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S U M M A R Y
We present the acquisition and processing of a multi-offset ultrasonic tomography experiment
in which we aim to precisely reconstruct the image and kinematic properties of two scatterers
that contrast strongly with the water background. The resultant non-linearity causes the failure
of a frequency-domain waveform fitting strategy for retrieving the whole range of experi-
mentally covered wavenumbers. A mixed tomographic approach is instead adopted in which
traveltime and waveform inversion are combined iteratively. This strategy helps in overcoming
the waveform inverse problem non-linearity and the data computed in our final tomographic
model match most of the observed features in the experimental seismograms. This model is in
good agreement with what is known concerning the properties of the scatterers and it is char-
acterized by both the high focusing of waveform tomography and the accurate kinematics of
traveltime tomography. These achievements are reached in spite of a limited, but nevertheless
uniform, geometric coverage. Our strategy of using two different tomographic tools sequen-
tially therefore appears to be a possible solution to addressing the issue of highly non-linear
seismic inverse problems.

Key words: combined tomography, frequency-domain waveform inversion, non-linear inverse
problem, traveltime inversion, ultrasonic data, wavenumber coverage.

1 I N T RO D U C T I O N

In seismic waveform inversion, all of the information contained in
recorded seismograms is used to retrieve physical properties that
are relevant to seismic wave propagation in a zone of study. Used in
combination with a modelling technique that has the ability to sim-
ulate every aspect of the behaviour of the wavefield, such a method
theoretically allows one to obtain a model of the area that should
only be limited by the properties of the acquisition device (positions
of sources and receivers, bandwidth of the signal). Important studies
on the application of waveform inversion techniques in the seismic
imaging and seismic tomography problems have been achieved over
the last two decades on both theoretical and numerical aspects, the
latter being greatly favoured by the developments in available com-
putational resources that made realistic applications more and more
feasible.

Theoretical studies have provided a framework for the implemen-
tation of the seismic waveform inverse problem with an increasing
degree of complexity. First of all, it was demonstrated that the lo-
cal linearized approach of the inverse problem could be seen as
a sequence of pre-stack depth migrations (Lailly 1984; Tarantola
1984). The acoustic (Tarantola 1984), elastic (Tarantola 1986) and
viscoelastic (Tarantola 1988) cases were subsequently described.
On the other hand, numerical implementations were carried out on

synthetic (Gauthier et al. 1986; Mora 1987, 1988; Crase et al. 1990)
and real data sets (Crase et al. 1990, 1992; Igel et al. 1996; Djikpesse
& Tarantola 1999).

The studies cited above used a modelling tool based on a finite-
difference resolution of the wave equation in the space–time domain,
which will be simply quoted as the (r, t) domain or time domain
hereafter. However, seismic wave modelling by finite differences
can be equivalently carried out in the (r, ω) (for space–frequency)
domain (Marfurt 1984), with great potential benefit when numerous
sources are involved, as is usual in seismic sounding experiments.

Instead of just limiting the modelling to the (r, ω) domain and
computing time seismograms using an inverse Fourier transform, it
is quite worthwhile to also implement the inverse problem in this do-
main. First, it can be shown that a complete wavenumber coverage of
the model (to the extent of the source frequency bandwidth) can be
achieved with a limited number of frequencies, particularly when
wide aperture data are considered (Devaney 1984; Wu & Toksöz
1987; Pratt & Worthington 1990). This can lead to a huge decima-
tion in the volume of data to invert and therefore, to a strong decrease
in the computational resources required to do so. Besides this, per-
forming the inversion in the (r, ω) domain easily allows an iterative
processing of the signal with increasing frequencies. To some ex-
tent, this strategy can limit the strong non-linearity of the seismic
waveform inverse problem by allowing a natural decoupling between
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the frequencies of the signal and thus, between the corresponding
wavenumbers of the model. Inverting lower-frequency components
first strengthens their relative importance if they are not dominant
in the spectrum of the signal and helps in providing a kinematically
better constrained model to invert higher components. It is possi-
ble to follow an analogous strategy in the time domain (Kolb et al.
1986), but this requires bandpass filtering of the data.

The first implementation of waveform modelling in the (r, ω)
domain (Pratt 1990) confirmed its feasibility and interest. However,
the technique was limited by its high numerical cost, particularly
concerning the required random access memory. Subsequent devel-
opments (Jo et al. 1996; Shin & Sohn 1998; Šteckl 1998; Šteckl &
Pratt 1998; Min et al. 2000) made the approach more attractive by
strongly reducing this requirement.

The frequency-domain inverse problem was first implemented
through a linear functional analysis (Pratt & Worthington 1990;
Song et al. 1995; Pratt et al. 1996), analogous to that used in the
time domain, and then rewritten in an equivalent, but mathematically
simpler form, using a matrix formulation (Pratt et al. 1998). The
results obtained with any of these formalisms, on both synthetic
(Pratt & Worthington 1990; Song et al. 1995; Pratt et al. 1996;
Forgues et al. 1998) and real data (Song et al. 1995; Pratt 1999;
Pratt & Shipp 1999; Hicks & Pratt 2001) demonstrated the validity
of the frequency-domain inversion approach and confirmed its huge
advantages, mentioned above, for both modelling and inverting data.

Compared with more usual traveltime techniques, waveform in-
version provides a significant improvement in the resolution of to-
mographic images (Williamson 1991; Pratt et al. 1996; Pratt 1999).
The achievable resolution depends on the scattering angles, or equiv-
alently, offsets, but can be reduced down to half of the wavelength
of the signal in the case of reflected arrivals (Wu & Toksöz 1987);
in contrast, the resolution length in traveltime tomography is ap-
proximately the size of the first Fresnel zone (Williamson 1991). In
the experimental case we are going to present in this paper, there
is approximately an order of magnitude in the respective resolution
thresholds of traveltime and waveform tomography. Furthermore,
waveform inversion theoretically allows one to invert for any phys-
ical parameter featuring in the wave equation (density, attenuation
factor, Lamé parameters in the elastic case, etc.), whereas traveltime
inversion, which only deals with picked events that are generally
P-wave arrivals, is only sensitive to the velocity of these waves.

On the other hand, the seismic waveform inverse problem is char-
acterized by: (1) a significantly heavier numerical cost and (2) a
much narrower linearity domain compared with those of the trav-
eltime inverse problem. This latter aspect makes the use of a com-
plementary method together with waveform inversion preferable in
order to provide a good starting model (from a kinematic point of
view) from which the iterative convergence scheme is likely to reach
the global minimum of the misfit function; a use of waveform inver-
sion alone yields meaningful results only if such a starting model is
available independently (Igel et al. 1996; Pratt et al. 1996; Forgues
et al. 1998; Djikpesse & Tarantola 1999). Techniques of traveltime
fitting are methods of choice to complement waveform inversion
or any high-resolution migration-inversion method. They can be
considered through global non-linear approaches, including Monte
Carlo (Cary & Chapman 1988), genetic algorithms (Sambridge &
Drijkoningen 1992; Sen & Stoffa 1992; Jin & Madariaga 1993) and
simulated annealing (Xia et al. 1998) techniques for 1-D problems
only, or through a local approach, in which the dependence on the
initial model is much weaker than for the waveform fitting problem
and where such an appropriate model can generally be easily de-
signed (Pratt & Goulty 1991; Zhou et al. 1995, 1997; Pratt 1999;

Pratt & Shipp 1999). These traveltime preliminary approaches are
interesting in that they allow one to build a starting model for which
the degree of kinematic agreement with data can be controlled below
half a signal time period. This threshold represents the limit above
which waveform inversion is likely to converge in a secondary min-
imum due to phase ambiguity (cycle skip), which is a usual cause
of failure.

