue, SV6 is

solid green, SV7 is dashed green, SV8 is solid yellow, and SV9 is

dashed yellow.
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error and the relative accuracy of different approx-

imations can differ significantly depending on the

specific choices of material parameters, so one

should be cautious in drawing any strong conclu-

sions about relative merits of different approxima-

tions from this single figure.

Fig. 4 similarly compares the different SV-wave

phase velocity approximations SV1 through

SV10.The model parameters used are the same as

for Fig. 3, and two plots again show the different

phase velocity approximations and their relative

errors. The solid black line again represents the exact

SV-wave phase velocity, approximation SV1 is the
black dashed line, SV2 is solid red, SV3 is dashed red,

SV4 is solid blue, SV5 is dashed blue, SV6 is solid

green, SV7 is dashed green, SV8 is solid yellow, and

SV9 is dashed yellow. All of the SV-wave phase

velocity approximations have relative errors that are

large compared with those of the P-wave phase

velocity approximations, in part because they are

being compared to an exact value that is much smaller

in magnitude. Note again, too, that this is only one

illustrative example, and the patterns of error and

relative accuracies can differ significantly with differ-

ent choices of material parameters.
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4. Dispersion relation approximations

Imaging methods based on F–K downward extrap-

olation are more naturally formulated using dispersion

relations instead of phase velocity formulas (e.g.,

Gazdag, 1978, or Stolt, 1978). Dispersion relations

can also be used to derive finite-difference extrapola-

tion and imaging approaches (e.g., Claerbout, 1984).

The approximations developed so far in this paper

express the phase velocity as a function of phase angle.

A dispersion relation instead expresses a relationship

between the horizontal phase slowness p= sinh/v(h)
and the vertical phase slowness q = cosh/v(h). For
application, the phase slownesses can be interpreted

in the space-time domain as p= dt/dx and q = dt/dz,

converting the dispersion relation into an eikonal equa-

tion. Alternatively, the phase slownesses can be inter-

preted in the Fourier domain as p=Kx/x and q =Kz/x,

in which case the dispersion relation describes prop-

agation of plane waves. Each Fourier domain dis-

persion relation can then further be converted into a

partial differential wave equation if desired.

The information contained in a velocity function

and in the corresponding dispersion relation is funda-

mentally the same. Each approximation for phase

velocity can be converted into a dispersion relation

equation by dividing through by an appropriate power

of v(h) and making judicious use of the identity

p2 + q2 = 1/v2(h). Doing so for the exact P-wave and

SV-wave phase velocity equation (Eq. (18)) gives the

dispersion relation

2 ¼ ðv2px þ v2szÞp2 þ ðv2pz þ v2szÞq2

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðv2px�v2szÞp2�ðv2pz�v2szÞq2�

2 þ 4ða13 þ v2szÞ
2
p2q2

q
;

ð60Þ

or, expanding all terms into a polynomial equation,

v2pxv
2
sz p

4 þ v2pzv
2
szq

4 þ ½v2pzv2px þ v4sz � ða213 þ v2szÞ
2�p2q2

� ðv2px þ v2szÞp2 � ðv2pz þ v2szÞq2 þ 1 ¼ 0:

ð61Þ
The general quasi-acoustic P-wave phase velocity

approximation in Eq. (34) similarly corresponds to the

dispersion relation

2 ¼ v2pxp
2 þ v2pzq

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2pxp2 þ v2pzq

2Þ2 þ 4ðv2p1v2p2 � v2pzv
2
pxÞp2q2

q
;

ð62Þ
or, expanded again into a polynomial equation,

v2pxp
2 þ v2pzq

2 þ ðv2p1v2p2 � v2pzv
2
pxÞp2q2 � 1 ¼ 0: ð63Þ

As one might expect, this is the same result one would

get from applying the factorization from Eq. (24) to

(61) and then setting vsz= 0. For the specific choice of

vp1 = a13 + 2vsz
2 , Eq. (63) reduces to Eq. (37) of

Schoenberg and de Hoop (2000). The choice instead

of vp1 = vpz gives

v2pxp
2 þ v2pzq

2 þ v2pzðv2pn � v2pxÞp2q2 � 1 ¼ 0: ð64Þ

This is the dispersion relation corresponding to

approximation P1, and also agrees with Eq. (5)

of Alkhalifah (1998). Dispersion relations for the

other P-wave and SV-wave approximations can

be derived similarly and are summarized in

Table 3.

