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S U M M A R Y
We constructed global phase velocity maps including azimuthal anisotropy. Azimuthal
anisotropy is expanded on a basis of generalized spherical harmonics, which makes the cal-
culation of path integrals of the phase velocity particularly simple. It is generally accepted
that the major difficulty in such modelling is determining the strength of the anisotropy rel-
ative to the isotropy. We propose a technique which finds the optimum relative weighting of
the anisotropic terms prior to inversion. It is clear from our analyses that phase data require
azimuthal anisotropy. We further find that Love wave data do not require a 2ψ term, whereas
Rayleigh wave data need 2ψ and 4ψ terms. The main effect of azimuthal anisotropy upon
the isotropic maps is a loss of power in the highest spherical harmonic degrees, resulting in
an overall lower lateral resolution compared with a purely isotropic inversion for the same
number of recovered parameters. The correlation of 2ψ and 4ψ components at different pe-
riods is relatively high, indicating a shallow source for the azimuthal anisotropy. Overall,
fast 2ψ Rayleigh directions agree well with absolute plate motions in the hotspot reference
frame.
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1 I N T RO D U C T I O N

It is now well established that the Earth’s uppermost mantle
is anisotropic. The earliest evidence is the possibility of a dis-
crepancy between the dispersion of Love and Rayleigh waves
(Anderson 1961; Harkrider & Anderson 1962) and the azimuthal
dependence of oceanic Pn velocities (Hess 1964). Surface waves
are particularly well suited to studying anisotropy since they carry
information on the radial and azimuthal anisotropy of the upper man-
tle. Radial anisotropy was first observed when it was established that
isotropic velocity models failed to explain simultaneously Love and
Rayleigh wave dispersion data (Aki & Kaminuma 1963; McEvilly
1964). This is referred to as the Love–Rayleigh discrepancy and is
an indirect observation of anisotropy. A directly observable man-
ifestation of anisotropy is the azimuthal variation of phase veloc-
ities, first noticed by Forsyth (1975) in the Pacific Ocean. Since
these pioneering studies, many more observations followed and de-
tailed overviews may be found in Anderson (1989), Babuška & Cara
(1991) and Montagner (1998). Radial and azimuthal anisotropy in
surface waves are the result of the same underlying anisotropy of
the Earth’s interior, and Montagner & Nataf (1986) linked both
together in a common mathematical framework. The theory, ini-
tially developed for a flat layered Earth, was later extended to
a spherical Earth (Romanowicz & Snieder 1988; Larsen et al.
1998).

The necessity for radial anisotropy in the uppermost mantle has
never been questioned in reference models (e.g. Dziewonski &
Anderson 1981) or 3-D models (e.g. Nataf et al. 1984; Ek-
ström & Dziewonski 1998), while global azimuthal phase
velocity maps have not been constructed since earlier ef-
forts (e.g. Tanimoto & Anderson 1984, 1985; Montagner &
Tanimoto 1990), despite a tremendous increase in high-quality mea-
surements (Trampert & Woodhouse 1995; Ekström et al. 1997; van
Heijst & Woodhouse 1999) from automatic data processing. There
are several reasons for this. Azimuthal anisotropy is assumed to be
small compared with radial anisotropy and relevant to this assump-
tion is the increased instability of the inverse problem (Zhang &
Lay 1996). Indeed, adding azimuthal anisotropy amounts to adding
more parameters to an already underdetermined inverse problem
and hence the need for stronger regularization. Modelling shows
that the amplitude of the azimuthal terms strongly depends upon
damping (e.g. Levshin et al. 2001), making it difficult to test the
assumption of small azimuthal anisotropy. Furthermore, tests have
questioned whether phase data are really sensitive enough to detect
azimuthal anisotropy (Larsen et al. 1998; Laske & Masters 1998)
and the use of additional polarization data has been proposed.

It is certainly worth mapping anisotropy, which can give insight
into the convective flow inside the Earth. This connection has been
made as early as the 1980s (Regan & Anderson 1984; Tanimoto &
Anderson 1984) and since then has been well accepted and put in a
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firm mineral physics context (e.g. Karato 1998). If we want to fully
understand the anisotropic structure of the Earth, radial anisotropy
is not enough, we also need observations of azimuthal anisotropy.
The main problem lies in determining the strength of the azimuthal
terms. We propose to subject the data to systematic statistical tests
to extract this strength prior to constructing the anisotropic phase
velocity maps. It is convenient to parametrize the problem in terms
of generalized spherical harmonics as shown in the next section.
We then explain how we can estimate the strength of the azimuthal
terms from the data and discuss the results of our obtained models.