In our own application, the background has a constant and known
velocity but the size and velocity contrast of the scattering objects
require a non-uniform initial model for the waveform inversion to
succeed, as we shall illustrate. To this end, a linearized traveltime
tomography approach, similar to those of Toomey et al. (1994) and
Zelt & Barton (1998), is adopted, as in the works of Pratt (1999)
and Pratt & Shipp (1999).

In this paper, we deal with experimental laboratory data. An ul-
trasonic tomography experiment was performed at the University of
Rennes (France) in a water tank. In this experiment, we aim to:

(1) validate and test the frequency-domain waveform inversion
method we are advocating here in a real data processing context,

(2) find a procedure to combine the information brought by var-
ious scattering angles, using two different tools, namely waveform
inversion and traveltime tomography, to solve a strongly non-linear
tomographic problem.

The ultrasonic experiments performed in this tank were initially
devoted to the development of an endoscopic borehole seismic
method, including works on deconvolution and signal processing
(Valéro 1997). This experimental device was also used for develop-
ing laboratory-scaled characterization methods for rock samples us-
ing ray-Born-based asymptotic waveform inversion (Ribodetti et al.
2000; Saracco et al. 2000). There are many common features be-
tween the data set presented and processed in the study of Ribodetti
et al. (2000) and our own data set, the acquisition of which is de-
scribed in the following section. Apart from the fact that different
scatterers were used, there are also noticeable differences between
these two experiments: (1) we used five different offsets in our own
experiment instead of just one; (2) two scatterers were immersed
to show the ability of finite-difference-based waveform inversion to
deal with multiscattered waves; and (3) we do not invert for the Q
attenuation factor, although its effect is taken into account in our
modelling of data.

Compared with other laboratory experiments in which waveform
inversion or diffraction tomography techniques were used (Pratt &
Worthington 1988; Pratt & Goulty 1991; Pratt 1999), we deal with
a geometrically simple model, circularly surrounded by the data ac-
quisition geometry. On the other hand, the coverage is limited (five
receivers per source) and, above all, we deal with much stronger
acoustic velocity contrasts (up to approximately 200 per cent in-
stead of a few per cent to a few tens of per cent) and therefore, find
ourselves in an arduous case where the weak scattering linearizing
assumption of these methods is clearly not verified. Yet, comparable
conditions could possibly be met in certain specific surface appli-
cations and it appears worthwhile to assess the solutions that could
be proposed for such problems.

A detailed description of the experimental set-up is given in the
second part of the paper. The resultant data sets are presented in the
third part together with their pre-processing sequence. In the fourth
and fifth parts, we present both the modelling and inversion aspects
of waveform and traveltime tomography used in our data processing.
The final part presents and discusses the results obtained with the
tomographic strategy we propose for this problem.
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Figure 1. Data acquisition geometry. (a) General view, (b) view in plan �: �s denotes the angle between the source and its reference position, ��s is the
angular increment between two successive shots and φsr is the angle between the source and the receiver.

2 E X P E R I M E N TA L S E T - U P

The experiment was carried out in a water tank, the dimensions of
which are 2.00 × 1.40 × 1.50 m3 (see Fig. 1). The water tempera-
ture was 20 ◦C and remained constant during the experiment. Tables
taken from Greenspan & Tschiegg (1959) give a corresponding
P-wave velocity of 1482.66 m s−1. This estimation was confirmed
by a transmission experiment performed using high-frequency trans-
ducers (500 kHz for the dominant frequency), which yielded a value
of 1482.64 ± 4.6 m s−1. The corresponding density was consid-
ered to be 1000 kg m−3. Two scatterers were immersed in the tank.
The first one is a lava cylinder of diameter 11.8 cm, for which the
P-wave velocity and density are estimated as 4500 m s−1 and 2500 kg
m−3, respectively. The second scatterer is a PVC cylinder with a di-
ameter of 6.7 cm, a P-wave velocity of approximately 2400 m s−1

and a corresponding density averaging 2000 kg m−3. Unlike the
PVC target used in the study of Ribodetti et al. (2000), which was
a hollow tube, our two targets are filled cylinders. They thus have a
more limited wavenumber bandwidth that should be more exhaus-
tively covered by the signal we use, which is itself band-limited (see
below). The two cylinders rest vertically on the bottom of the tank
through supports (Fig. 1a). The acquisition geometry consists in a
source and a receiver that are bound to a rotation axis. They are
immersed at the same depth and rotate together around the axis,
describing a circular horizontal loop around the two scatterers. The
experimental conditions are comparable with those of medical to-
mography but we deal here with a 2.5-D problem and not a fully
3-D one. A clockwise angular increment ��s of 5◦ with respect
to the rotation axis is performed between two successive shot po-
sitions, leading to 72 seismic traces for the whole loop (one trace
per shot). Five similar experiments were performed with different
angles φsr between the source and the receiver (Fig. 1b), the values
of which are set to approximately 20◦, 60◦, 100◦, 140◦ and 180◦,
respectively (the real values are given in Table 1 but we will refer
to these ‘rounded’ values in the forthcoming developments for sim-
plicity). We thus have a variety of situations between backscattered
(reflected) data and forward scattered (transmitted) ones. The angle

Table 1. Angle φsr between the source and the receiver in the five experi-
ments. The discrepancy comes from experimental conditions.

Theoretical values 20◦ 60◦ 100◦ 140◦ 180◦
Experimental values 20.83◦ 60.60◦ 100.86◦ 141.45◦ 178.40◦

between the source and the receiver was manually adjusted (lead-
ing to the slight differences with respect to the ‘rounded’ values),
whereas the rotation of the source/receiver device between two shots
is performed by a computer-controlled rotating engine and is very
accurate.