For imaging using downward continuation meth-

ods, one usually wants to solve for q as a function of

p. Each of the dispersion relation approximations can

be expanded into a polynomial equation. The exact

dispersion relation, and approximations P2, P4, P6,

P8, SV1, SV2, SV4, SV6, and SV8, all yield fourth

order polynomial equations that contain only even-

order powers of p and q, so they can be solved as

quadratic equations in the squared variables. Approx-

imations P3, P5, P7, P9, SV3, SV5, SV7, and SV9

give eighth order polynomial equations, and require

the solution of full quartic equations in the squared

variables. Approximation P1 has the attractive prop-

erty that it can be solved immediately as a quadratic

equation in q to give

qðpÞ ¼ 1

vpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2pxp

2

1þ ðv2pn � v2pxÞp2

s
: ð65Þ

As pointed out by Alkhalifah (1998), the vpz factors

in the P1 dispersion relation of Eq. (64) can always be

paired with matching q factors, which allows separa-

tion of imaging from depth conversion in laterally



Table 3

Dispersion relation approximations

P1 2 ¼ v2pxp
2 þ v2pzq

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2pxp2 þ v2pzq

2Þ2 þ 4v2pzðv2pn � v2pxÞp2q2
q

P2
1 ¼ v2pxp

2 þ v2pzq
2 þ

v2pzðv2pn � v2pxÞp2q2

v2pxp
2 þ v2pzq

2

P3
1 ¼ ðv2pxp2 þ v2pzq

2Þ1=2 þ
v2pzðv2pn � v2pxÞp2q2

2ðv2pxp2 þ v2pzq
2Þ3=2

P4
1 ¼ v2pxp

2 þ v2pzq
2 þ

ðv2pn � v2pxÞp2q2

p2 þ q2

P5
1 ¼ ðv2pxp2 þ v2pzq

2Þ1=2 þ
ðv2pn � v2pxÞp2q2

2ðp2 þ q2Þðv2pxp2 þ v2pzq
2Þ1=2

P6
1 ¼ v2pxp

2 þ v2pzq
2 þ

v2pzðv2pn � v2pxÞp2q2

v4pnv
�2
px p

2 þ v2pzq
2

P7 1 ¼ ðv2pxp2 þ v2pzq
2Þ1=2

þ
v2pzðv2pn � v2pxÞp2q2

2ðv2pxp2 þ v2pzq
2Þ1=2ðv4pnv�2

px p
2 þ v2pzq

2Þ

P8
1 ¼ v2pxp

2 þ v2pzq
2 þ

ðv2pz � v2szÞðv2pn � v2pxÞp2q2

v2pxp
2 þ v2pzq

2 � v2szðp2 þ q2Þ

P9 1 ¼ ðv2pxp2 þ v2pzq
2Þ1=2

þ
ðv2pz � V 2

szÞðv2pn � v2pxÞp2q2

2ðv2pxp2 þ v2pzq
2Þ1=2½v2pxp2 þ v2pzq

2 � v2szðp2 þ q2Þ�

P10 1 ¼ Vpzðp2 þ q2Þ�3=2


 ðp2 þ q2Þ2 þ q2ðp2 þ q2Þ þ p2

v2pz
ðv2pxp2 þ v2pnq

2Þ
" #

SV1 2 ¼ 2v2szðp2 þ q2Þ þ v2pxp
2 þ v2pzq

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2pxp2 þ v2pzq

2Þ2 þ 4v2pzðv2sz � v2snÞp2q2
q

SV2
1 ¼ v2szðp2 þ q2Þ �

v2pzðv2sz � v2snÞp2q2

v2pxp
2 þ v2pzq

2

Table 3 (continued)