2 PA R A M E T R I Z AT I O N

A plane-layered medium in the presence of a slight general
anisotropy gives rise to an azimuthal dependence of the local phase
velocity (Smith & Dahlen 1973, 1975). The same azimuthal depen-
dence is found in a spherical Earth (Romanowicz & Snieder 1988;
Larsen et al. 1998) and we can write

dc

c
(ω, ψ) = α0(ω) + α1(ω) cos(2ψ) + α2(ω) sin(2ψ)

+ α3(ω) cos(4ψ) + α4(ω) sin(4ψ), (1)

where dc/c is the local relative phase velocity perturbation with
respect to a spherically symmetric reference Earth model, ω is the
radial frequency and ψ is the azimuth along the path. This can be
rewritten as

dc

c
(ω, ψ) = α0(ω) + τi jνiν j + σijklνiν jνkνl , (2)

where indices i , j , k, l take values of 1 and 2 corresponding to the
co-latitude θ and the longitude φ, respectively.ν = (− cos ψ, sin ψ)
is a unit vector in the direction of propagation of the surface wave.
τ and σ are completely symmetric and trace-free tensors on the 2-D
spherical surface and have two independent components given by

τθθ = −τφφ = α1(ω) (3)

τθφ = τφθ = −α2(ω) (4)

σθθθθ = −σθθφφ = σφφφφ = α3(ω) (5)

σθθθφ = −σφφφθ = −α4(ω). (6)

We can now define the corresponding canonical contravariant spher-
ical components of τ and σ as (Phinney & Burridge 1973)

τ++ = α1(ω) + iα2(ω) (7)

τ−− = α1(ω) − iα2(ω) (8)

σ++++ = α3(ω) + iα4(ω) (9)

σ−−−− = α3(ω) − iα4(ω). (10)

All other contravariant components are zero. A simple way to de-
scribe azimuthal anisotropy is then to expand τ++ and σ++++ in
terms of generalized spherical harmonics (Phinney & Burridge
1973)

τ++ =
L∑

l=2

l∑

m=−l

tm
l Y 2m

l (θ, φ) (11)

σ++++ =
L∑

l=4

l∑

m=−l

sm
l Y 4m

l (θ, φ). (12)

Path integrals of dc/c are now readily calculated by making use of
spherical harmonic rotation matrices to reduce any path to an equa-
torial path. The advantages of this parametrization are that there are
no singularities in the description associated with the indeterminacy
of azimuths at the poles, the inverse problem becomes invariant with
respect to rotations of the coordinate system and analytic results are
available for the path integrals. The forward problem then reduces
to the usual linear relation

d = Gm, (13)

where d are the path-averaged phase velocity measurements, m =
(m0, m2, m4)T is the model vector of the spherical harmonic coef-
ficients corresponding to the 0ψ , 2ψ and 4ψ terms, respectively,
and G = diag(G0,G2,G4) is the block-diagonal matrix of the
path-averaged spherical harmonics. G0 contains the ordinary path-
averaged spherical harmonics and G2 and G4 correspond to the
generalized spherical harmonics defined in eqs. (11) and (12), re-
spectively. The number of unknowns is (L + 1)2 for the 0ψ or
azimuthally averaged terms, (2L + 6)(L − 1) for the 2ψ terms and
(2L + 10)(L − 3) for the 4ψ terms. In the following, we use L = 40
for the isotropic terms and L = 20 for the azimuthal terms, resulting
in 3405 unknowns.