The source and the receiver are two similar piezo-electric hy-
drophones (Brüel & Kjær type 8103) that can work in forward
(source) or reverse (receiver) mode. Their size is slightly less than
1 cm in each space direction and they act as point sources and re-
ceivers. The acquisition is controlled by a computer-based device.
A signal (second derivative of a Gaussian pulse) is synthesized and
electronically amplified before being sent to the source hydrophone.
As a result of a slightly non-linear response of the amplifier and
mainly, to subsequent interactions between the source and the small
plexiglass cube carried by a rod it is fixed to, the signal is strongly dis-
torted and made anisotropic as we shall see. After being propagated
in the tank, the resulting wavefield is recorded at the receiver posi-
tion, linearly re-amplified (without distortion), digitized and stored
in an output file.
A time signature of the signal used in the forthcoming processing is
displayed in Fig. 2 with its corresponding frequency spectrum; the
dominant frequency is approximately 36 kHz. When the wavefield
is propagated, it becomes not only scattered by the immersed objects
but also by other discontinuities, namely, the tank side walls and bot-
tom and the free boundary at the water surface. The recorded signal
is thus polluted by strong coherent events that can be synchronous
with the scattered signal of interest. This problem is overcome with
a dual acquisition procedure: a second similar acquisition is per-
formed in which the cylindrical scatterers are removed from the
tank. The events recorded during this second experiment are the
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Figure 2. Source wavelet used during the processing (a) and correspond-
ing amplitude spectrum (b). The straight vertical lines in (b) indicate the 10
frequencies used initially in waveform tomography, the dotted ones corre-
sponding to the 10 extra frequencies added further in the processing.

direct wave and the polluting reflections mentioned above. By sim-
ply subtracting this second data set from the first one, the reflections
are removed, or at least, strongly attenuated and the diffracted signal
of interest is enhanced. The same strategy was followed in the work
of Ribodetti et al. (2000).

3 P R E - P RO C E S S I N G O F DATA

The data resulting from our experiment are displayed in Figs 3–
5. For the sake of brevity, we will term ‘X ◦ data’ the data subset
corresponding to φsr = X ◦. Fig. 3 illustrates the dual experiment
method, showing the 20◦ raw data with and without the scatterers,
and the ‘cleaned’ data obtained by subtraction and a time window-
ing, applied to remove the remaining unwanted events. The source
and receiver positions were almost exactly reproduced between the
two acquisitions (note, however, the small remaining artefacts in
Fig. 3c); the input signal was itself rigorously reproduced and any
renormalization prior to the subtraction was unnecessary.

This technique of dual acquisition and subsequent subtraction re-
mains meaningful as long as the direct and scattered wavefields are
distinct in time. A careful examination of data and simple consider-
ations on traveltimes (to obtain an approximate idea of the scatterers
positions and dimensions) show that this condition holds for the 20◦,
60◦ and 100◦ data subsets. For φsr = 140◦ and 180◦, the distinction
can no longer be made and the pre-processing sequence is different.
The direct arrival has to be removed (by time windowing) from the
scatterer-free data subset before being subtracted from the other cor-
responding subset (with scatterers) in order not to alter the recorded
scattered wavefield while removing parasitic reflections.

Figs 3(c) and 4 show all the data subsets after these pre-processing
operations and a bandpass filtering (according to the source spectral
content) have been performed.

Although the different subsets were recorded at different times,
the source positions and signal were again accurately repeated here.
Hence, for a given source position, the five data subsets can be seen

as a recording of the same wavefield at different receiver positions.
In particular, the relative amplitudes between offsets are correct and
mixing these data together reproduces a virtual multi-offset exper-
iment in which five distinct receivers would have simultaneously
recorded the wavefield propagated from one source. This allows
one to mix the various subsets during our tomographic processing
and possibly, to eventually deal with just one data set.

However, care must be taken in doing so. For a given source, the
140◦ and 180◦ data represent a recording of the whole wavefield
that would have propagated in an infinite medium as walls and free
boundary reflections have been removed. In contrast, the 20◦, 60◦

and 100◦ data subsets, from which the direct arrival has been re-
moved with unwanted reflections, only correspond to a recording
of the scattered part of this wavefield. During waveform inversion,
it is possible to remove the effect of the direct wavefield and re-
produce this by simply subtracting the corresponding data, com-
puted as a first step in the homogeneous background model, to the
data computed in the successive iterates of the model. By doing
so, we proceed in a very similar manner to that applied while pre-
processing the 20◦–100◦ data subsets. When dealing with the 140◦

or 180◦ data, this subtraction is meaningless since no distinct di-
rect arrival exists in these subsets. Hence, a problem arises when
one wishes to process any combination of these two kinds of data,
respectively, termed reflection and wide-angle data from now on.
The natural solution is to process the full-wavefield data by includ-
ing both the direct and the diffracted arrivals in the reflection data
subsets to make the problem physically consistent. A direct arrival
has to be re-added on subsets from which it had been previously
removed with unwanted reflections. The simplest way to do this
would be to isolate the direct arrival (by time windowing) from the
data recorded with no scatterer and to add it to the corresponding
diffracted data to obtain full-wavefield, artefact-free data. However,
this approach is incorrect because of the source directivity. As al-
ready mentioned, the signal emitted by the piezo-electric transducer
becomes not only distorted but also made strongly anisotropic by
the interaction with the source-carrying device. Consequently, the
signal radiated towards the scatterers and the direct wavefield have
noticeably different signatures, particularly for small values of φsr

(Fig. 6). On the other hand, the waveform modelling only generates
isotropic wavefields. Considering that only the diffracted part of the
wavefield is of interest in our problem, it seems wise to use the time
signature of the signal that propagates towards the scatterers for
our modelling signal. However, by doing so, we will model a direct
wavefield, the signature of which is significantly different from that
recorded in the data. Since the direct wavefield carries no informa-
tion concerning the scatterers but exhibits fairly higher amplitudes
than the scattered one, an incorrect modelling of this first energetic
arrival will make the inversion process unable to exploit any scat-
tered information and will lead to a failure of waveform inversion. If
the direct arrivals are included, they have to be entirely ‘explainable’
by the starting model and the modelling signal, in order for the search
to become immediately and only focused on the diffracted part of
the wavefield in spite of its relatively weak amplitude. We fulfilled
this requirement by computing time-domain synthetic direct arrivals
with the input signal used for the inversion. This is achieved with
our frequency-domain finite-difference modelling tool, described in
the next section; an inverse Fourier transform brings the result back
to the time domain. These synthetic direct wavefield data are subse-
quently added to the real scattered ones, leading to the three ‘hybrid’
data sets presented in Fig. 5. A general schematic view of the whole
pre-processing phase that summarizes all of these points is given in
Fig. 7.
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Figure 3. Seismograms obtained for φsr = 20◦ with (a) and without the scatterers (b). S1 and S2 denote the scattered arrivals (by the PVC and the lava
cylinders, respectively). D denotes the direct arrival, R1, R2 and R3 denote the reflections on one side wall, the free surface and the tank bottom, respectively.
Subtracting these data and time windowing the result leads to (c). Label r1 denotes remaining artefacts due to small positioning discrepancies between the two
experiments.

To perform the synthetic direct wavefield modelling, and wave-
form inversions, a time signature of the source signal had to be
designed. As we just mentioned, we considered that the diffracted
energy was roughly emitted towards the source/receiver rotation axis
close to which the scatterers appear to be located. Hence, the signal
of interest could be found in the 180◦, scatterer-free data. We sim-
ply applied a time window filter on these data to remove polluting
reflections, stacked traces to increase the signal-to-noise ratio and
time-shifted the outcoming signal according to the travelling dis-
tance of the wavefield between the source and the receiver and to
the water velocity. This signal and its amplitude spectrum are given
in Fig. 2.