SV3
1 ¼ vszðp2 þ q2Þ1=2 �

v2pzðv2sz � v2snÞp2q2

2vszðp2 þ q2Þ1=2ðv2pxp2 þ v2pzq
2Þ

SV4
1 ¼ v2szðp2 þ q2Þ � ðv2sz � v2snÞp2q2

p2 þ q2

SV5
1 ¼ vszðp2 þ q2Þ1=2 � ðv2sz � v2snÞp2q2

2vszðp2 þ q2Þ3=2

SV6
1 ¼ v2szðp2 þ q2Þ �

v2pzðv2sz � v2snÞp2q2

v4pnv
�2
px p

2 þ v2pzq
2

SV7
1 ¼ vszðp2 þ q2Þ1=2 �

v2pzðv2sz � v2snÞp2q2

2vszðp2q2Þ1=2ðv4pnv�2
px p

2 þ v2pzq
2Þ

SV8
1 ¼ v2szðp2 þ q2Þ �

ðv2pz � vszÞðv2sz � v2snÞp2q2

v2pxp
2 þ v2pzq

2 � v2szðp2 þ q2Þ

SV9 1 ¼ vszðp2 þ q2Þ1=2

�
ðv2pz � v2szÞðv2sz � v2snÞp2q2

2vszðp2 þ q2Þ1=2½ðv2pxp2 þ v2pzq
2 � v2szðp2 þ q2Þ�
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invariant media. If one defines the vertical two-way

P-wave travel time sP in such media as sP= z/vpz then
q = dt/dz=(dt/dsP)(dsP/dz) = r/vpz where ru dt/dsP.
Eq. (65) then becomes

rðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2pxp
2

1þ ðv2pn � v2pxÞp2

s
: ð66Þ

The vertical velocity vpz now no longer appears ex-

plicitly. This means that P-wave imaging can be

performed using only the two parameters vpn and vpx,

as previously concluded by Alkhalifah and Tsvankin

(1995). Depth conversion from sP to z using vpz can

then be postponed to a separate subsequent step. This

is very useful, because vpx and vpn can be estimated

from surface seismic data, whereas vpz will usually

require additional borehole data to evaluate. This

convenient decoupling of P-wave imaging from depth

conversion has been used previously for imaging in the
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presence of elliptic anisotropy with a vertical symme-

try axis (ver West, 1989), and the P1 approximation

extends it to the more physically realistic case of VTI.

Note that the P2, P3, P6, and P7 approximations also

have this same useful property, but the other P-wave

phase velocity approximations given here appear not

to.

The preceding discussion of phase velocity func-

tions and dispersion relations formally holds only for

homogeneous media, but can be extended to vertically

stratified VTI media using essentially the same meth-

ods as are commonly used for layered isotropic media.

Snell’s law still holds for the phase velocities, and can

be used to refract rays at each layer interface for ray

shooting methods. Phase shift migration methods

(Gazdag, 1978; Dubrulle, 1983) can use the aniso-

tropic dispersion relations in the wave number domain

to extrapolate waves downward, just as for the iso-

tropic case. Based on either of these approaches, the

possibility of P-wave imaging using only the two

parameters vpx and vpn for each layer can be extended

from homogeneous media to layered media, with the

interval vertical velocities vpz again needed only for

depth conversion.

For both ray shooting and for phase shift mi-

gration, it is useful to be able to express the phase

velocity directly as a function of the horizontal

slowness p. This can be done by expanding each

dispersion relation into polynomial form, substitut-

ing q2=(1/v2)� p2, and then multiplying the result-

ing expression through by the appropriate power of

v2. Solving for v( p) then entails the same degree of

difficulty of solving a quadratic or quartic polyno-

mial equation as does solving the corresponding

dispersion polynomial for q( p). Approximation P1

is again perhaps the easiest case to solve, with Eq.

(64) becoming

v2PðpÞ ¼
v2pz½1þ ðv2pn � v2pxÞp2�

1þ ðv2pz � v2pxÞp2 þ v2pzðv2pn � v2pxÞp4
: ð67Þ

The approximate dispersion relations can also be

further converted into corresponding differential wave

equations. To do so, one can write the dispersion

relation in expanded polynomial form, substitute

p =Kx/x and q=Kz/x, multiply through by enough

powers of x to clear the denominators, and then
further substitute Kx!� i(B/Bx) and x! i(B/Bt).

Alkhalifah (2000) used this approach to convert the

P1 dispersion relation approximation into a fourth-

order partial differential equation that could be solved

numerically using a finite-difference scheme. Klie and

Toro (2001) further approximated Alkhalifah’s meth-

od to derive a simpler partial differential equation that

was only second order in time. Klie and Toro’s (2001)

approximation can be shown to be equivalent to the

P2 approximation given here. Converting the disper-

sion relations to differential equations in this manner

allows one to handle lateral variations in the velocity

parameters as well as vertical ones. Alkhalifah et al.