3 I S A Z I M U T H A L A N I S O T RO P Y
R E Q U I R E D ?

As mentioned in the introduction, several papers have questioned
whether phase data are sufficiently sensitive to azimuthal anisotropy.
The main reason for these doubts is the strong dependence of the
amplitude of anisotropy upon regularization in the inverse problem.
Constructing a global isotropic phase velocity map requires solv-
ing a linear inverse problem of several tens of thousands of data and
1681 unknowns for a spherical harmonic expansion up to degree 40.
Even though the number of data largely exceeds the number of pa-
rameters, errors and inconsistencies in the data and inhomogeneous
ray coverage make it impossible to retrieve all model parameters.
The inverse problem is unstable and needs to be regularized. Re-
cent maps typically solve for 800 independent parameters out of
the 1681 (e.g. Trampert & Woodhouse 2001). Adding azimuthal
terms as shown in eq. (1) roughly doubles the number of unknowns
without changing the data. The inverse problem becomes more un-
stable and needs stronger damping. There is no objective criterion
for choosing the damping and experience shows that the amplitude
of the azimuthal terms depends strongly upon it. On the other hand,
adding more parameters into the inversion process generally results
in a better variance reduction. The question is then whether the im-
provement in variance reduction is due to the shear fact of increasing
the number of parameters or if the data really prefer azimuthal terms.
The answer to this question is given by the F-test (e.g. Bevington
& Robinson 1992), which states to what level of confidence the
difference in variance reduction is significant.

The inverse problem defined in eq. (14) is solved in the usual way
by minimizing a cost function

C = (d − Gm)TC−1
d (d − Gm) + GTC−1

m m, (14)

where Cd is the data covariance matrix, which we take to be diagonal
and where the data errors have been determined by cluster analyses
(Trampert & Woodhouse 2001). Cm is a diagonal matrix, which
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we use to impose smoothness upon the model vector. We prefer
Laplacian over model damping to reduce spectral leakage (Trampert
& Snieder 1996) and the derivation of the smoothness operator can
be found in Trampert & Woodhouse (1995). As the model vector,
Cm is partitioned to emphasize 0ψ , 2ψ and 4ψ terms leading to the
explicit expressions

(Cm0 ) j j = 1

λ

1

[l(l + 1)]2
(15)

(Cm2 ) j j = θ2

λ

1

[l(l + 1)]2
(16)

(Cm4 ) j j = θ4

λ

1

[l(l + 1)]2
, (17)

where λ is an overall damping parameter which controls the trade-off
between data misfit and smoothness. The smaller its value, the more
the model parameters are allowed to vary and the better the data
are explained. θ 2 and θ4 control the relative strength of anisotropy.
A uniform value of 0.1, for instance, puts 10 times more signal
into the isotropic terms relative to the anisotropic ones. To gain
an idea of reasonable values for θ 2 and θ 4, we minimize eq. (14)
many times, systematically varying the parameters λ, θ2 and θ4

and plot the reduced χ2 as a function of independent parameters
in the final model. To compare two different inversions, the total
number of unknowns put in the inverse problem is irrelevant, what
matters is the number of independent parameters used to construct
the estimated model, given by the trace of the resolution matrix. We
define the reduced χ2 as

χ 2 = 1

N − M
(d − Gm)TC−1

d (d − Gm), (18)

where N is the number of data and M = trace(R). The obtained
misfit curves show which parametrization explains the data best for
a given number of independent parameters. A standard F-test tells
us further how significant the differences between two given curves
are.

Before turning to real data, we would like to comment on several
synthetic tests. We calculated synthetic data with randomly gener-
ated isotropic and anisotropic models using our Love wave data cov-
erage (Fig. 1). We added errors drawn from a Gaussian distribution
with a standard deviation of 10 per cent of the values of the syn-
thetic data. First, we inverted data corresponding to a purely random
isotropic model of spherical harmonic degree 40 (1681 unknowns).
The misfit curves are shown in Fig. 2(a). Clearly, the isotropic de-
scription (small θ 2 and θ 4) explains the data much better for any
given number of independent parameters and as we reduce the over-
all damping λ (i.e. allow more parameters in the inversion) χ2 mono-
tonically tends towards 1. The higher the strength of the anisotropic
terms, the higher χ 2 for a given number of independently resolved
parameters, because fewer isotropic parameters are available to ex-
plain the data. The F-test shows that the differences between all the
misfit curves are 100 per cent significant. We then inverted data
corresponding to a purely random 2ψ and 4ψ anisotropic model of
spherical harmonic degree 20 (874 2ψ and 850 4ψ coefficients). As
expected, the inversion with the highest emphasis on anisotropy has
the smallest χ 2 (Fig. 2b) for any given trace of the resolution. The
F-test shows again that the differences between all the misfit curves
are 100 per cent significant. It is further seen in Fig. 2(b) that a mainly
isotropic model can explain the anisotropic data to some extent. This
has been remarked before (e.g. Larsen et al. 1998) and is due to in-