Concerning the traveltime inversion we also performed during
our processing of data, the modelling tool is an eikonal equation
solver (Hole & Zelt 1995) that computes the first-arrival traveltime.
During the inversion, the model is updated to fit picked first arrivals
as we shall see next. In our problem, this technique is only relevant if
the first-arrival time is influenced by the presence of the scatterers or,
in other words, if the first arrival is not a direct wave but a forward-
scattered one. As we saw, this condition holds only for the 140◦ and
180◦ data and this is why traveltime tomography is only applied on
these subsets. No further pre-processing was required to pick first
arrivals.

4 F R E Q U E N C Y- D O M A I N WAV E F O R M
M O D E L L I N G A N D I N V E R S I O N

4.1 Frequency-domain 2-D visco-acoustic modelling

Our waveform modelling tool is a full wave equation solver. We
limit our scope to the scalar wave equation and make the assump-
tion that wave conversions are negligible in our experiment. Fourier

transforming the time-domain acoustic wave equation yields the
frequency-domain equation:

− ω2

κ(r)
p(r, ω) − ∇ ·

[
1

ρ(r)
∇ p(r, ω)

]
= s(r, ω), (1)

where κ and ρ denote the local values of bulk modulus and density;
p denotes the pressure field and s denotes the source term. Including
a Q attenuation factor is straightforward in the frequency domain
(Song et al. 1995; Pratt 1999) and is carried out with a complex-
valued κ coefficient (Kjartansson 1979). A 2-D form of eq. (1) is
discretized using the nine-point differencing scheme of Jo et al.
(1996) and recast as an implicit linear system

Z(ω)p(ω) = s(ω), (2)

in which p and s are the vectors formed by collecting the values
of p and s at the nodal points of the numerical grid. Up to here,
the ordering of these points is unimportant. The square matrix Z is
sparse and gathers the wave equation differencing operators (Pratt
1990). Inverting eq. (2) is numerically very costly and unnecessary
since it can be equivalently written as

LUp = s, (3)

where L and U are lower and upper triangular matrices resulting
from the LU factorization of Z (see, for example, Press et al. 1992).
As pointed out in previous studies (Marfurt 1984; Pratt 1990), a di-
rect LU resolution of eq. (2) yields considerable benefit for problems
involving numerous independent sources. Indeed, once the L and U
factors are obtained, the solution for any second member is quickly
computed by performing the elimination and substitution steps of
the LU solving scheme. This is the crucial advantage of a direct
method over an iterative one in the context of exploration seismic
experiments in which numerous sources are generally involved.
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Figure 6. The direct wavefield time signature for each value of φsr illus-
trates the problem of source anisotropy. Note that the receiver response is
saturated at 20◦ due to its proximity with the source.

However, this aim is reached at the expense of important mem-
ory resources, used to store the L and U factors, since Z becomes
partially filled during its factorization. This limitation can be par-
tially overcome by the use of an adequate ordering scheme, the
filling being dependent on the matrix initial ordering. The nested
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data
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full wavefield
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Figure 7. Data pre-processing schedule. The sequence depends on whether a direct arrival can be separated from the rest of the recording (φsr = 20◦, 60◦,
100◦) or not (φsr = 140◦, 180◦).

dissection technique (George & Liu 1981) consists in a specific
numbering of the grid nodes that strongly limits the number of
non-zero coefficients appearing during the factorization. It was
successfully applied to this problem (Šteckl 1998). We adopted a
slightly different approach and implemented a highly optimized lin-
ear solver (Ma41) from the Harwell Subroutine Library. This soft-
ware first elaborates and performs a re-ordering of the matrix it
is given in input before factorizing it and solving the system for
any right-hand side vector. The re-ordering scheme is based on
an approximate minimum-degree algorithm (Amestoy et al. 1996)
and is flexible, since no grid-dependent ordering is preliminarily
defined. The memory savings are similar to those offered by a
nested dissection algorithm and the computation time drops dra-
matically compared with a sequential ordering-based resolution of
eq. (2). Furthermore, the Ma41 software has a multiple right-hand
side option that allows a simultaneous resolution for numerous
second members and a speed up of the resolution phase (elimi-
nation and substitution steps) at the expense of an extra memory
cost.

The frequency-domain wave equation resolution, being a bound-
ary value problem, numerical absorbing conditions at the edges of
the modelling grid are of crucial importance. We implemented a
Perfectly Matched Layer scheme derived from Collino (1997) that
requires only seven points per absorbing layer with a fairly good
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attenuation of the reflected echos, essentially independent of the
wave frequency and direction of propagation.

4.2 Frequency-domain waveform inverse problem

Considering the computational cost of the modelling, any global
approach of the strongly non-linear seismic waveform inverse prob-
lem is out of reach. Instead, a local iterative approach is adopted in
which one seeks to converge towards the true model by minimizing
a function σ that quantifies the misfit between the experimental data
and those computed in the successive iterates of the model. A model
corresponds to a point in the model parametrization space. A gra-
dient of the misfit function is calculated at this point. Subsequently,
a step that ensures a decrease of the misfit is performed in the indi-
cated descent direction, resulting in a new model that yields a better
data fitting. The operation is repeated until some convergence cri-
terion is fulfilled, the final model theoretically corresponding to the
minimum of σ and thus, to the searched model. The non-linearity
of the inverse problem results in a non-quadratic misfit function (in
the usual case of a least-squares formulation) and therefore, local
minima are likely to be encountered during the search leading to
incorrect models that seem to minimize σ . To avoid such mistakes,
the search has to be initiated from the region of the assumed global
minimum of the function. This mathematical condition has a phys-
ical expression in terms of model wavelengths: the starting model
has to contain the smooth variations of the model, the wavenumbers
of which are below those covered by the investigating signal (see,
for example, Mora 1987; Pratt et al. 1996; Forgues et al. 1998). In
other words, only wavelengths that yield scatterings of the incident
wavefield can be retrieved through waveform inversion.

In the forthcoming theoretical developments of the iterative con-
verging scheme, we briefly summarize the matrix formalism of Pratt
et al. (1998). Let first consider an observed data set

d(obs) = [
d (obs)

i

]
, i ∈ [1, nd ], (4)

where nd represents the number of source/receiver pairs (data space
dimension). Let also consider a computed data set d(m), correspond-
ing to a model parameter set m of the nm-dimensional model space.
A residual vector can be expressed as

δd(m) = d(m) − d(obs). (5)

Using an l2 norm, the misfit function is defined by

σ (m) = 1

2
(δdt)∗δd (6)

with the usual notation t and ∗ representing the vector or matrix
transpose and complex conjugate, respectively.

