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Abstract

A new formulation of the Green element method (GEM), based on the transient Green’s function of the diffusion differential

operator, is herein used to solve the problem of transient flow in multiply layered aquifers that are separated by aquitards (leaky

strata) which provide hydraulic interactions between them. By adopting the commonly used hydraulic flow approximation, flow

in the aquifers is considered to take place in two lateral dimensions and in one vertical direction in the aquitards. As with an

earlier GE multiaquifer model, the current model solves the one-dimensional flow in the aquitards by the formulation of [Appl.

Math. Model. 22 (1998) 687] but uses the transient Green’s function of the diffusion operator to solve the two-dimensional

aquifer flow instead of the logarithmic Green’s function formulation of [Water Resour. Res. 36 (2000) 3631]. In essence, the

current formulation uses the same form of Green’s functions for both flows in the aquifers and aquitards. While this can be

viewed as an advantage of the current formulation over the previous one, the former presents other computational challenges

and intricacies that are discussed in this paper. Applying the current formulation, and incorporating a Picard-type iterative

algorithm, solutions are provided for regional flows in heterogeneous multiaquifer systems of arbitrary geometries that are

subjected to point and distributed recharge of arbitrary strengths.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Groundwater systems are known to exist as

multilayered aquifers that are separated by leaky

strata through which the transport of water occurs

by an amount dependent on their areal extent, fluid

transmitting and storage capacities and the hydraulic

gradients at the aquifer–aquitard interfaces. Since

the pioneering work of Theis (1935), hydrologists

have shown considerable interest in studying the

mechanisms of flow and storage of water in these

systems.

In modelling multiaquifer systems, two

approaches have generally been followed. These

are the hydrodynamic one which correctly treats

the flow as three dimensional and a hydraulic one

which approximates flow variables as depth-aver-

aged quantities in the aquifers so that flow is

essentially horizontal while that in the aquitards is
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one dimensional in the vertical direction. The latter

approach is now widely accepted in hydrogeologi-

cal circles by virtue of the fact that the enormity of

the computing resources required in solving large

regional multiaquifer systems with the hydrodyn-

amic model cannot be justified, and also because

hydrogeological parameters that are obtained from

field pumping tests reflect depth-averaged 2-D flow

properties. In practice, the hydraulic approach is

justified as long as the contrast in hydraulic

conductivity values between the aquifers and

aquitards are of two orders of magnitude.

Following the hydraulic approach, solution strat-

egies have, broadly speaking, proceeded along a

number of directions. Analytical strategies can be

traced to the work of Theis who, using similar

concepts of heat transfer in an infinite domain,

provided the solution to confined flow to a constant

discharging well in an infinitely extensive homo-

geneous aquifer (Theis, 1935). To accommodate the

complexities of multiply layered aquifers, the

solution of Theis was later extended by Jacob and

Hantush to include an overlying aquitard

and unconfined aquifer (Jacob, 1946; Hantush and

Jacob, 1955). However, in their solutions, they

failed to fully take into consideration the elastic

storage property of the leaky stratum, while

assuming the water table level in the unconfined

medium remained the same for all times as the

underlying aquifer was being pumped. The analyti-

cal solution of Neuman and Witherspoon (1969a,b)

for two laterally infinitely extensive confined

aquifers separated by an aquitard fully accounted

for these elastic storage effects, and their works are

therefore considered as the pioneering analytical

solutions for truly multiaquifer systems. Though

these analytic solutions are quite useful in the

estimation of hydrogeological parameters from field

investigations, they are however of limited use in

modelling aquifer systems of arbitrary geometries

with point and distributed recharge of arbitrary

strengths in space and time.

Computational techniques have largely overcome

many of the limitations of analytical solution

strategies. To that end, finite difference (FD), finite

element (FE), analytic element (AE), boundary

element (BE) and lately Green element (GE) methods

have been applied. They have either been applied to

the coupled aquifer–aquitard equations along the

lines of the theory of Neuman and Witherspoon

(1969a) or to the integro-differential equations of

Herrera (1970). Making use of the former theory are

the FE model of Chorley and Frind (1978), the BE

model of Zakikhani and Aral (1989) and the GE

model of Taigbenu and Onyejekwe (2000), while the

latter theory has been incorporated into the FE model

of Herrera and Yates (1977), the FD models of

Premchitt (1981); Cheng and Ou (1989), and the BE

models of Cheng and Morohunfola (1993). The AE

method has been largely limited in application to

steady groundwater flows (Strack, 1999).