herent trade-offs between the isotropic and anisotropic terms. This
trade-off which depends on the data coverage is not severe in our
case because of the complementary azimuthal coverage of major
and minor arc data (Fig. 1). Consequently, the χ2 of the isotropic
model tends asymptotically towards the large value of 20, whereas
including reasonable strengths of anisotropy makes the χ2 tend to-
wards 1. In previous anisotropic phase velocity reconstructions it
has been noted that Love data show a strong 2ψ term (Montagner
& Tanimoto 1990). This is quite puzzling because a general slightly
anisotropic medium should give rise to small 2ψ Love terms only
(Montagner & Nataf 1986). Such reasoning assumes self-coupling
and a good candidate to explain the discrepancy would be to evoke
strong Love–Rayleigh coupling. Before complicating the theoretical
framework, however, we want to make sure that our data coverage
can distinguish between 2ψ and 4ψ models. We thus generated
a random 4ψ-only degree-20 model (850 model parameters) and
calculated various misfit curves (Fig. 2c). Sure enough the misfit
curve corresponding to a suppressed 2ψ inversion gives the small-
est misfit. Allowing 2ψ terms in the inversion increases the misfit.
The F-test assigns 100 per cent significance to the differences up
to the first 850 parameters. Beyond 850 parameters we are running
out of 4ψ parameters and some signal is explained by 2ψ parame-
ters, bringing the misfit curves closer together. Repeating the same
test for a purely 2ψ input model results in the smallest misfit for
a mainly 2ψ inversion. These calculations indicate that we have
the possibility to determine the strength of azimuthal anisotropy
from the data and that the data coverage is sufficient to distinguish
between the different azimuthal terms. It should be noted, however,
that in these synthetic tests all parameters were completely con-
trolled, particularly, the size and distribution of the uncertainties
was perfectly known. In the case of real data this is clearly more
difficult.

4 M I S F I T C U RV E S F O R T H E DATA

We generated as outlined above misfit curves for our data. The most
difficult part in the measuring process is to assign errors to the data
because many assumptions are implicit in such measurements. We
found that a reliable estimate was derived from cluster analyses
when we included measurements made with varying assumptions
(Trampert & Woodhouse 2001). Errors assigned by cluster analy-
ses assume a Gaussian distribution, which is difficult to check in
most cases. Consequently, errors in the data are only approximately
known compared with the perfectly determined synthetic tests and
make it difficult to distinguish between some misfit curves. Exam-
ples of the results are seen in Figs 3 and 4. In general, for small
numbers of inverted parameters (long-wavelength or low spheri-
cal harmonic degree inversions), purely isotropic parametrizations
explain the data best. Allowing more parameters in the inversion,
eventually anisotropic models become more efficient in explaining
the data. Part of the smaller-scale isotropic structure is, in fact, due
to long-scale anisotropic structure. This is similar to the textbook
example of a finely layered isotropic medium which behaves as a
transversely isotropic medium when overall apparent elastic proper-
ties are considered. From approximately 500 parameters onwards,
we gain at least 5 per cent in χ2 reduction if we allow some azimuthal
anisotropy, indicating that the data clearly contain anisotropic in-
formation. The F-test shows that this is significant with 100 per
cent confidence. Looking closer, there are also differences in the
misfit curves between different strengths of anisotropy although
much smaller than compared with the isotropic case. The question
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Global anisotropic phase velocity maps 157

Figure 1. Azimuthal coverage of Love wave rays calculated for 20 × 20 deg2 cells. Top: azimuthal coverage for minor arcs. Bottom: azimuthal coverage for
major arcs. Note how the major arcs fill important gaps in the azimuthal coverage of the minor arcs. Using minor arcs alone could thus lead to biases in the
azimuthal terms. The averaged ray density per cell (not shown) is high and relatively uniform between 1000 and 10 000 rays per cell for a total of 58 506 paths.

is whether or not these differences are significant. The significance
varies as a function of inverted parameters and the eigenvalue spec-
tra corresponding to the inverse problem indicate that roughly 800
independently inverted parameters are a reasonable choice for our
Love and Rayleigh wave coverage (see also Trampert & Woodhouse
2001).