The σ function gradient at the current point m in the model space
is given by

∇mσ (m) = ∂σ

∂m
(m) = Re[(F t)∗δd], (7)

where Re denotes the real part of the complex-valued bracketed
expression and F is the Fréchet operator, mapping the model space
to the data space, for which the kernel is given by the (nd × nm)
matrix

Fi, j = ∂di

∂m j
. (8)

Introducing the virtual source term matrix V (see Pratt et al. 1998,
for details), with columns given by

v( j) = − ∂Z
∂m j

p (9)

and expressing F with V and the impedance matrix Z of the wave
equation, we obtain the final expression of the gradient vector

∇mσ (m) = Re[V t(Z−1)tδ̃d
∗
], (10)

where δ̃d is a vector obtained by mapping δd at the receiver posi-
tions in the nm-dimensional modelling grid and setting the nm − nd

remaining coefficients to zero. Note that for simplicity in vector and
matrix manipulation, forward and inverse problems are assumed to
be solved on the same grid, which is not mandatory (Pratt et al.
1998; Hicks & Pratt 2001). A component j of the gradient vector
can be expressed as

(∇mσ ) j (m) = Re

[
pt

(
∂Z t

∂m j

)
(Z−1)tδ̃d

∗
]

. (11)

From eq. (11), we have the classical physical interpretation of the
gradient which, much as for a migration operator (Lailly 1984;
Tarantola 1984), correlates an incident wavefield p, shot from a
source, to a back-propagated wavefield (Z−1)tδ̃d

∗
shot from a re-

ceiver position, with the corresponding source/receiver data residual
acting as the source term. The summation over every source/receiver
pair is implicit in eqs (10) and (11).

The numerical implementation of eq. (11) requires the computa-
tion of:

(1) the incident wavefields p propagated from every source;
(2) the residual wavefields (Z−1)tδ̃d

∗
back-propagated from the

corresponding receivers; and
(3) the partial derivative (nm ×nm) matrix ∂Z t/∂m j ; it has indeed

only up to five non-zero coefficients, considering that, regarding the
inverse problem, the nine-point scheme (Jo et al. 1996), which is
relevant for the modelling, is physically equivalent and more expen-
sive from a computational point of view than the basic five-point
scheme.

Once the gradient computed, the model is accordingly updated,
using the relation

mk+1 = mk − αk∇mσ (mk), (12)

where k is an iteration index and α represents the length of the step
performed along the steepest descent direction. α can be found by
a line search technique that usually requires two to three forward
problem computations. A conjugate gradient method can be adopted
to speed up convergence (Mora 1987; Tarantola 1987) at negligible
extra cost. It is also possible to enhance the gradient components
according to their distance with the source and receiver positions in
order to compensate for the amplitude loss by geometrical spreading.
This operation, usually termed ‘gradient pre-conditioning’, appears
to be very worthwhile in surface seismic applications (due to the
low-amplitude coverage at the bottom of models). It appeared to be
of smaller benefit, though not completely useless, with the circular
coverage we have in the experiment presented in this paper.

5 F I R S T - A R R I VA L T R AV E LT I M E
T O M O G R A P H Y

As for waveform inversion, the traveltime tomography tool used in
our data processing seeks to iteratively minimize the misfit between
observed and computed data, starting from an initial model. The
main difference comes from the noticeably wider linearity domain
of time tomography that makes conditions on the initial model much
less restrictive than those of waveform tomography.

The observed data consist in picked first-arrival traveltimes. An
iteration of the data fitting procedure decomposes as follows:

C© 2003 RAS, GJI, 154, 117–133

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/154/1/117/603242 by guest on 29 January 2022
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(1) first-arrival traveltime tables are computed for each source, in
the whole model, by solving the eikonal equation through a finite-
difference scheme (Hole & Zelt 1995); this is achieved with the
FAST package eikonal solver (Zelt & Barton 1998);

(2) ray paths linking each source/receiver pair are calculated by
reverse propagation from the receiver to the source, along the trav-
eltime gradient direction;

(3) the Fréchet derivative matrix Fi j = ∂ti/∂m j assessing the
effect of the jth model parameter perturbation on the traveltime
between the ith source/receiver pair is calculated;

(4) the following system is solved:


C−1/2
d �t(k)

0

0

0


 =




C−1/2
d F
λhSh

λvSv

εD




(
�m(k)

)
, (13)

in which Sh and Sv are horizontal and vertical Gaussian smoothing
matrices, respectively, D is a damping matrix and Cd is the covari-
ance matrix of data uncertainties; λh , λv and ε are scalars that control
the balance between these imposed constraints; the system is solved
iteratively using a LSQR algorithm (Toomey et al. 1994; Zelt &
Barton 1998).

The inversion is non-linear in that ray paths are recalculated for each
iteration.

6 DATA P RO C E S S I N G

In all of our applications, we consider the initial state of infor-
mation to reduce to the knowledge of the background properties.
This means that the starting models used in our tomographic in-
versions are either this background model or models obtained by
one or several previous traveltime and/or waveform inversion(s) of
data.

The approximate knowledge we have of the properties of the
scatterers and the positions in the tank allows one to build an image
of the model to be retrieved (Fig. 8a). From this, we can assess
the wavenumber spectra of both scatterers (Fig. 8b) and also the
wavenumber coverage of our waveform tomographic reconstruction
with respect to the acquisition geometry (Fig. 9). For each cylinder,
this coverage spectrum was obtained by considering every possible

Figure 8. (a) Approximate model for the experiment. [AB] denotes the section through which velocity profiles are displayed for comparisons. (b) Wavenumber
amplitude spectra for the PVC and lava cylinder, respectively.

diffraction angle in the scatterer for every source/receiver pair and
for every inverted frequency. An assumption of single scattering was
necessary to compute these coverage diagrams (Devaney 1984; Wu
& Toksöz 1987), though multiple scattering is likely to happen here.
However, we consider them to provide a reliable estimate of what
can be expected from our experiment in terms of reconstruction.

During waveform inversion, a fixed Q factor of 2.1 × 105

(Ribodetti et al. 2000), corresponding to water attenuation prop-
erties, was included in our modelling. Density was not explicitly
inverted either but was derived from the reconstructed velocities us-
ing an experimental P-wave velocity/density correspondence curve
taken from Ludwig et al. (1970).

We also systematically applied a tapered spatial filter on model
updates for both tomographic techniques to prevent any recon-
struction artefacts (such as Gibbs oscillations for frequency-domain
waveform inversion) to appear in regions in which data clearly in-
dicate that the scatterers are not located. Considering the 20◦ data,
simple geometric considerations and the knowledge of water veloc-
ity show that both cylinders are located in a circular pattern the centre
of which is the source/receiver rotation axis and with radius 15 cm;
this is the limit out to which the model remained unchanged during
the processing. This condition appeared to be necessary for the trav-
eltime tomography to succeed; it simply brought an improvement
on waveform tomography images quality.

The finite-difference waveform modelling steps were performed
in a square grid, the side of which is 90 cm long. The grid step was
4 mm along the two Cartesian axis, leading to a 240 × 240 numerical
grid (including seven extra points on the four edges for the absorb-
ing boundaries) and to impedance matrices Z of order 57 600. The
average time and memory required to perform a forward modelling
on a Sun Ultra 10 440 MHz workstation were approximately 30–
36 s and 91–114 Mb, respectively (depending on the frequency
value), roughly divided as follows:

(1) 0.5–0.6 s for the matrix analysis (re-ordering scheme
elaboration);

(2) 7–11 s to factorize the matrix, requiring storage of between
58 and 68 Mb of RAM;

(3) 21–24 s and 33 Mb to solve for the 72 source positions (with
use of the multiple right-hand side option).