In the current work, the Green element method

(GEM) is applied to the multiaquifer flow problem

along the lines of the theory of Neuman and

Witherspoon (1969a) using the transient Green’s

function of the diffusion differential operator in

contrast to the logarithmic Green’s function earlier

employed in the model of Taigbenu and Onye-

jekwe (2000). As a brief review of the GEM, its

theory is founded on the singular boundary integral

theory that is also utilized in the boundary element

method (BEM), while its computational implemen-

tation involves evaluating the integral equation

from element to element and imposing the

compatibility requirements at inter-element bound-

aries, so that a banded global coefficient matrix is

achieved (Taigbenu, 1999). The element-by-element

approach adopted in GEM lends its solution

process to local nodal support in contrast to BEM

which lends itself to global nodal support so that

GEM is more amenable to handling nonlinearities

and medium heterogeneities. The method is applied

to both the 1-D flow in aquitards and the 2-D flow

in the aquifers. We have earlier demonstrated in

Taigbenu and Onyejekwe (2000) the superiority of

the GEM over the FEM of Chorley and Frind

(1978) in calculating the leakage flux through the

aquitards, and that is not repeated here. The

superiority of that GEM solution is primarily

because of its numerical feature of direct compu-

tation of the leakage flux in contrast to most other

methods that calculate the flux by numerical

differentiation of the hydraulic heads. This paper

compares the solutions of multiply-layered aquifers

obtained from two GE models, one based on the

transient Green’s function of the diffusion operator,
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herein referred to as model 2, and an earlier one

based on the logarithmic Green’s function, referred

to as model 1. The model herein developed has the

capability of simulating flows in multiaquifer

systems with alternating layers of heterogeneous

aquifers and aquitards of varying thicknesses that

are variously stressed point-wise and in a distrib-

uted fashion. Three examples are used to demon-

strate the performance of both models. The results

indicate that the GE models are quite suited to

groundwater well hydraulics in the sense that grid

refinement in the vicinity of wells, as commonly

done in other numerical methods, is avoided. This

is because of the singular nature of the Green’s

functions which allows the singular contribution

from the wells to be correctly represented. The first

two examples have exact solutions with which the

accuracy of the current model is assessed. The third

example of four aquifers and three aquitards with

various abstraction stresses serve to demonstrate the

capabilities of the current model in handling

practically realistic multiaquifer flows. Two flow

scenarios of that example are examined: one with

the uppermost aquifer being confined and the other

being unconfined and recharged naturally. In

addition, there is excellent agreement between the

solutions of the current model (model 2) and those

of the previous one (model 1), although the latter

uses less CPU time per simulation than the current

model.

2. Flow equations

In examining the flow in a multiaquifer system,

consideration is given to a generalized system of M

aquifers that are separated by M 2 1 aquitards.

Though not always the case, the uppermost aquifer

is taken to be an unconfined one. In line with the

approximate hydraulic flow theory of Neuman and

Witherspoon (1969a), the flow in each of the

aquifers is treated as essentially horizontal so that

flow variables do not vary with depth or alterna-

tively considered as depth-averaged quantities.

Aquifer properties are assumed to remain the same

in all directions (isotropy) but can vary from one

location to another (heterogeneity). Furthermore, the

thickness of aquifers is allowed to have spatial

variation. The flow through the aquitards is one-

dimensional in the vertical direction, and it rep-

resents the leakage flux in and out of the aquifers.

For the ith confined aquifer, the governing equation

is (Bear, 1979)

7ðT7hÞi þqLlzt
i
2qLlzb

t
¼ n

›h

›t

� �
i
þfiðx;y; tÞþpi ð1Þ

while that for the Mth unconfined aquifer is

7ðT7hÞM 2qLlzb
M
¼ n

›h

›t

� �
M
þfMðx;y; tÞþpM ð2Þ

It should be noted that Eq. (2) takes the form of

Eq. (1) if the uppermost aquifer is confined. The

variables in Eqs. (1) and (2) have the following

definitions: h; hðx;y; tÞ is the piezometric head

(confined) or water table elevation (unconfined),

7¼ i›=›xþ j›=›y is the two-dimensional gradient

operator, T ¼Kb denotes the transmissivity, where

K is the hydraulic conductivity, b is the saturated

flow thickness, n¼Cb; for the confined case, is the

storativity or coefficient of storage, where C is

the specific storage, and for the unconfined case n is

the specific yield of the aquifer. The leakage flux

through the aquitards into the aquifers is denoted as

qL; while zt
i and zb

i are the z-coordinates of the top

and bottom of the ith aquifer that has a thickness of

bi ¼ zt
i 2 zb

i (see Fig. 1). The contribution due to

distributed recharge sources is denoted as f ; while

that due to point sources and sinks is p: The

contribution from point sources is expressed

mathematically as

p¼
XNw

w¼1

QwðtÞdðx2 xwÞdðy2 ywÞ ð3Þ

where QwðtÞ is the strength or discharge rate of a

well located at ðxw;ywÞ; d is the Dirac delta function,

and Nw is the number of such wells. It is assumed

all the aquifers have the same areal extent, and

appropriate boundary conditions can be prescribed

on the boundary of each of the aquifers. Those

boundary conditions are either a known distribution

of hydraulic head, say, a known water elevation at

the boundary where a large water body adjoins the

aquifer. In that case, the condition on the ith aquifer
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is described as

hiðx;y; tÞ ¼Hiðx;y; tÞ on G1
i ð4aÞ

In a case where the flux in or out of the aquifer is

known, the condition is given by

2T
›h

›n

� �
i
¼ qiðx;y; tÞ on G2

i ð4bÞ

in which q is the normal flux and G¼G1 þG2 is

the boundary of the aquifer. A linear combination

of the above two conditions can be accommodated

where there exists, say, a ponded recharge

surface over a thin leaky stratum on the uppermost

aquifer. Since we are dealing with a time-

dependent problem, the distribution of hydraulic

head in all aquifers is assumed known at some

initial time t0:

The leakage fluxes into the aquifers, denoted by qL

in Eqs. (1) and (2), are obtained from solving the

transient one-dimensional flow equation that, for

the ith leaky stratum, is given by

›

›z
K 0 ›h0

›z

� �� �
i
¼ C0 ›h0

›t

� �
i

ð5Þ

in which K 0 is the hydraulic conductivity, h0 is the

hydraulic head in the aquitard, and C0 is the specific

storage. Dirichlet boundary conditions are specified

on the upper and lower surfaces of the aquitards.