(2001) have shown that even in the presence of lateral

velocity variation, most P-wave imaging in VTI media

can still be performed remarkably accurately using

only the two parameters vpx and vpn.
5. Group velocity approximations

For imaging in space-time coordinates it is often

preferable to work with the group angle / and group

velocity V(/) instead of the phase angle h and phase

velocity v(h). In general, the group velocity and group

angle can be found from the phase velocity and phase

angle via the relations

V 2ð/Þ ¼ v2ðhÞ þ dvðhÞ
dh

� �2
ð68Þ

and

tanð/ � hÞ ¼ 1

vðhÞ
dvðhÞ
dh

: ð69Þ

For the elliptic SH-wave case, one can solve

explicitly in closed form for group velocity V(/),
with the resulting expression having the same

elliptic form as the phase velocity Eq. (1), but with

slownesses (reciprocal velocities) substituted every-

where for velocities:

V�2
SH ð/Þ ¼ v�2

pz cos
2/ þ v�2

px sin
2/: ð70Þ

For exact or approximate P-wave or SV-wave phase

velocities in VTI media, I know of no such simple

explicit solution for group angles and velocities, so

the latter must be derived numerically from the
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phase angles and velocities. However, Muir and

Dellinger (1985), Dellinger et al. (1993), and Har-

lan (1995) have all suggested using the substitution

of group slownesses for phase velocities to obtain

reasonable approximations for cases other than just

elliptic SH waves. Dellinger and Muir (1985)

pointed out that under this substitution the general

Eqs. (68) and (69) defining the relations between

phase and group parameters yield the equally valid

and nicely symmetric relations

v�2ðhÞ ¼ V�2ð/Þ þ dV�1ð/Þ
d/

� �2
ð71Þ

and

tanðh � /Þ ¼ V ð/Þ d½V
�1ð/Þ�
d/

; ð72Þ

which at least argues for the plausible applicability

of this approximation. The obvious drawback of

depending on this heuristic substitution is that

quantitative error analysis is now much more diffi-

cult; the countervailing advantage is that it allows

us to perform direct computations with the group

angles and velocities.

Making this substitution directly into the exact

phase velocity equation (Eq. (18)) does not yield

viable group velocity approximations. However,

transforming the P1 approximation in Eq. (40) does

work reasonably well, yielding the group velocity

approximation

2V�2
P ð/Þ ¼ V�2

pe ð/Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�4
pe ð/Þ þ v�2

pz ðv�2
pn � v�2

px Þsin22/
q

;

ð73Þ

where I define the elliptical P-wave group velocity

Vpe(/) by

V�2
pe ð/Þuv�2

px sin
2/ þ v�2

pz cos
2/: ð74Þ

Eq. (73) can also be shown to be identical to Eq. (6) of
Zhang and Uren (2001) if the specific choice is made

of A= 2g for their free parameter A.

Dellinger et al. (1993) used a similar transforma-

tion to convert the P2 approximation in Eq. (42) into

V�2
P ð/Þ ¼ V�2

pe ð/Þ þ
v�2
pz ðv�2

pn � v�2
px Þ

V�2
pe ð/Þ sin2/cos2/

ð75Þ

and the SV4 approximation into

V�2
SV ð/Þ ¼ v�2

sz � ðv�2
sz � v�2

sn Þsin2/cos2/: ð76Þ

Harlan (1995) similarly suggested converting the P4

approximation into

V�2
P ð/Þ ¼ V�2

pe ð/Þ þ ðv�2
pn � v�2

px Þsin2/cos2/: ð77Þ

This last form is also equivalent to the one used by

Byun et al. (1989).

The same substitution of group slownesses for

phase velocities can also be used similarly to convert

the other phase velocity approximations into

corresponding group velocity approximations. These

group velocity approximations can also generally be

derived from each other by successive approximations

analogous to those used in deriving the phase velocity

approximations. All these group velocity approxima-

tions are summarized in Table 4.

Note that in computing the phase velocity

approximations one could make free use of Eq.