The minimum spatial sampling encountered was approximately
7.75 points per wavelength, which is significantly more than the
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126 J.-X. Dessa and G. Pascal

Figure 9. Spectral domain coverage for the complete acquisition geometry. Coverage of the PVC cylinder (a) and the lava cylinder (b) with the 10 fre-
quency waveform imaging. Parts (c) and (d) display the same coverage patterns when the 20 frequencies are used (see Table 2 for the inversion frequency
schedule).

Table 2. Signal frequencies used during waveform inversion. The 20 components were used in the combined tomography
experiment, whereas only 10 of them (marked by an asterisk) were inverted when only waveform tomography was applied.

Component number 1 2 3 4 5 6 7 8 9 10
Frequency (kHz) 15.14∗ 16.6 18.07∗ 20.02 21.48∗ 22.95 24.41 26.86∗ 28.32 29.79∗

Component number 11 12 13 14 15 16 17 18 19 20
Frequency (kHz) 31.25 32.71∗ 33.69 35.16∗ 37.60∗ 39.55 41.99 43.95∗ 45.90 47.85∗
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4.5 gridpoints that represent the threshold above which numerical
dispersion errors remain below 1 per cent (Jo et al. 1996). Indeed,
the limitation of the grid step was usually not imposed by the fre-
quencies to propagate but rather by the requirement to set sources
and receivers on node points for the modelling. The source and re-
ceiver experimental positions stand on a circular loop and generally
do not correspond exactly to a Cartesian modelling grid node posi-
tion. Hence, they had to be displaced from their theoretical position
to the closest node position, resulting in small positioning errors
and in potential phase misfits. A 4 mm grid step appeared to limit
them below ∼λ/5 (where λ is the wavelength of the signal) for the
higher frequency in Table 2. Equivalent results obtained on more
finely discretized models did not exhibit significant improvements
but yielded a strong and pointless extra numerical cost. The effect of
these positioning errors can be seen on the synthetic direct arrivals
that were superimposed on the diffracted data (Fig. 5); small time
offsets are visible between neighbouring traces, in contrast with the
recorded direct arrivals (label D in Fig. 3b) that are all synchronous.
Hicks (2002) proposed a solution to overcome this problem of source
positioning in Cartesian grids.

During waveform tomography, the frequencies of Table 2 (or 10
of them for some specified cases) were sequentially inverted, one
by one, in increasing order. The converging scheme systematically
consisted in a pre-conditioned conjugate gradient algorithm. The
convergence criteria were: (1) either a drop of the misfit function
below 1 per cent of its initial value or (2) a drop of less than 1 per cent
of this function between two successive iterations and in any case
(3), the number of iterations was limited to eight (per frequency).
Practically, the third condition was frequently encountered first.

Concerning traveltime inversion, the modelling grid dimensions
were 451 × 451 with a 2 mm grid step. The CPU time for one itera-
tion was approximately 50 s on a 700 MHz PC running Linux. Five
iterations per smoothing level were performed as we shall explain
in greater detail in the combined tomography section.

6.1 Results obtained with waveform tomography

The first approach adopted for this tomographic experiment was
to only apply our frequency-domain waveform inversion scheme
to the data. This can be justified if one considers that the model is
supposed to be unknown (except for its background) and that the de-
gree of non-linearity cannot be assessed a priori. We defined a set of
10 frequencies, given in Table 2, for which we inverted data.

Figure 10. Waveform inversion results. The model in (a) was obtained by combining 20◦, 60◦ and 100◦ data only, starting from the background model. It was
then taken as a starting model to invert the whole data set, yielding the model in (b). The same sequence was repeated once again and led to the model displayed
in (c).

In frequency-domain waveform tomography, the usual way to
recover the features of a model is to reconstruct wavenumbers in
an increasing order (Forgues et al. 1998). This can theoretically be
achieved by either sequentially inverting increasing frequencies of
the signal or sequentially inverting data of decreasing offsets, in
agreement with the dependence of wavenumber coverage with re-
spect to model illumination (Devaney 1984; Wu & Toksöz 1987).
The second approach completely failed from the very beginning and
any attempt to invert 140◦ and 180◦ data, alone or in combination,
starting with the lowest available signal frequency, did not yield any
satisfactory result. The problem appears to be very non-linear, as
expected, and the homogeneous starting model is too far away from
the true model to prevent convergence in secondary minima from
occurring. Therefore, the first strategy of inverting every offset with
increasing frequencies seemed to be the only possible way in this
problem. However, this approach also failed and the non-linearity
brought by wide-angle data once again led to secondary minima
with none or very few of the features of the model explained. To
prevent this, we then only inverted reflection data (the three first
data subsets) and this allowed the migration-like reconstruction dis-
played in Fig. 10(a). The shape of the cylinders is clearly visible but
they are surrounded by inversion artefacts (Gibbs oscillations), due
to weak coverage. For the same reason, and more particularly the
lack of wide-angle data, the lower wavenumbers were not covered
and thus, not reconstructed. Now using this model as the initial one
(instead of the background), we inverted the whole data set and the
result (Fig. 10b) was fairly improved. In particular, the amplitude ra-
tio between the image of the scatterers and the surrounding artefacts
was strongly increased. Reiterating the process with two successive
inversions of reflection data first, and the complete data set after-
wards, starting from this model, led to a further enhancement of the
reconstructed image (Fig. 10c). Except for one strong artefact close
to the centre of the model, the two cylinders are quite identifiable.
The smaller one is partially filled, whereas the larger one remains
hollow. The lower wavenumbers could not be reconstructed, even
using wide-angle data in our offset combination, and consequently,
the reconstructed velocities are far from the estimated velocities for
both cylinders. Any further inversion attempt we made, taking this
model as the initial one, did not bring any improvement, whatever
the offset combination used. Adding other frequency components
in the inversion did not change the results significantly either.

These first results show that the problem is too non-linear to be
solved by waveform inversion with the homogeneous model as a
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128 J.-X. Dessa and G. Pascal

Figure 11. Combined traveltime and waveform inversion results. Traveltime tomography applied in the homogeneous starting model yields the model in (a)
from which the model in (b) is obtained using waveform tomography. A further traveltime inversion leads to the model in (c).

starting point. They also show that non-linearity can be partially
overcome by first inverting the reflection data and by varying offset
combinations but the lower wavenumbers, which are theoretically
covered by our acquisition (Fig. 9), could never be recovered.