For Love waves, all anisotropic misfit curves (Fig. 3) are close to-
gether and the F-test shows that for 800 free parameters, there is at
least a 30 per cent chance (up to 80 per cent depending on period)
that the differences are not significant. Note that we included misfit
curves for 4ψ azimuthal terms only to test whether or not our data
require 2ψ terms. This is an important question because a general
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Figure 2. Misfit curves obtained for various random input models. The
data coverage used in these simulations corresponds to that shown in Fig. 1.
The curves are labelled showing the values of the parameters as (θ2, θ4). (a)
Isotropic input model; (b) 2ψ and 4ψ input model; (c) 4ψ-only input model.

slightly anisotropic Earth should not give a significant 2ψ term for
Love waves in the absence of mode coupling (Montagner & Nataf
1986). In the past, strong 2ψ Love terms have been found (Mon-
tagner & Tanimoto 1990) and, if confirmed, most likely means that
strong Love–Rayleigh coupling is present. Given the results of the
F-test mentioned above, we find that with a sufficiently high degree
of confidence our data do not require the inclusion of 2ψ terms.

For Rayleigh waves, all anisotropic misfit curves (Figs 4 ) are
again close together, although there is a slight indication that the
data require stronger anisotropy with increasing period. We included
a misfit curve with strongly damped 4ψ terms because for some
petrological models, it is found that the 2ψ terms are dominant for
Rayleigh waves (Montagner & Tanimoto 1991). If the data could
distinguish between cases with or without 4ψ terms, this would be
a strong petrological discriminant. The F-test shows that the differ-
ences between the anisotropic misfit curves are not as significant as
the difference with the isotropic case. Nevertheless, at 40 s, the data
require with a 95 per cent confidence level a 4ψ term from 750 free
parameters onwards. It is less certain whether an overall anisotropic
weighting of 0.1 or 0.5 is required. At 150 s, the stronger anisotropy
explains the data better with 95 per cent confidence and the neglect
of the 4ψ term clearly gives a higher χ2 as the number of param-
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Figure 3. Misfit curves for (a) 40 s Love wave data and (b) 150 s Love
wave data.

eters increases. The data thus require a 4ψ term and an increasing
strength of anisotropy with period.

5 R E S U LT S

We constructed azimuthally anisotropic phase velocity maps from
our data (58 506 Love wave measurements and 75 515 Rayleigh wave
measurements). Although it is clear from the previous paragraph
that the data require some degree of anisotropy, the exact strength
is difficult to determine. A conservative point of view leads us to
choose the smallest significant amount of anisotropy required by
the data. Bearing in mind a future depth interpretation, it is most
convenient to construct phase velocity models of equal resolution
for Love and Rayleigh waves. We finally used θ 2 = 10−5 and θ4 = 0.1
for Love waves and θ 2 = θ 4 = 0.1 for Rayleigh waves, although there
is an indication that the data need more anisotropy with increasing
period. It should be borne in mind that this weighting is put in
the cost function but the data still have the possibility to put more
anisotropy into longer-period models if needed. λ was adjusted to
obtain a total of 800 independently inverted parameters out of the
3405.

Before discussing the models, it is instructive to look at the
achieved resolution with the given weighting parameters. The full
resolution operator consists of a 3405 × 3405 matrix, which is
difficult to represent. We calculated the full resolution in each case,
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Figure 4. Misfit curves for (a) 40 s Rayleigh wave data and (b) 150 s
Rayleigh wave data.
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Figure 5. Relative rms error as a function of the spherical harmonic degree for different isotropic phase velocity models. The curves have been smoothed
with a cubic regression.

Table 1. Trade-off from resolution operator

Isotropic input model 0ψ 2ψ 4ψ

Love 40 s 0.88 2.3 × 10−15 8.6 × 10−4

Love 150 s 0.70 6.8 × 10−15 2.2 × 10−3

Rayleigh 40 s 0.88 1.2 × 10−3 5.8 × 10−4

Rayleigh 150 s 0.57 4.1 × 10−3 2.0 × 10−4

The isotropic input models are from Trampert & Woodhouse (2001). 0ψ

lists the output power of the isotropic model part relative to the input power,
2ψ and 4ψ correspond to the respective parts of the azimuthal anisotropy.