(16) to interchange factors of vpn
2 � vpx

2 with factors

of vsx
2 � vsn

2 as convenient. This substitution is no

longer so useful for group velocities. The simple

heuristic substitution of group slownesses for phase

velocities into Eq. (16) is quite inaccurate; the

actual corresponding relation for slownesses is

instead

v�2
pn � v�2

px ¼ v2sxv
2
sn

v2pxv
2
pn

ðv�2
sx � v�2

sn Þ: ð78Þ

Thus one could actually derive two quite diffe-

rent sets of group velocity approximations, one

using factors of vpn
� 2 � vpx

� 2 and the other using

vsx
�2 � vsn

� 2. Thus, as a simple example, one could



Table 4

Group velocity approximations

P1 2V�2
P ð/Þ ¼ V�2

pe ð/Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�4
pe ð/Þ þ v�2

pz ðv�2
pn � v�2

px Þsin22/
q

P2
V�2
P ð/Þ ¼ V�2

pe ð/Þ þ
v�2
pz ðv�2

pn � v�2
px Þ

V�2
pe ð/Þ sin2/cos2/

P3
V�1
P ð/Þ ¼ V�1

pe ð/Þ þ
v�2
pz ðv�2

pn � v�2
px Þ

2V�3
pe ð/Þ sin2/cos2/

P4 V�2
P ð/Þ ¼ V�2

pe ð/Þ þ ðv�2
pn � v�2

px Þsin2/cos2/

P5
V�1
P ð/Þ ¼ V�1

pe ð/Þ þ
ðv�2

pn � v�2
px Þ

2V�1
pe ð/Þ sin2/cos2/

P6
V�2
P ð/Þ ¼ V�2

pe ð/Þ þ
v�2
pz ðv�2

pn � v�2
px Þ

v�2
pz cos

2/ þ v�4
pn v

2
pxsin

2/


 sin2/cos2/

P7
V�1
P ð/Þ ¼ V�1

pe ð/Þ þ
v�2
pz ðv�2

pn � v�2
px Þ

2V�1
pe ð/Þðv�2

pz cos
2/ þ v�4

pn v
2
pxsin

2/


 sin2/cos2/

P8
V�2
P ð/Þ ¼ V�2

pe ð/Þ þ
ðv�2

pz � v�2
sz Þðv�2

pn � v�2
px Þ

V�2
pe ð/Þ � v�2

sz

sin2/cos2/

P9
V�1
P ð/Þ ¼ V�1

pe ð/Þ þ
ðv�2

pz � v�2
sz Þðv�2

pn � v�2
px Þ

2V�1
pe ð/Þ½V�2

pe ð/Þ � v�2
sz

sin2/cos2/

P10 2V�1
P ð/Þ ¼ v�1

pz ½1þ cos2/ þ v2pzv
�2
pn sin

2/cos2/

þ v2pzv
�2
px sin

4/�

SV1 2V�2
SV ð/Þ ¼ 2v�2

sz þ V�2
pe ð/Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�4
pe ð/Þ þ v�2

pz ðv�2
sz � v�2

sn Þsin22/
q

SV2
V�2
SV ð/Þ ¼ v�2

sz �
v�2
pz ðv�2

sz � v�2
sn Þ

V�2
pe ð/Þ sin2/cos2/

SV3
V�1
SV ð/Þ ¼ v�1

sz �
v�2
pz ðv�2

sz � v�2
sn Þ

2v�1
sz V

�2
pe ð/Þ sin2/cos2/

Table 4 (continued)

SV4 V�2
SV ð/Þ ¼ v�2

sz � ðv�2
sz � v�2

sn Þsin2/cos2/

SV5
V�1
SV ð/Þ ¼ v�1

sz � ðv�2
sz � v�2

sn Þ
2v�1

sz

sin2/cos2/

SV6
V�2
SV ð/Þ ¼ v�2

sz �
v�2
pz ðv�2

sz � v�2
sn Þ

v�2
pz cos

2/ þ v�4
pn v

2
pxsin

2/
sin2/cos2/

SV7
V�1
SV ð/Þ ¼ v�1

sz �
v�2
pz ðv�2

sz � v�2
sn Þ

2v�1
sz ðv�2

pz cos
2/ þ v�4

pn v
2
pxsin

2/Þ

 sin2/cos2/

SV8
V�2
SV ð/Þ ¼ v�2

sz �
ðv�2

pz � v�2
sz Þðv�2

sz � v�2
sn Þ

v�2
pe ð/Þ � v�2

sz

sin2/cos2/

SV9
V�1
SV ð/Þ ¼ v�1

sz �
ðv�2

pz � v�2
sz Þðv�2

sz � v�2
sn Þ

2v�1
sz ðV�2

pe ð/Þ � v�2
sz Þ

sin2/cos2/
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write the P4 phase velocity approximation in Eq.

(45) equally well as

vPðhÞ ¼ vpeðhÞ þ ðv2sx � v2snÞsin2hcos2h: ð79Þ

Applying the heuristic substitution of group slow-

ness for phase velocities to these two equivalent

phase velocity expressions, however, results in two

distinct possible group velocity approximations:

V�2
P ð/Þ ¼ V�2

pe ð/Þ þ ðv�2
pn � v�2

px Þsin2/cos2/ ð80Þ

or

V�2
P ð/Þ ¼ V�2

pe ð/Þ þ ðv�2
sx � v�2

sn Þsin2/cos2/: ð81Þ

From Eq. (78) it follows that these two group

velocity approximations will not be equivalent.