These are values of hydraulic heads in the aquifers

that are above and below the ith aquitard, and they are

represented as

h0
iðz

b
iþ1; tÞ ¼ hiþ1ðtÞ ð6aÞ

h0
iðz

t
i; tÞ ¼ hiðtÞ ð6bÞ

It is also expected that the hydraulic heads in the

aquitards are known at the initial time. The flow in the

M aquifers and M 2 1 aquitards is obtained by

coupling Eqs. (1) and (2) with Eq. (5) through the

leakage flux that takes place at the aquifer–aquitard

interfaces. This flux at the interface of the top of the ith

Fig. 1. Representation and definitive sketch of a multiaquifer system.
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aquifer and the bottom of the ith aquitard (Fig. 1) is

given by

qL ¼ 2K 0 ›h0

›z

� �
z¼zt

i

ð7Þ

3. Green element formulations

The GE formulation of Eq. (5) that uses the

transient Green’s function in one spatial dimension

has been presented in great detail in Taigbenu and

Onyejekwe (1998) and summarized as well in

Taigbenu and Onyejekwe (2000). It is worth noting

that the model on which that formulation is based

calculates the fluxes directly rather than by numerical

differentiation of the hydraulic heads at the aquifer–

aquitard interfaces, as commonly done in FE formu-

lations. The two GE formulations for aquifer and

aquitard flows proceed along the steps that have been

presented in such references as Taigbenu (1995,

1999). These steps are summarized below:

(i) Obtain an appropriate auxiliary equation to the

flow differential equation from which is derived

the free-space Green’s function;

(ii) Apply Green’s second identity to both the

auxiliary and flow differential equations to obtain

the integral representation of the latter;

(iii) Discretize the flow region into suitable polygonal

elements over which the distribution of the

dependent variables is prescribed;

(iv) Within each element, derive a discretized form of

the integral equation that is known as the element

equation;

(v) Effect the boundary and initial conditions in the

system of element equations;

(vi) Aggregate the element equations for all the

polygonal elements, imposing the compatibility

relations across element boundaries.

When the above steps are implemented, the

resultant coefficient matrix is sparse and banded

and, therefore, efficiently solved with commercially-

available matrix solvers. For the case of the nonlinear

unconfined aquifer flow, the element equations are

linearized by the Picard algorithm in order that they

can be solved.

3.1. Formulation for aquifer flow

To simplify the derivation of the GE formulation

for the flow in the aquifers, the subscripts in Eqs. (1)

and (2) are hereafter left out. Within a suitable

polygonal element VðeÞ that is used in discretizing the

flow region, the medium is treated as homogeneous so

that medium parameters for the entire flow domain

assume piece-wise homogeneous variation. With that

treatment, Eq. (1), for the confined aquifers, takes the

following expression in each element

�D72h 2
›h

›t
¼ 2�qLlzt þ �qLlzb þ �fðx; y; tÞ þ �p ð8aÞ

while for the unconfined case, Eq. (2) takes a similar

expression

�D72h 2
›h

›t
¼ �qLlzb þ �fðx; y; tÞ þ �p ð8bÞ

in which �D ¼ �T=�n; �qL ¼ qL=�n; �f ¼ f =�n and �p ¼ p=�n;

where the bar on each of the quantities indicates their

averaged values. Although Eqs. (8a) and (b) look

quite similar, they are fundamentally different in the

sense that Eq. (8a) is linear, whereas (8b) is not. We

shall rewrite both equations as

�D72h 2
›h

›t
¼ �Q þ �fðx; y; tÞ þ �p ð9Þ

where �Q represents the net flux of water from

overlying and underlying aquitards into the aquifer

sandwiched between them. As earlier pointed out, this

term is an input from the solution of the flow through

the aquitards, which also depends on the hydraulic

heads in the aquifers. It is evident how the solutions in

the aquifers and aquitards are intertwined, thus

necessitating the coupling of the models for both

media.

The auxiliary equation to Eq. (9) is 72G 2 ð›G=

›tÞ= �D ¼ dðr 2 ri; t 2 tÞ; and its solution in an infi-

nitely extensive spatial domain is the Green’s function

that is given by:

Gðr; t; ri; tÞ ¼
Hðt 2 tÞ

�Dðt 2 tÞ
exp 2

ðr 2 riÞ
2

4 �Dðt 2 tÞ

" #
ð10Þ

Green’s second identity is applied to both Eq. (9)

and the auxiliary equation to give the integral
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expression

lhð2Þ
i þ �D

ðt2

t1

ð
GðeÞ

½hðr; tÞ7Gðr; t2; ri; tÞ·n

2 Gðr; t2; ri; tÞ7h·n�dt ds

2
ðð

VðeÞ
Gðr;Dt; ri; 0Þh

ð1ÞðrÞdA

þ
ðt2

t1

ðð
VðeÞ

Gðr; t2; ri; tÞ

� ½ �Q þ �f þ �p�dA dt ¼ 0 ð11Þ

in which l equals twice the nodal angle at the

source node, and the superscripts 1 and 2,

respectively, denote the previous time level t1 and

the current time level t2: The above integral

equation is similar to that expected from BE

formulations, though it applies here to a typical

element.

