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Introduction

Geometrical spreading plays an important role for various applications, e.g. true amplitude
migration, estimation of Fresnel zones, divergence corrections. Unfortunately, fast algorithms
for computing traveltimes like FD techniques do not yield amplitudes. They usually must
be calculated by the slower ray methods (dynamic ray tracing).
We make use of the relationship between the wavefront curvature expressed by the
propagator matrix and the ray amplitude derived by Hubral et al. (1992). The propagator
is determined from traveltimes by a hyperbolic variant of the paraxial approximation and
can thus also be used for interpolating traveltimes. This is especially interesting as it can
be applied to intermediate shot and receiver locations.

Method

Taylor expansion of the traveltime curve around a central ray yields the following approxi-
mation for a paraxial ray:

t(sI , gI) = t0 − pI sI + qI gI +
1

2
sI SIJ sJ +

1

2
gI GIJ gJ − sI NIJ gJ .

The source sI (I=1,2) and receiver positions gI (I=1,2) are considered to be located on
arbitrary reference surfaces, e.g., earth surface or reflectors. pI and qI are the slowness vector
components of the central ray at the source and geophone in two-component notation (for
further details, see Bortfeld (1989)). Furthermore we introduce the second order derivative
matrices

SIJ =
∂2t

∂sI∂sJ

, GIJ =
∂2t

∂gI∂gJ

, NIJ = −
∂2t

∂sI∂gJ

.

Knowing that traveltimes are better approximated by hyperbolae (Ursin, 1982) we square the
first equation neglecting spatial terms of higher order than two. This results in (Schleicher
et al., 1993)

t2(sI , gI) = (t0 − pI sI + qI gI)
2 + t0(sI SIJ sJ + gI GIJ gJ − 2sI NIJ gJ)

Combining traveltimes for certain source and receiver positions from multi-coverage
experiments then leads to solving the hyperbolic equation for pI , qI , SIJ , GIJ and NIJ , e.g.,
Gajewski (1998). In traveltime modeling for migration, multifold data is available. Other
than the time information is not needed.



As the paraxial vicinity in which the equation is valid may encompass a number of gridpoints
of the model, we can revert to using only every nth point in either direction depending
on the model. For example n=10 would lead to save a factor of 1000 in storage for three
dimensions. Gridspacing does not need to be the same in every direction which makes
resampling of non-uniform grid data unnecessary.

For the computation of geometrical spreading we employ the following expression obtained
by Hubral et al. (1992)

|L| =
1

vs

√

cos αs cos αg

| detN |

where vs is the velocity at the source. The incidence resp. emergence angles αs and αg can
be computed from the slowness components, i.e.

sin αs =
√

p2

1
+ p2

2
· vs.

For the 2-dimensional problems discussed below the above equation reduces to

|L| =
1

vs

√

cos αs cos αg

|N11|
.

Applications

For the amplitude calculation we present two examples. The first is a homogeneous model
with v=3.0kms−1 with the source at 0.0km in x- and at 0.11km in z-direction. Traveltimes
and reference amplitudes were computed with a wavefront construction routine. The deri-
vatives were computed from traveltimes on a 100m×100m coarse grid and the geometrical
spreading was obtained by bilinear interpolation onto a 10m×10m fine grid. The maximum
error is 1.3% with a median of 0.02%.
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Apart from the area around the source we only find larger errors near z=0 towards higher
offsets. They are caused by αs, αg approaching 90◦ as there the cosine is very sensitive to its
argument’s error. For a migration of reflection data, however, these regions are not important.

The second model has a constant velocity gradient of ∂v/∂z=0.5s−1 and v(z = 0)=3.0kms−1.
The grids and source position are the same as for the homogeneous model. Here the maxi-
mum error is 5.6%, the median 0.05%.
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The application to complex models like e.g. the Marmousi model is on its way. Owing to
the size of heterogeneities, for this model smaller gridspacing is required. However, finer
gridspacing needs higher accuracy in the traveltimes to avoid numerical instabilities since the
moveout is small for small offsets. Up to a certain degree this problem can be compensated by
smoothing the traveltime data. Due to the bilinear interpolation from the coarse onto the fine
grid areas including triplications become a problem. This is to be expected as we use diffe-
rent branches of the traveltime curve to compute slownesses and the NIJ , GIJ , SIJ -matrices.

A future application of our work is locating the triplication points using the NIJ , GIJ , SIJ -
matrices which is important for the implementation of a hybrid finite-differences and
wavefront construction traveltime solver to compute later arrivals efficiently (Ettrich &
Gajewski, 1997).

Summary

We presented a technique for computing the geometrical spreading from traveltimes only.
The accuracy of the results is sufficient for the calculation of migration weights and
divergence corrections. The technique is less time consuming than dynamic ray tracing if
we use a finite-differences algorithm to compute traveltimes.



The algorithm has proved useful also in interpolating traveltimes leading to storage sa-
vings as well as the ability to interpolate traveltimes for varying source and receiver positions.
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