Based simply on empirical testing of comparative

accuracy, I have used the first choice in the P-wave

group velocity approximations, writing them in

terms of vpn
� 2 � vpx

� 2 factors, and the second choice

in the SV-wave group velocity approximations,

writing them instead in terms of vsx
� 2 � vsn

� 2

factors.



Fig. 5. P-wave group velocity approximations. The upper plot

shows various P-wave group velocity approximations, and the lower

plot shows the relative errors compared to the exact P-wave group

velocity. The black line is the exact P-wave group velocity for

vpz= 4 km/s, e= 0.2, and d=� 0.05, and vsz= 1 km/s. Approxima-

tion P1 is the black dashed line, P2 is solid red, P3 is dashed red, P4

is solid blue, P5 is dashed blue, P6 is solid green, P7 is dashed

green, P8 is solid yellow, P9 is dashed yellow, and P10 is dashed

light blue.

Fig. 6. SV-wave group velocity approximations. The upper plot

shows various SV-wave group velocity approximations, and the

lower plot shows the relative errors compared to the exact SV-wave

group velocity. The black line is the exact SV-wave group velocity

for vpz = 4 km/s, e= 0.2, and d=� 0.05, and vsz = 1 km/s.

Approximation SV1 is the black dashed line, SV2 is solid red,

SV3 is dashed red, SV4 is solid blue, SV5 is dashed blue, SV6 is

solid green, SV7 is dashed green, SV8 is solid yellow, and SV9 is

dashed yellow.
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Fig. 5 compares the different P-wave group ve-

locity approximations using again the parameters

vpz = 4 km/s, vsz = 1 km/s, e = 0.2, and d=� 0.05.

The upper plot compares the different group velocity

approximations, and the second shows the errors

relative to the exact group velocity, computed now

numerically from the exact phase velocity. The color

coding is the same as in Fig. 3: the solid black line

represents the exact P-wave group velocity, approx-

imation P1 is the black dashed line, P2 is solid red,

P3 is dashed red, P4 is solid blue, P5 is dashed blue,

P6 is solid green, P7 is dashed green, P8 is solid

yellow, P9 is dashed yellow, and P10 is dashed light

blue. Like the phase velocities in Fig. 3, the group
velocity approximations in Fig. 5 are generally quite

accurate, with a maximum error of less than 2%. The

patterns of error for the group velocities are quite

different from those for the phase velocities, howev-

er, so one cannot just assume that the best phase

velocity approximation will automatically correspond

to the best group velocity approximation under the

heuristic substitution used here. In contrast, group

velocities computed numerically by applying Eqs.

(68) and (69) to the various phase velocity approx-

imations will, of course, mirror the error patterns of

the corresponding phase velocities approximations.

Fig. 6 similarly compares the different SV-wave

group velocity approximations, again for the same

model parameters. The color coding is the same as in
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Fig. 4: the solid black line represents the exact SV-

wave group velocity, approximation SV1 is the black

dashed line, SV2 is solid red, SV3 is dashed red, SV4

is solid blue, SV5 is dashed blue, SV6 is solid green,

SV7 is dashed green, SV8 is solid yellow, and SV9 is

dashed yellow. The exact group velocity curve now

actually is triplicating, with only the minimum group

velocity segments of the curve shown in the plot. The

limitations of the approximations made here become

apparent in this figure; none of them fit well near the

triplication. The linearized VSV(/) approximations

(colored dashed lines) all seriously over estimate the

actual group velocity. The various vSV
2 (/) approxi-

mations (colored solid lines) fit reasonably well near

the vertical and horizontal axes, but underestimate the

group velocity near the triplication. The SV1 approx-

imation, which worked very well for the SV-wave

phase velocity, does not fit nearly as well for SV-wave

group velocities. The relative errors of all the SV-

wave group velocity approximations are substantially

worse than for the phase velocities or for the P-wave

group velocities.
6. Travel time approximations

Just as the phase velocity approximations can be

converted into dispersion relations, the group velocity

approximations can be converted into travel time or

moveout equations. These are particularly useful for

space-time imaging methods.