From this conclusion, we considered that a first approach of the
problem with the traveltime inversion tool described above was nec-
essary. This technique can only be applied to the 140◦ and 180◦ sub-
sets, as we mentioned. These data are precisely those for which the
limitations of the background model as a starting point for waveform
inversion appeared to be the most obvious. After the first-arrival trav-
eltimes have been picked on the 180◦ data, we computed those of the
model in Fig. 10(c) for comparison (the eikonal solver of our travel-
time tomography tool was used for this purpose). The standard rms
misfit between arrival times was found to be 3.66 × 10−2 ms, with a
maximum value of 4.85 × 10−2 ms. These values are larger than half
a time period of the signal for its lowest inverted frequency (≈3.3 ×
10−2 ms). We therefore appear to have encountered a case of cy-
cle skip where the phase shift between the signal propagated in our
model and the inverted signal is exceeding the limit above which
the correlation is likely to be made on incorrect cycle numbers,
which is a major cause of non-linearity. This diagnosis, only based
on data examination and modelling, is confirmed by calculating the
phase-shift introduced by the main scatterer (lava cylinder), using its
dimension and estimated P-wave velocity. The conclusion is entirely
consistent with the conditions expressed by Slaney et al. (1984) for
reconstructing cylindrical objects using Born-approximation-based
diffraction tomography.

6.2 Results obtained with combined traveltime
and waveform tomography

Traveltime tomography was applied on the wide-angle data, start-
ing from the homogeneous model. It actually turned out that the
inversion could converge towards several models, with essentially
the same data fitting, depending on the conditions under which it
was carried out. This is, once again, probably a consequence of the
poor angular coverage since only two data subsets were available
for inversion. In particular, applying the filtering mask (the prop-
erties of which were given above) was a critical point in that it
prevented large areas of limited velocity contrast with respect to the
background from being found.

As for waveform inversion, the quality of results was found to
be dependent on how the input information was combined. The
best strategy appeared to be an inversion of the 180◦ data first,

from the result of which the 140◦ data were inverted; finally, the
two subsets were merged in a third inversion step. For each of
these combinations, five iterations were carried out for three dif-
ferent decreasing smoothing levels, resulting in 15 iterations. The
width of the Gaussian smoothing operator was successively set to
50, 20 and 10 mm in both directions, none of them being privileged
with respect to the other by the acquisition geometry. Applying this
gradually decreasing smoothing helps in reaching a good agree-
ment with data while preventing rays from being trapped in high-
velocity spots, hence ensuring a homogeneous spatial coverage of
the model. Furthermore, these spots are potentially misleading since
their extent is often below the resolution threshold of traveltime
tomography.

The result thus obtained can be seen in Fig. 11(a). It is clear that
a smoothed image of the cylinders was obtained and we can expect
the searched low wavenumbers to be retrieved. A velocity profile
of this model along the segment [AB] of Fig. 8(a) is displayed in
Fig. 12: velocities were recovered up to 3200 m s−1 for the lava
cylinder, which is less than the actual estimated velocity (4500 m
s−1) given the fact that the lack of spatial resolution of traveltime
tomography yields a spread velocity anomaly with smaller ampli-
tude, which fits the data as well. During the inversion, the rms error
on traveltimes dropped from 5.41 × 10−2 to 1.81 × 10−3 ms (with
maximum values of 7.01 × 10−2 and 3.75 × 10−3 ms, respectively)
for the 180◦ data and from 3.30 × 10−2 ms to also 1.81 × 10−3

ms for the 140◦ data (maximum values are 4.94 × 10−2 and 3.93 ×
10−3 ms). Starting from this model, the waveform fitting inverse
problem should therefore be much more linear and in any case, not
affected by any problem of cycle skip.

In spite of this important progress, the application of waveform
tomography to these data remains difficult. The result obtained with
the complete data set, applying the same conditions as when the
initial model was the background, yielded an improvement but were
still not quite satisfactory. Further conditions were therefore ap-
plied and as in our traveltime tomography application, we defined
smoothing conditions that were applied to the updating gradient and
progressively relaxed. We also added 10 extra frequencies to our in-
version schedule (see Table 2) in order to increase the spatial spectral
coverage, particularly regarding higher recoverable wavenumbers
(Figs 9c and d). With these two new features, we expect to reduce
spatial periodicities introduced by discontinuous spectral coverage;
the occurrence of these Gibbs oscillations is limited by including
new frequencies and their effect is attenuated by smoothing the
gradient.
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Figure 12. Velocity profiles through the [AB] section of Fig. 8. The solid line is now an estimate of the true model, the dotted line is a filtered version of this
model according to the inverted signal spectral coverage. Model 1 is the result of traveltime tomography initiated from the background model, model 2 was
obtained by waveform tomography, starting from model 1; a further application of traveltime tomography yields model 3.

We inverted the data with three smoothing levels, here again. For
each level, the 20 frequency components were classically inverted
by increasing order. The smoothing is performed with a Gaussian
operator, the width of which is locally adapted to the wavelength
of the signal. The cut-off wavelength is defined as a fraction of the
time period of the signal, which was sequentially set to 1/3, 1/5 and
1/10 in the present case.

The result of this waveform tomography strategy can be seen in
Fig. 11(b). The resolution was substantially improved and the shape
of both cylinders is now quite visible, as in Figs 10(b) and (c). They
can be clearly distinguished, which was not the case with traveltime
tomography only. The corresponding velocity profile in Fig. 12 con-
firms that the edges of the scatterers were strongly sharpened. The
velocity in the small PVC cylinder was retrieved up to 2100 m s−1.
Concerning the lava cylinder, the reconstructed velocities are close
to those of the starting model of Fig. 11(a) in spite of the anomaly
narrowing. It can also be observed that the cylinder was slightly
‘emptied’ and features higher velocities on its edges than inside.

Applying traveltime modelling in the model of Fig. 11(b) con-
firms that the kinematic misfit was re-increased during the waveform
inversion step and that the sharpening of velocity anomalies was not
balanced by a rise in their reconstructed velocities, at least concern-
ing the lava cylinder. The rms errors were found to be 1.08 × 10−2

and 1.43 × 10−2 ms for the 140◦ and 180◦ data, respectively (with
maximum values of 1.90 × 10−2 and 1.92 × 10−2 ms). Here again,
wide-angle data, which should have provided the balance, appear to
have been affected by an intrinsic non-linearity and thus prevented
an equivalent degree of kinematic agreement between the waveform
tomography input and output models. It is also clear that this remain-
ing non-linearity is not related to any problem of cycle skip. Possible
reasons for this will be discussed in a later paragraph. Nevertheless,
it is quite clear from Figs 10(c) and 11(b) that the non-linearity of the
waveform problem was strongly attenuated, though not completely
overcome, by the traveltime preliminary approach.

To try to improve our tomographic model further, we re-applied
a traveltime inversion to the model of Fig. 11(b). Usually, traveltime

inversion is only applied as a preliminary step to waveform inver-
sion (Pratt 1999; Pratt & Shipp 1999) but the strong non-linearity
of our tomographic problem and the kinematic degradation we saw
happening during waveform inversion prompted us to try and pro-
ceed iteratively with both techniques. We considered that traveltime
tomography would enhance the velocity contrast between the scat-
terers and the background while leaving the image essentially the
same in term of focusing, since the high-velocity areas that act as
ray traps are physically meaningful here. This hypothesis happened
to be verified provided that the width of the smoothing operator used
during the inversion was kept reasonably small. Five iterations were
performed with combined 140◦ and 180◦ data, with a 20 mm wide
smoother and resulted in the model displayed in Fig. 11(c). The rms
error was brought back to 9.07 × 10−4 ms with a maximum error
of 4.13 × 10−3 ms. The velocity in the lava cylinder was increased
up to 4200 m s−1, which we consider to be in good agreement with
the estimated 4500 m s−1. The small lower velocity zone close to
the cylinder axis was not corrected. It could have a physical mean-
ing, since the lava cylinder is probably not homogeneous, but we
consider it much more likely to see it as a waveform inversion arte-
fact that was not removed during the following traveltime inversion.
Moreover, nothing in the data suggests the existence of such a fea-
ture. The PVC cylinder, which is undoubtedly homogeneous, was
reconstructed in almost the best possible manner, considering the
finite bandwidth of the reconstructing signal (see Fig. 12).