The numerical implementation of Eq. (11) is

carried out with some distribution being prescribed

for the functional quantities over the spatial

element and in time. There is liberty in choosing

that distribution, and as such we have in this

work chosen a linear distribution in space and time

so that a quantity, say h; has the general

expression,

h¼NjðrÞN
ðmÞðtÞhðmÞ

j ; j¼ 1;2;…g; m¼ 1;2 ð12Þ

where g represents the number of nodes in the

element, m is indicative of the time, with m¼ 1

denoting the previous time and m¼ 2 denoting the

current time, and NjðrÞ and NðmÞðtÞ are linear

interpolation functions in space and time, respect-

ively. It should be noted that the summation

convention for a repeated index applies similarly

to the superscripted index. The expression for the

normal derivative of the Green’s function is

7Gðr; t2;ri;tÞn¼
2h

2 �Dðt2 2 tÞ
Gðr; t2;ri;tÞ ð13Þ

where h is the normal distance from the source

node ri ¼ ðxi;yiÞ to the boundary over which

integration is carried out (see Fig. 2). Introducing

Eqs. (12) and (13) into Eq. (11) yields

lhð2Þ
i 2 �D

ðDt

0

ðz2

z1

h

2 �DðDt2 tÞ
hðmÞ

j þ
›hðmÞ

j

›n

" #

�NjðzÞN
ðmÞðtÞGðz;Dt;zi;tÞdt dz

2
ðð

VðeÞ
Gðr;Dt;ri;0Þh

ð1Þ
j dA

þ
ðDt

0

ðð
VðeÞ

Gðr;Dt;ri;tÞ

� ½ �Qþ �fþ �p�dA dt¼ 0 ð14Þ

Eq. (14) can be expressed differently in terms of the

normal boundary flux, q¼2 �T›h=›n rather than, as

presently the case, in terms of the normal derivative

of the hydraulic head, ›h=›n: In other earlier works,

the incorporation of the normal boundary flux does

not only enhance the accuracy of the numerical

scheme, but also its convergence for nonlinear

situations (Taigbenu, 2001a,b). The reason for this

solution enhancement is because the formulation

better preserves continuity of the flux at inter-

element boundaries. It should be emphasized that

the accurate evaluation of the boundary flux is

critical in GE calculations as in BE computations;

they have to be calculated directly as the hydraulic

heads and should be done accurately to preserve the

second order accuracy associated with the singular

integral theory. Introducing the definition for the

normal boundary flux into Eq. (14) yields, in matrix

Fig. 2. Definition of normal distance from source node.
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form, the expression

Bij
ðmÞhðmÞ

j 2Sijh
ð1Þ
j þLð2Þ

ij qð2Þ
j þLð1Þ

ij

�T ð2Þ

�T ð1Þ
qð1Þ

j

þV ðmÞ
ij ½QðmÞ

j þ f ðmÞ
j �þPi ¼ 0 ð15Þ

in which

BðmÞ
ij ¼ ldijd

ðm2Þ2
h

2

ðDt

0

ðz2

z1

1

ðDt2 tÞ

�NjðzÞN
ðmÞðtÞGðz;Dt;zi;tÞdt dz ð16aÞ

LðmÞ
ij ¼

1

�n

ðDt

0

ðz2

z1

NjðzÞN
ðmÞðtÞGðz;Dt;zi;tÞdt dz ð16bÞ

Sij ¼
ðð

VðeÞ
Gðr;Dt;ri;0ÞNjðrÞdA ð16cÞ

V ðmÞ
ij ¼

ðDt

0

ðð
Ve

Gðr;Dt;ri;tÞNjðrÞN
ðmÞðtÞdA dt ð16dÞ

It should be pointed out that evaluation of the

domain integrals does not present any additional

computational challenges as in classical BE appli-

cations, and that is because the source and field

nodes do always share the same element over

which integration is carried out (Fig. 2). Special

mention is made of the term that accounts for point

sources and sinks, Pi: The ease with which it is

evaluated in GE methodology makes the

method most attractive for well hydraulics pro-

blems. Well contributions are only accounted for at

nodes which belong to the elements in which wells

are located, and for those elements the term Pi

takes the form:

Pi ¼
Qw

�T
E

ðri 2 rwÞ
2

4 �DDt

" #
ð17Þ

where E is the Exponential integral. It is empha-

sized that Eq. (15) applies to a typical spatial

element. The element equations depend largely on

the geometric properties of the type of element

used in discretizing the computational region. We

are at liberty to choose the type of element, and in

this work triangular and rectangular elements are

incorporated into the numerical code.