but will only comment on two main points of interest, namely the
overall lateral resolution and the trade-off between the different
azimuthal terms. The overall lateral resolution is calculated from
Backus–Gilbert averaging kernels (Trampert & Woodhouse 1995)
and is of degree 22 for the isotropic part and degree eight for the
azimuthal part. This coincides roughly with values given directly
by the trace of the resolution. The important question of whether
isotropic structures can give rise to apparent azimuthal anisotropy
through inadequate ray coverage is addressed by filtering previ-
ously obtained isotropic phase velocity models with the calculated
resolution operators. We have chosen the models of Trampert &
Woodhouse (2001) because these models and our resolution opera-
tors are built from the same number of independent parameters. We
calculated the total power of each individual 0ψ , 2ψ and 4ψ output
model block relative to the total power of the input model. The re-
sults are summarized in Table 1. Regardless of the input model, the
trade-off with azimuthal terms is negligible due to our excellent and
complementary minor and major arc data coverage. The imperfect
isotropic recovery is due to a loss of power in the highest degrees,
indicating that part of the small-scale structure in purely isotropic
inversions is due to unmodelled azimuthal anisotropy. This results
in a lower overall lateral resolution (L = 22) compared with a sim-
ple isotropic inversion (L = 28) for the same number of inverted
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Figure 6. 2ψ (bottom) and 4ψ (top) model for Rayleigh waves at 40 s. The grey-scale in the background corresponds to the peak-to-peak amplitude of
anisotropy expressed relative to the average phase velocity calculated from the Preliminary Reference Earth Model (PREM). The black lines represent the fast
directions which are also scaled to the amplitude shown in the background. The plate boundaries are plotted in white.

parameters. For the same strength of anisotropy in the cost function,
we note that the longer the period, the more gain there is in variance
reduction (Figs 3 and 4) and the more loss of power in the highest
degrees (Table 1). This is consistent with the findings from the misfit

curves that the data require slightly more anisotropy with increasing
period. We checked that the lowest degrees remained unchanged.

Another possible influence on the results could come from ir-
regular topography of the major discontinuities within the Earth. To
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Figure 7. Same as in Fig. 6 but for Rayleigh waves at 150 s.

test this, we corrected our data with the predictions from CRUST5.1
(Mooney et al. 1998) and the observed surface topography before in-
version. As expected the isotropic models changed accordingly, the
2ψ and 4ψ terms, however, did not change noticeably. Moho depth
and topography are the discontinuities with the most pronounced un-

dulations, but we find no significant effects on the azimuthal terms
of our models. We interpret this as an indication that undulations
in the topography of discontinuities have a first-order effect on the
isotropic terms of local phase velocities, but no more than a second-
order effect on the azimuthal terms.
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Figure 8. 4ψ model for Love waves at 40 s (top) and 150 s (bottom).

We will not show any results for the isotropic part of the models.
We have published several models over the past few years with the
aim of distinguishing robust features in the models. The construc-
tion of the models is data dependent and not unique because of the
need for damping. With our currently published models we can ad-

dress the variability in the models due to uncertainties in the phase
velocity measuring process, data coverage, model parametrization
and regularization in the inverse problem. As a quick reminder, we
first applied our automatic measuring technique with conservative
inbuilt protections, resulting in mainly minor arc data (Trampert &
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Woodhouse 1995), which required strong damping in the map con-
struction. In Trampert & Woodhouse (1996), we relaxed the inbuilt
protections and measured many major arc data. The resulting maps
were built using much less damping. We then refined the measur-
ing technique, starting from aspherical reference models (Trampert
& Woodhouse 2001). This resulted in a much better control over
the 2π ambiguity. We further cleaned the data set from outliers us-
ing cluster analyses. In the present work, we included azimuthal
anisotropy in the parametrization having mainly an effect on the
higher degrees of the isotropic models. To evaluate the variability in
the models thus obtained, we calculate for each spherical harmonic
coefficient the mean and variance of the spectral amplitude. In Fig.
5, we plot the ratio of the standard deviation over the mean, giving
a relative rms error as a function of the spherical harmonic de-
gree. The relative error increases with increasing period and spher-
ical harmonic degree, indicating that the longer the period and the
higher the degree, the more uncertain the models are. As an indica-
tion, fixing the acceptable relative model error to 0.3 would mean
that models for 40 (150) s become unreliable from degree 25 (15)
onwards.