Consider a ray segment travelling at the (group)

angle /, traversing a horizontal distance x, a vertical

distance z, and a time increment t. One then has

sin/ ¼ x

V ð/Þt ð82Þ

cos/ ¼ z

V ð/Þt : ð83Þ

Substituting these expressions into the group ve-

locity approximations gives equivalent travel time

equations. For example, with these substitutions the

P1 group velocity approximation yields the travel time

equation

t4P � ðv�2
px x

2 þ v2pzz
2Þt2 � v�2

pz ðv�2
pn � v�2

px Þx2z2 ¼ 0

ð84Þ
or

2t2P ¼ t2pe þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4pe þ 4v�2

pz ðv�2
pn � v�2

px Þx2z2
q

; ð85Þ

where I define the elliptic travel time tpe by

t2peu
x2

v2px
þ z2

v2pz
: ð86Þ

The other group velocity approximations can simi-

larly be converted into travel time approximations;

the results are summarized in Table 5. In the SV-

wave travel time approximations listed there, I have

used the shorthand definition of the circular shear

velocity

t2scu
x2 þ z2

v2sz
; ð87Þ

in analogy with the elliptic P-wave travel time tpe.

The P1 approximation allows a convenient decou-

pling of imaging and depth conversion in the space-

time domain, just as was possible for the dispersion

relation in the frequency-wave number domain.

Replacing the depth z with the vertical travel time

sP= z/vpz converts the P1 approximation into

2t2P ¼ s2P þ
x2

v2px
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2P þ

x2

v2px

 !2

þ4ðv�2
pn � v�2

px Þx2s2P

vuut :

ð88Þ

The vertical velocity vpz has again disappeared, allow-

ing complete specification of P-wave travel times

using only vpn and vpx. As with the dispersion rela-

tions, this useful decoupling of imaging from depth

conversion again appears to hold also for the P2, P3,

P6, and P7 approximations, but not for the other P-

wave approximations.

The travel time approximation P6 in Table 5 is

written in the form of a perturbation away from the

elliptical travel time tpe, but it can also be recast in the

equivalent form

t2P ¼ s2P þ
x2

v2pn
þ

ðv2pn � v2pxÞx4

v2pnðv4pns2P þ v2pxx
2Þ ; ð89Þ

using again the vertical P-wave travel time sP= z/vpz.
This is the travel time approximation suggested by



Table 5

Travel time approximations

P1
2t2P ¼ t2pe þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4pe þ 4v�2

pz ðv�2
pn � v�2

px Þx2z2
q

P2
t2P ¼ t2pe þ

v�2
pz ðv�2

pn � v�2
px Þx2z2

t2pe

P3
tP ¼ tpe þ

v�2
pz ðv�2

pn � v�2
px Þx2z2

2t3pe

P4
t2P ¼ t2pe þ

v�2
sz ðv�2

pn � v�2
px Þx2z2

t2sc

P5
tP ¼ tpe þ

v�2
sz ðv�2

pn � v�2
px Þx2z2

2tpet2sc

P6
t2P ¼ t2pe þ

v�2
pz ðv�2

pn � v�2
px Þx2z2

v�2
pz z

2 þ v2pxv
�4
pn x

2

P7
tP ¼ tpe þ

ðv�2
pn � v�2

px Þx2z2

2tpeðv�2
pz z

2 þ v2pxv
�4
pn x

2Þ

P8
t2P ¼ t2pe þ

ðv�2
pz � v�2

sz Þðv�2
pn � v�2

px Þx2z2

t2pe � t2sc

P9
tP ¼ tpe þ

ðv�2
pz � v�2

sz Þðv�2
pn � v�2

px Þx2z2

2tpeðt2pe � t2scÞ

P10
tP ¼ v�1

pz vsztsc 1þ z2

v2szt
2
sc

þ
v2pzx

2

v4szt
4
sc

z2

v2pn
þ x2

v2px

 !" #

SV1
2t2SV ¼ 2t2sc þ t2pe �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4pe þ 4v�2

pz ðv�2
sz � v�2

sn Þx2z2
q

SV2
t2SV ¼ t2sc �

v�2
pz ðv�2

sz � v�2
sn Þx2z2

t2pe

SV3
tSV ¼ tsc �

v�2
pz ðv�2

sz � v�2
sn Þx2z2

2tsct2pe

SV4
t2SV ¼ t2sc �

v�2
sz ðv�2

sz � v�2
sn Þx2z2

t2sc

Table 5 (continued)