An earlier paper discussed how the implemen-

tation of the integrations over the element can be

done in such a manner that most of the integrals

are evaluated exactly (Taigbenu, 2003a). Essentially

it involves switching the order of carrying out the

integrations in time and space. When an exact

integration is not possible, the integration in the

time dimension is first done to eliminate the

singularity of the fundamental solution in time,

and then integration in space is effected numeri-

cally. The boundary and domain integrals essen-

tially yield three functions: Exponential Integral,

Exponential and Error functions. Only the Expo-

nential Integral exhibits a logarithmic singularity

for small values of its argument, and decays more

rapidly to zero than the Exponential function for

relatively moderate values of argument, implying

that the behaviour of the Exponential Integral is

critical to the quality of the numerical solution. The

expression for the argument, a dimensionless

quantity, is

c ¼
l2

4 �DDt
ð18Þ

where l is indicative of the element size. In cases

where the spatial grid size has been determined, Dt

is chosen so that c is not too large for its

Exponential Integral to become too small, thereby

producing a coefficient matrix that exhibits ill-

conditioning characteristics. It is not expected that

Dt be increased at infinitum; it has to have an

upper limit which, for the advection-diffusion

problem, is about a unit value of the Courant

number (Taigbenu, 1999). The upper limit of Dt is

largely dictated by the accuracy in approximating

the primary variable in time by the interpolation

function. This numerical feature of more stable and

accurate solution with larger time step is compu-

tationally advantageous since it requires less

number of simulation steps. Experiences gained

from the current and previous works indicate that

moderate values of c smaller than 4.0 give

accurate results (Taigbenu, 2003b,c).

The global contribution of Eq. (15) for all the

elements is achieved by aggregating the element

equations in such a way that the nodal unknowns on

the external boundaries are either h or q (whichever

is not specified by the boundary conditions), and h

at the internal nodes. This aggregation is done by

keeping track of the compatibility requirements for

the flux and hydraulic heads at inter-element
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boundaries. In other words, the flux term is retained

at all external boundaries, while boundary inte-

grations on inter-element boundaries are not

implemented with the source node on those

boundaries because of the flux compatibility

requirement that provides for the net contribution

of the integrals to be zero. However, when the

source node is not on an inter-element boundary, the

boundary integrations of the flux term are

implement with the flux expressed in terms of the

head h: The contributions from all the elements

constitute the global matrix equation:

Aiju
ð2Þ
j ¼ Ri ð19Þ

where Aij is a banded matrix and uð2Þ
j ¼ {hð2Þ

j ; qð2Þ
j }T

is a mixed vector of unknowns, and Ri is a known

vector that accounts for the boundary, initial data,

the leakage fluxes from the aquitards, and point and

distributed recharge. For the unconfined aquifer

flow case, the coefficient matrix Aij is dependent on

the water table elevation that has to be calculated

in space and in time. The nonlinear discretized

system of equations is linearized by the Picard

algorithm by using known estimates of the

hydraulic head in the coefficient matrix in carrying

out the calculation of Eq. (19). The solutions

obtained are compared with previous estimates until

good agreement is achieved on the basis of a

convergence criterion.

3.2. Formulation for aquitard flow

The GE formulation for the aquitard flow follows

closely that earlier presented for the aquifers. An in-

depth treatment of the formulation can be found in

Taigbenu and Onyejekwe (1998). It uses the funda-

mental solution to ›2G=›z2 þ ð›G=›tÞ=D0 ¼ dðz 2

zi; t 2 tÞ; that is

Gðz; t; zi; tÞ ¼
Hðt 2 tÞ

½4pD0ðt 2 tÞ�1=2
exp 2

ðz 2 ziÞ
2

4D0ðt 2 tÞ

" #

ð20Þ

to construct the integral expression for Eq. (5).

Green’s identity is applied within a spatial element

½z1; z2� and integrated in time between t1 and t2 to

obtain the integral equation

K 0 2
h0

ið2Þ

2
þ

ðt2

t1

½h0ðz; tÞGpðz; t2; zi; tÞ�
z¼z2
z¼z1

dt

	 


þ
ðt2

t1

½q0ðz; tÞGðz; t2; zi; tÞ�
z¼z2
z¼z1

dt

2 C0
ðz2

z1

h0ðz; t1ÞGðz; t2; zi; t1Þdz ¼ 0 ð21Þ

where Gp ¼ ›G=›z; q0 ¼ 2K 0›h0=›z; and D0 ¼ K 0=C0:

The variables h0 and q0 are approximated by linear

interpolation functions in space and time, and the

integrations in Eq. (21) are carried out to give

K 0 2
h0

ið2Þ

2
þ

ðt2

t1

½NðmÞðtÞh0ðmÞGpðz; t2; zi; tÞ�
z¼z2
z¼z1

dt

	 


þ
ðt2

t1

½NðmÞðtÞq0ðmÞGðz; t2; zi; tÞ�
z¼z2
z¼z1

dt

2 C0
ðz2

z1

NjðzÞh
0
jð1ÞGðz; t2; z1; t1Þdz ¼ 0 ð22Þ

Eq. (22) is expressed in matrix form as

MðmÞ
ij h0

jðmÞ þ UðmÞ
ij q0

jðmÞ ¼ 0 ð23Þ

As in Eqs. (12) and (15), m is indicative of time. The

analytical expressions of the matrices in Eq. (23) are

found in Taigbenu and Onyejekwe (1998). Introdu-

cing the initial and boundary conditions (computed

hydraulic heads in the overlying and underlying

aquifers) into Eq. (23) gives a matrix equation that

can be solved for h0ð2Þ and q0ð2Þ: It is the values of

q0ð2Þ at the aquifer–aquitard interfaces that are used

for the leakage flux in the solution for the aquifers.