The models for azimuthal anisotropy are plotted in Figs 6–8.
In general, for Rayleigh waves, the 2ψ term is stronger (rms am-
plitude of 0.5 per cent) than the 4ψ term (rms amplitude of 0.25
per cent). The 4ψ term for Love waves is stronger (rms amplitude
of 0.5 per cent) than the corresponding Rayleigh wave term. The
correlation of 2ψ and 4ψ models at different periods is relatively
high (Fig. 9), indicating that the source of anisotropy is shallow,
probably lithospheric, but a detailed depth inversion will have to clar-
ify this. For instance, the overall high correlation of the 2ψ Rayleigh
terms is dominated by the oceanic part (0.60) compared with a cor-
relation of only 0.16 for continents, suggesting a deeper source of
anisotropy beneath continents at least. The dominant degrees in the
2ψ Rayleigh models are two to four. For the 4ψ models the maxi-
mum power is found for degree six, slightly shorter wavelength. It is
generally observed that the fast directions of the 2ψ Rayleigh terms
agree well with directions of plate motions in the oceans (Tanimoto
& Anderson 1985; Montagner & Tanimoto 1990). Qualitatively we
also see such a correlation, especially fast directions perpendicular
to mid-oceanic ridges. While relative plate motions are well con-
strained, their absolute motion with respect to the underlying mantle
is still a matter of debate (Gordon 1995). We considered absolute
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Figure 9. Correlation between different 2ψ and 4ψ models specified in
the legend. For 4ψ models, the correlation is low for degrees four and five
because the models contain very little power.

plate motions in the two most common reference frames: the hotspot
reference frame (HS2-NUVEL1 from Gripp & Gordon 1990) and
the no-net-rotation reference frame (NNR-NUVEL1 from Argus &
Gordon 1991). It has also been suggested that fossil seafloor spread-
ing directions could be important (Nishimura & Forsyth 1989). We
obtained these fossil directions from the mapped magnetic anoma-
lies in the oceans. At each point, we calculated the angular differ-
ence between the fast direction of the 2ψ Rayleigh term and the
local direction of absolute plate motion. Since we are considering
directions only, the differences are represented between 0◦ and 90◦.
To show the significance of the correlation most clearly, we plotted
cumulative distributions and compared them with a set of random
angles (Fig. 10). In the oceans, there is no clear overall correlation
using the no-net-rotation reference frame or the fossil directions.
The corresponding distributions plot close to that of random an-
gles. The hotspot reference shows a clear correlation and we note
again the similarity between directions at 40 and 150 s. In conti-
nents, the no-net-rotation reference frame again gives no significant
correlation, but the hotspot reference frame works remarkably well,
especially at 150 s where two-thirds of all directions agree to better
than 25◦ concurring with a recent study beneath Australia (Simons
& van der Hilst 2003). This is an interesting observation, because
most studies of anisotropy beneath continents rely on shear wave
splitting measurements (Silver 1996). It will now be interesting to
construct models of azimuthal anisotropy as a function of depth and
test several hypothesis concerning the role of plates in the overall
mantle flow. The models presented here can be downloaded from
ftp://terra.geo.uu.nl/pub/jeannot/twgji02aniso.tar.gz.

6 C O N C L U D I N G R E M A R K S

We constructed global anisotropic phase velocity maps from more
than 100 000 automatically measured phase differences of surface
waves between 40 and 150 s. The azimuthal anisotropy is expanded
in terms of generalized spherical harmonics, which allows path-
averaged phase velocities to be calculated with great ease. This
parametrization makes the inverse problem invariant with respect
to rotations of the coordinate frame and eliminates singularities
associated with the indeterminacy of azimuths at the poles. Great
care is taken to determine the strength of anisotropy required by
the data. To achieve this we propose a technique based on relative
weighting of the different model terms in the cost function asso-
ciated with the inverse problem. The results show that phase data
clearly require azimuthal anisotropy. Including azimuthal anisotropy
into phase velocity map constructions reduces the overall lateral
resolution of the isotropic part by reducing the power of the high-
est degrees. This indicates that short-wavelength structure seen in
purely isotropic inversion could result from unmodelled azimuthal
anisotropy. Concerning azimuthal anisotropy itself, we observe that
Love wave data do not require 2ψ terms, whereas Rayleigh wave data
need both, 2ψ and 4ψ terms, although the 2ψ term is stronger. Based
on correlations, the sources of the observed azimuthal anisotropy are
shallow. Only absolute plate motions in the hotspot reference frame
show a significant correlation with the fast 2ψ Rayleigh directions.
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