SV5
tSV ¼ tsc �

v�2
sz ðv�2

sz � v�2
sn Þx2z2

2t3sc

SV6
t2SV ¼ t2sc �

v�2
pz ðv�2

sz � v�2
sn Þx2z2

v�2
pz z

2 þ v2pxv
�4
pn x

2

SV7
tSV ¼ tsc �

ðv�2
sz � v�2

sn Þx2z2
2tscðv�2

pz z
2 þ v2pxv

�4
pn x

2Þ

SV8
t2SV ¼ t2sc �

ðv�2
pz � v�2

sz Þðv�2
sz � v�2

sn Þx2z2

t2pe � t2sc

SV9
tSV ¼ tsc �

ðv�2
pz � v�2

sz Þðv�2
sz � v�2

sn Þx2z2

2tscðt2pe � t2scÞ
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Tsvankin and Thomsen (1994), converted into the

form of Eq. 4.29 of Tsvankin (2001). Note that the

travel time approximation P2, based on the group

velocity approximation of Dellinger et al. (1993), can

similarly be rewritten as

t2P ¼ s2P þ
x2

v2pn
þ

ðv2pn � v2pxÞx4

v2pnv
2
pxðv2pns2P þ x2Þ ; ð90Þ

which differs from the Tsvankin–Thomsen approxi-

mation in Eq. (89) by only the substitution of one

factor of vpx
2 for vpn

2 in the denominator of the third

term. These two approximations, derived originally by

very different reasoning, are thus very similar but not

quite identical.

These approximate travel time equations are for-

mally valid only for homogenous media. For inhomo-

geneous media they can be applied for ray segments

short enough that spatially varying media parameters

can be approximated as being locally homogeneous.

Also, as in the common use of hyperbolic moveout

approximations for conventional velocity analysis in

layered isotropic media, these various anisotropic

travel time equations can also be used to approximate

moveout in vertically inhomogenous VTI media. In

such applications to layered media, the media param-

eters such as vpx and vpn that appear in the travel time

equations are now interpreted as particular vertical

averages of the actual physical parameters in each
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layer (Tsvankin and Thomsen, 1994;Alkhalifah and

Tsvankin, 1995; Tsvankin, 2001).
7. Discussion and Conclusions

Because phase velocities in VTI media have a

closed form analytic solution, they are easier to

approximate well than are the corresponding group

velocities. With a good choice of parametrization, P-

wave phase velocities become nearly independent of

the shear velocity vsz. The key to deriving such a

parametrization is using a factorization of the form

given in Eq. (24). Any choice of vp1 in this factoriza-

tion such that vpmin
2V vp1

2V vpmax
2 and vpmin

2V vp2
2V vp-

pmax
2 will generally allow one to eliminate vsz. The

approximation made then in dropping vsz can be

quantified and does not require recourse to arbitrarily

declaring it to just be zero.

The particular choice of vp1 = vpz and vp2 = vpn
works well, and leads to several other previously

published approximations. Most of these different

approximations will usually be adequately accurate,

so in practice a choice between them might be made

based on factors such as the possible desire to also

eliminate vpz for use in time imaging, the ease of

solving the dispersion relation for q( p) or v( p), or the

importance of having an approximation that is linear

in its parameters.

SV-wave anisotropy is closely coupled to P-wave

anellipticity, and each P-wave phase velocity approx-

imation leads naturally to a corresponding SV-wave

phase velocity approximation. Roughly speaking, P-

wave phase velocities are a perturbation away from

elliptic, and SV-wave phase velocities are the same

perturbation away from circular, but with the opposite

sign. However, because the shear velocities are smaller

than the P-wave velocities, the relative errors in the SV-

wave approximations tend to be larger than the relative

errors of the corresponding P-wave approximations.

Because there is no exact closed form expression

for P-wave and SV-wave group velocities in VTI

media, it is more difficult to derive good approxima-

tions for them. However, a simple heuristic substitu-

tion of group slownesses for phase velocities into the

different phase velocity approximations does general-

ly yield plausible group velocity and travel time

approximations. For P waves, the resulting group
velocity approximations are usually of comparable

accuracy to the corresponding phase velocity approx-

imations. For SV waves, this heuristic substitution

does not always work as well, and the accuracy of the

resulting SV-wave group velocity approximations can

be poor. This is not entirely surprising, because for

SV-wave group velocities one is trying to approximate

a rapidly changing and even multivalued function

with simpler, smoother functions.
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