3.3. Coupling of aquifer and aquitard models

The coupling the aquifer flow model to that for the

aquitards through the leakage fluxes at the aquifer–

aquitard interfaces is fairly straight forward. At the

start of each time step, the aquifer model is solved to

obtain the hydraulic heads at the nodal points using

known boundary and initial data and assuming the

leakage flux is zero. The calculated heads in

the aquifers become the boundary conditions for the

aquitard model from which the leakage fluxes are

calculated. These computed fluxes are then used as

input into the aquifer model to obtained refined

estimates of the hydraulic heads in the aquifers.
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The process is repeated for a number of times till

convergence for the entire aquifer–aquitard system is

achieved. Convergence is considered attained when

the mean deviation between current solution estimates

and previous ones lies below a predetermined

tolerance value.

4. Numerical examples

4.1. Example 1

The current numerical model for transient multi-

aquifer flow is first demonstrated on an example that

has an exact solution. It is that of radial flow into an

infinitely extensive multiaquifer system comprising

an aquitard sandwiched between two confined aqui-

fers of which the lower one has a fully penetrating

well discharging at a constant rate of 10.0 m3/h. The

exact solution is given by Neuman and Witherspoon

(1969a) and represents the first exact solution to a

truly multiaquifer system. The medium parameters of

the two aquifers are the same: hydraulic conductivity

K ¼ 3:3 m/h, storativity n ¼ 1025 and thickness of

aquifer b ¼ 7 m, while the parameters for the aquitard

are: K 0 ¼ 3:696 £ 1024 m=h; specific storage C0 ¼

1025 m21 and thickness of aquitard b0 ¼ 16 m: The

flow problem has radial symmetry, and for that reason

a p=18 sector of a circle with radius of 104 m is used as

the computational domain. The domain is discretized

into 31 triangular elements with a total of 33 nodes

that are all on the boundary and arranged along the

radial direction from the well at the positions r ¼ 1.0,

100.5, 100.8, 101, 101.25, 101.5, 101.8 102, 102.25, 102.5,

102.8, 103, 103.25, 103.5, 103.8, 104 m. A no-flow

condition is imposed on the boundaries along the

radial direction, while zero drawdown is imposed at

radius of104 m from the pumped well. In the

numerical calculations, the location of the well,

which is at the centre of the sector of the circle, is

adjusted slightly by an amount of 1025 m so that it is

not at the same position as the node at the centre of the

sector. It should be recognised that the position of the

well is a singular point which should not be occupied

by a node, thereby necessitating the adjustment. The

convergence criterion used at each time step in

simulating the coupled aquifer–aquitard flows is

based on the mean absolute error (MAE) between

consecutive iterates of the solution. With a value of

1028 for the MAE, the computer program took no

more than six iterations at each time step in achieving

convergence. The numerical solutions are presented at

radii of 10 and 100 m. The radial dimension is

normalised to a dimensionless parameter that is

expressed as b11 ¼ r=B11; where B11 ¼

4bðKC=K 0C0Þ1=2: Those two radii where the numerical

solutions are presented correspond to b11 ¼ 0:01 and

b11 ¼ 0:1: Fig. 3a and b show the numerical and

analytic solution of Neuman and Witherspoon

(1969a) which are in terms of the variation of the

dimensionless drawdown hD ¼ 4pTh=QW with

respect to the dimensionless time tD ¼ Kt=ðSr2Þ: The

results of GEM, referred to as model 1, are based on

the logarithmic Green’s function formulation of

Taigbenu and Onyejekwe (2000), while those referred

to as model 2 are based on the current GE formulation.

We observe that the GE solutions are in good

agreement with the analytical solution. The solutions

of the two GE models do exhibit the same trend,

despite being obtained from two different Green’s

functions. The wiggles in the numerical solution of

the hydraulic head in the pumped aquifer are probably

as a result of the very small distance between the

pumped well and the first node at the centre which is

not accurately evaluated in the argument of the

Exponential Integral.

4.2. Example 2

This second example is a reduced form of

example 1. It is presented here in order to evaluate

the performance of the current formulation in handling

groundwater well hydraulics in single aquifers. This

example addresses both the cases of flow to a single

well in an infinitely confined aquifer that has an exact

solution that is given by Theis (1935) and flow to a

leaky confined aquifer overlain by a uniform-head

watertable aquifer whose solution is given by Hantush

and Jacob (1955). For the latter case storage effects are

neglected in the leaky stratum, thereby providing for a

linear variation in the hydraulic head across the

aquitard. The same computational domain and dis-

cretization as in example 1 are used in this example

with prescribed conditions being incorporated into the

numerical code. The numerical results from the

current formulation, those of model 1 and analytic
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solutions at r=l of 0.01 and 0.1
�
l ¼

ffiffiffiffiffiffiffiffiffiffi
bb0K=K 0

p 
are

presented in Fig. 4. It can be observed that there is

good agreement between the GE model solutions and

the exact.