To assess the validity of the final model, we computed a whole set
of synthetic seismograms that can be compared with the real ones
(Fig. 13). The fit appears to be satisfactory and the main features in
data are explained by our model. However, some differences appear,
particularly in the 20◦ and 60◦ data for which the amplitude of
reflected signals is weaker in our synthetic data. We consider this
to be a possible consequence of the wider range of frequencies
used during modelling with respect to actually inverted components
(Fig. 2); therefore, some high wavenumbers, to which the modelling
signal is sensitive, are not present in our model. This explanation
is all the more likely since the mismatch is observed on reflection
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Figure 13. Time seismograms featuring the whole data sets. Real data are shown in the left-hand panel and data computed in our final tomographic model are
shown in the right-hand panel.
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Figure 14. Evolution of the waveform misfit function between the initial
and final tomographic models. The abscissa denotes the weight of the final
model in the linear combinations used to build the family of hybrid models.

data, which are known to be more sensitive to high wavenumbers
than wide-angle ones. Sharper edges in our image of both scatterers
would most probably yield enhanced reflected phases.

In the 180◦ data, differences between synthetic and real data can
also be observed, particularly in the two ranges of trace where low-
amplitude signals are recorded (roughly from trace 12 to 32 and 48
to 68). These areas correspond to a configuration of acquisition in
which the signal is transmitted through both scatterers and possible
modelling errors occurring in that situation could explain the locally
poor agreement. This point is discussed below.

The non-linearity of our tomographic reconstruction can be il-
lustrated by computing the waveform misfit function in a family of
models built by linear combinations of the initial background with
the final model, with varying and complementary weights (between
0 and 1). Doing so, we assess the behaviour of the function along a
path of the model space between these two extreme points. The result
is displayed in Fig. 14 and two important features can be observed:
the existence of a secondary minimum around the abscissa ∼0.13
and a rise of the function after an apparent absolute minimum around
∼0.68. Concerning the first local minimum, a traveltime computa-
tion in the corresponding model shows that the maximum error with
respect to data is 5.42 × 10−2 ms for the 180◦ acquisition geometry;
this corresponds to a 18.45 kHz time period of the signal, which is
close to our lowest inverted frequency. We therefore interpret this
secondary minimum as a clear effect of cycle skip. The second min-
imum of the function corresponds to a model which happens to be
very close to the model found before the final traveltime inversion
we performed (Fig. 11b) and it could be schematically considered
that the remaining models of the family (from 0.68 to 1) correspond
to a part of model space that was explored during this second pass
of traveltime tomography. Hence, just as a drop of the waveform
misfit function had been achieved at the expense of the kinematic
agreement, an improvement of traveltime fitting appears to be un-
favourable to waveform fitting in a certain extent. Theoretically, the
problem is physically consistent and both traveltime and waveform

fitting should be achieved concomitantly. Yet, this is not what is
being observed and two explanations can be proposed for this.

(1) Modelling errors could affect waveform tomography results.
For wide-angle data in particular, phase conversions are likely to
happen and are not taken into account by the acoustic modelling
scheme. Neither is the possible effect of anelastic attenuation in
the scatterers (particularly the lava cylinder), though their relatively
small size with respect to the wavelengths of the signal should limit
the problem. Also in this category of waveform modelling errors
are the already mentioned source and receiver slight positioning
discrepancies that result from the mismatch between the Cartesian
modelling grid and the circular acquisition geometry. The source
directivity is probably still a difficulty though its main effects were
addressed in the way explained in the pre-processing paragraph.
Finally, the amplitude discrepancy between 2.5-D real data and 2-D
computed data is a well-known cause of error for waveform fitting
issues even if approximate corrections exist (see Williamson & Pratt
1995 for a review).

(2) Possible traveltime picking errors could affect the consistency
of the problem. Great care was taken in picking first arrivals but the
weak amplitude of transmitted signals make such errors likely to
happen. We consider the maximum error on our picked arrival times
to be ∼8.00 × 10−3 ms, which would lead to a maximum velocity
error of ∼ 500 m s−1 to be distributed among the two scatterers.

Considering the contradictory indications given by traveltime
and waveform misfit, one could wonder which of the models in
Figs 11(b) and (c) should be preferred. We rather favour the latter
for two reasons:

(1) traveltime tomography is widely known to be more robust
than waveform tomography and, apart from possible picking errors,
its result can be trusted;

(2) the second traveltime tomography pass yields a better agree-
ment with what is known from the scatterers, although this knowl-
edge is only approximate.

Beyond that, both models give a precise image of the positions
and shapes of the scatterers as well as a realistic estimation of their
velocities.

7 C O N C L U S I O N S

In this study of a highly non-linear tomographic problem, we saw
how traveltime and waveform approaches could be combined to
retrieve the characteristics of the searched model, starting from the
minimal state of information: the background. The non-linearity of
the waveform fitting problem with respect to the low wavenumbers
of the model is clearly illustrated when data are inverted with this
technique only. The problem is classically addressed by defining a
kinematically constrained and poorly resolved model with the help
of traveltime tomography.

Starting from this model, waveform tomography converges to-
wards a significantly better focused image of the scatterers. How-
ever, non-linearity appears not to be completely overcome and the
kinematic agreement of traveltime tomography is not kept during
the subsequent waveform inversion, possibly due to an inaccurate
waveform modelling (of wide-angle scattered waves in particular)
and, to a lesser extent, to traveltime picking errors. Concerning the
former aspect, an effort to account for more physical properties of
materials in both, modelling and inverting waveforms, is a poten-
tially critical aspect and a clear direction for future developments.

A second pass of traveltime inversion allows one to re-improve
the kinematic fitting while keeping the high resolution brought by
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waveform tomography. Therefore, we see how such a dual approach
of the tomographic inverse problem can mitigate its non-linearity.
The concomitant use of two different tomographic tools could help in
reaching areas of the model space that none of them, taken indepen-
dently, would access, either for non-linearity or intrinsic limitations.
We also see how this approach could help in addressing the problem
of somewhat inaccurate modelling by one or both methods, though
a natural solution would rather consist in further developing these
tools, as mentioned just above for our frequency-domain waveform
modelling.

Whether the strategy proposed here could be extended to surface
or cross-well seismic experiments and what benefit could be drawn
from this are open questions that are worth investigation.
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