4.3. Example 3

This third example is one that represents a

physically realistic flow in a multiaquifer system

that consists of four aquifers that are separated by

three aquitards. The areal extent of the aquifer is about

12 km2 and it is shown in all subsequent figures of this

paper. The hydrogeological parameters of the aquifers

and aquitards are given in Table 1a. Two flow

scenarios are examined: the first is one in which the

uppermost aquifer (aquifer 4) is confined, and the

second in which the uppermost aquifer is unconfined.

In all the four aquifers, 17 active wells are in operation

and their abstraction rates and locations are given in

Table 1b. It is only for simplicity that we have

designed the problem so that the thicknesses of the

aquifers and aquitards are uniform; as stated earlier,

this is not intended to suit the GE models that are

herein applied.

Fig. 3. GEM and exact solutions of drawdown for two-aquifer example at (a) b11 ¼ r=B11 ¼ 0:01; (b) b11 ¼ r=B11 ¼ 0:1:
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For both flow scenarios, the piezometric head in all

confined aquifers (water table elevation for the

unconfined aquifer) at the initial time is 180 m. That

head is maintained on segments CD and EF at all

times, while on segment AB the hydraulic head is

raised to 190 m for times later than the initial time. On

segment DE, a uniform normal flux of 0.36 m3/d per

metre length of boundary is allowed into the aquifer

for all times, while the segments BC, FG, and GA act

Fig. 4. Comparison of GEM and exact solutions for example 2.

Table 1a

Hydraulic parameters for example 3

Medium Hydraulic

conductivity

[m/d]

Thickness

[m]

Storage coefficient

[m21] (confined) or

specific yield

(unconfined)

Aquitard 1 3.1 £ 1023 11.5 1.1 £ 1025

Aquitard 2 1.1 £ 1023 18.2 4.8 £ 1025

Aquitard 3 6.4 £ 1024 9.4 2.2 £ 1025

Aquifer 1

(confined)

8.4 30.0 2.6 £ 1024

Aquifer 2

(confined)

2.2 43.0 7.2 £ 1025

Aquifer 3

(confined)

1.5 37.0 5.0 £ 1024

First flow

scenario

Aquifer 4

(confined)

5.4 14.0 6.2 £ 1024

Second flow

scenario

Aquifer 4

(unconfined)

5.4 0.2

Table 1b

Abstraction rates and location of wells for example 3

Location Strength m3/d

xw[m] yw[m]

Wells in aquifer 1

3715.4 1478.0

4314.3 2421.3 1180.0

412.7 1845.5 1360.0

3528.1 1476.0 1201.0

1645.2 2483.6 1170.0

Wells in aquifer 2

3173.88 1105.0

3833.8 2342.43 1125.0

1750.7 1870.16 1270.0

2776.2 958.51 1470.0

Wells in aquifer 3

1972.29 1440.0

902.2 1999.02 1180.0

1820.7 1113.42 1250.0

2480.1 2805.11 1570.0

Wells in aquifer 4

3374.0 1011.0

4296.5 1512.4 1360.0

1180.4 1428.7 1406.0

2519.8 1432.8 1390.0
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as no-flux boundaries. With these conditions incor-

porated into the two GE models, a uniform time step

of 2 days is used in the current model and 1day in

model 1. The flow region, being irregular, is

discretized with triangular elements which closely

matched the irregular boundaries. In all, the region is

discretized with 3624 triangular elements with lengths

of the sides of the elements ranging from 50 to 200 m.

These elements constitute a total of 1848 nodes. The

nodes are optimally numbered to achieve a half band

width of 88 for the global coefficient matrix. The

vertical line segments that are used in representing the

flow in the aquitards are discretized with 7 nodes on

each of them. The nodes are generated by Chebyshev

polynomials so that they are closer to each other near

the aquifer–aquitard interfaces than the middle of the

aquitard. This is helpful in capturing the high

hydraulic gradients when the interface is stressed at

small times. In each of the aquifer, the equipotential

lines at times of 10 and 20 days are plotted. These

plots are presented in Figs. 5–8. Using a global MAE

between consecutive solution iterates of 1024, no

more than 5 iterations were required to achieve

convergence at each simulation interval in both

models. In general, less number of iterations was

required as the solution times increased, indicating

that the numerical scheme is stable. This trend lends

support to earlier findings when the GEM was applied

to nonlinear flow problems (Taigbenu, 2001a,b).

Running the computer codes of models 1 (with

logarithmic Green’s function) and model 2 (current

model) on a Pentium III PC, the first model took 5 min

31.09 s, whereas the current model took 4 min 5.84 s

for the entire 20 days simulation of this example.

Noting that model 1 used 20 simulation steps, while

model 2 used ten, the former model runs at about 48%

faster per simulation step than the current one.

For the first flow scenario, there is generally good

agreement between the solutions from the two GE

models. In aquifer 1, the cone of depression of well

located close to the upper boundary AB is submerged

by the influx from the recharge boundary along AB.

The influx of water through DE has virtually no

influence on the wells closest to that boundary (Fig. 5a

and b). In aquifer 2 where all wells are located at some

distance from the recharge boundaries of AB and DE,

their cones of depression are distinctly preserved (Fig.

6a and b). The flows into the wells essentially dictate

the general flow pattern in this aquifer. The flow

pattern in aquifer 3 follows that observed earlier in

aquifer 2 with the cones of depression around the

wells being distinct (Fig. 7a and b). The cones of

depression around the wells, though expanding with

time, remain quite distinct and unaffected by the

influx of water from the recharge boundaries AB and

DE. For the uppermost confined aquifer 4, the cones

of depression of the four wells stand out quite

distinctly at times of 10 and 20 days, with relatively

flat piezometric head distribution outside the wells at

the former time (Fig. 8a and b). However, at time of

20 days, while there now exist enlarged cones of

depression at all the wells; the piezometric head

distribution outside the wells is no longer as flat, with

a gradient southward. It is also significant to note that

the well on the southwest boundary DE has, because

of its strength, greater influence on the flow than the

influx of water into the aquifer through that boundary.

In the second flow scenario of this example, the

topmost aquifer is now an unconfined one and

receives natural recharge at a constant rate of

100 mm/year uniformly over the entire aquifer. The

bottom of the unconfined aquifer is taken to be at an

elevation of 125 m, so that the saturated thickness of

the unconfined aquifer at the initial time is 55 m.

While model 1 incorporated a uniform time step of 1

day in its simulation, the current model was run with

an increased time step of 2 days. Because of the large

difference between the specific yield of the uncon-

fined aquifer and the storativity for the confined

aquifer, c in Eq. (18) is larger for the unconfined

aquifer than the confined one. With increased time

step, c is reduced and consequently manageable

values of the Exponential integral are obtained

(Taigbenu, 2003b,c). The results of the simulations

from the two models are presented only at time of 20

days in Figs. 9–12. There is again good agreement

between the solutions of models 1 and 2. As expected

there is little difference between the piezometric heads

in aquifers 1, 2 and 3 for the current flow scenario and

the previous one. That is observed by comparing Figs.

5b and 9 for aquifer 1, Figs. 6b and 10 for aquifer 2,

and Figs. 7b and 11 for aquifer 3. However, when it

comes to the topmost aquifer, there are substantial

differences between water table distribution of the

unconfined aquifer 4 and the confined aquifer 4 of the

previous flow scenario. The differences are not only
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Fig. 5. Contour of piezometric head in confined aquifer 1 of first flow scenario of example 3 at (a) time ¼ 10 days, (b) time ¼ 20 days.
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Fig. 6. Contour of piezometric head in confined aquifer 2 of first flow scenario of example 3 at (a) time ¼ 10 days, (b) time ¼ 20 days.
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Fig. 7. Contour of piezometric head in confined aquifer 3 of first flow scenario of example 3 at (a) time ¼ 10 days, (b) time ¼ 20 days.
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Fig. 8. Contour of piezometric head in confined aquifer 4 of first flow scenario of example 3 at (a) time ¼ 10 days, (b) time ¼ 20 days.
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Fig. 9. Contour of piezometric head in confined aquifer 1 of second flow scenario of example 3 at time ¼ 20 days.

Fig. 10. Contour of piezometric head in confined aquifer 2 of second flow scenario of example 3 at time ¼ 20 days.
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Fig. 11. Contour of piezometric head in confined aquifer 3 of second flow scenario of example 3 at time ¼ 20 days.

Fig. 12. Contour of water table in unconfined aquifer 4 of second flow scenario of example 3 at time ¼ 20 days.
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due to the fact that we are dealing with different types

of aquifers but also because of the recharge being

admitted in the unconfined aquifer. The water table is

relatively flat at an elevation of about 180 m while the

cone of depression at the wells is much more limited

than into the confined case because of the small elastic

property associated with unconfined aquifers. It

should be noted that contour increments had to be

reduced to 0.1 m to be able to obtain any meaningful

contour of water table elevations in the unconfined

aquifer (Fig. 12). In addition, the area of influence of

the recharge through the flux boundary DE is a lot

more curtailed in the current flow scenario.

5. Conclusion

This paper has presented another viable solution

strategy on the basis of the GEM for transient flows in

multi-aquifer systems of arbitrary geometries with

any number of alternating layers of aquifers and

aquitards, and pumping and recharge stresses. It

retains the accurate leakage flux-predicting formu-

lation of an earlier model (Taigbenu and Onyejekwe,

2000), but uses the 2-D Green’s function of that

formulation for the evaluation of the flow and storage

of water in the aquifers. One obvious advantage of the

current model is that there is consistency in the

Green’s function employed for the flows in the

aquitards and aquifers. However, the current model

runs slower than the previous one because of the more

complicated functions that have to be evaluated.

On existing examples of two confined aquifers

sandwiched by an aquitard (Witherspoon, 1969a), of

flow into a confined aquifer overlain with an

unconfined aquifer maintained at uniform water

table elevation (Hantush and Jacob, 1955), and flow

to a confined aquifer (Theis, 1935), all of which have

exact solutions, the current model has accurately

reproduced those solutions. The capabilities of the

current model are explored with a realistic multi-

aquifer flow example, and its solutions are compar-

able to those from the earlier model of Taigbenu and

Onyejekwe (2000). The current model, thus, provides

an alternative solution approach to solving transient

multiaquifer flows.
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