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S U M M A R Y
The wavelet approach to numerical simulation of elastic wave propagation is applied to models
with localized heterogeneity, with significant contrasts with their surroundings. We consider
zones with both lowered wave speed such as a fault gouge zone and elevated wave speeds such
as in a subduction zone. In each of these situations the source lies within the heterogeneity.
The representation of the source region has therefore been adapted to work directly in a
heterogeneous environment, rather than using a locally homogeneous zone around the source.
This extension also allows the wavelet method to be used with a wider variety of sources,
e.g. propagating sources. For the fault zone we consider both point and propagating sources
through a moment tensor representation and reveal significant trapped waves along the gouge
zone as well as permanent displacements. For subduction zones a variety of effects are produced
depending on the depth and position of the source relative to the subducting slab. A variety
of secondary waves, such as reflected and interface waves, can be produced on wave trains at
regional distances and tend to be more important for greater source depths.

Key words: elastic-wave theory, fault, heterogeneous media, numerical techniques, subduc-
tion zone, wavelets.

1 I N T RO D U C T I O N

Tectonic regions are associated with complex and faulted structures,
which can bring material with considerable contrast in properties
into close proximity. Earthquakes are initiated in regions of consid-
erable heterogeneity, which needs to be taken into account in the
description of the generation of seismic waves by the source. Small
distortions in the wavefield associated with systematic structure can
lead to substantial differences on further propagation (e.g. Li &
Vidale 1996).

It is therefore necessary to develop techniques that can consider
sources in a heterogeneous environment and that do not depend
on the commonly used assumption of local homogeneity near the
source (e.g. Alterman & Karal 1968; Kelly et al. 1976; Levander
1988). In many circumstances such an approximation can work well
when waves propagate from a simple into a more complex zone (e.g.
Yomogida & Etgen 1993), but may be misleading where the source
region itself is complex.

Two representative regions in the Earth where tectonic processes
develop strongly heterogeneous structures in which earthquakes ini-
tiate are fault and subduction zones. Many different styles of numeri-
cal techniques have been used to simulate the propagation of seismic
waves in such regions. Finite-difference methods have been used in
investigating trapped waves in fault zones (Li & Vidale 1996; Igel
et al. 2002) and guided waves in a subduction zone with an accre-
tionary prism (Shapiro et al. 2000). To study waveform and ampli-

tude variations associated with subduction zones, Vidale (1987) ap-
plied a coupled finite-difference and Kirchhoff method, Furumura &
Kennett (1998) implemented a pseudospectral method, and Cormier
(1989) and Sekiguchi (1992) used Gaussian-beam methods.

Classical finite-difference techniques (e.g. Alterman & Karal
1968) generally need more gridpoints per wavelength than other
methods implementing a high-accuracy differentiation scheme (e.g.
the pseudospectral method). Since a large region needs to be con-
sidered for subduction zone modelling memory requirements are
high. If strong heterogeneity needs to be modelled, numerical disper-
sion is likely (Hong & Kennett 2003). Higher-order finite-difference
techniques (Igel et al. 1995; Falk et al. 1998) cure most of the limi-
tations of classical finite-difference methods but require the source
time functions to be smooth enough to be differentiated many times.
This requirement makes it difficult to handle dislocation sources for
which the displacement time functions are both complicated and
may well not be differentiable.

The Gaussian-beam method is attractive because of its low com-
putational cost for simple situations because it is built on the frame-
work of ray theory, with the superposition of all Gaussian beams
passing through the neighbourhood of a point. However, in zones
of high heterogeneity the ray tracing itself becomes a daunting
task. Furthermore, it is difficult to include all necessary secondary
phases which may affect the waveforms, such as interface waves
along a zone of contrast such as the boundary of a subducting
slab.

C© 2003 RAS 483



484 T.-K. Hong and B. L. N. Kennett

Although a pseudospectral method (or Fourier method, Kosloff
et al. 1984) can implement high-accuracy differentiation, the
traction-free condition on a free surface is difficult to implement ef-
fectively. In the Chebyshev spectral method (Kosloff et al. 1990) the
traction-free condition is satisfied using 1-D analysis at the bound-
ary, but this method also suffers from a non-uniform spatial grid
spacing in the vertical direction imposed from the character of the
Chebyshev polynomials.

Recently, a wavelet-based method (WBM) has been introduced
for modelling of elastic wave propagation (Hong & Kennett
2002a,b). Because the representation of differential operators is
carried out to high accuracy, the WBM approach is very ef-
fective for describing propagation through highly heterogeneous
random media, retaining both accuracy and stability (Hong &
Kennett 2002c). In this paper we consider the extension of the WBM
to a general source representation (such as dislocation sources) em-
bedded in heterogeneous zones. The treatment of heterogeneity is
based on splitting the second-order differential operators in the zone
around the source into two parts, so that a simple first-order operator
is all that is left at the source location itself.

The extended WBM scheme is applied to two representative prob-
lems with heterogeneous source regions: fault and subduction zones.
Fault zones are composed of physically perturbed materials created
during prior rupturing processes, and resultantly behave as low-
velocity structures. In contrast, a subduction zone has a dynami-
cally subducting cool slab that displays a high-velocity anomaly to
surrounding media.

In the application to fault-zone problems, we probe the effects
of trapped waves in the low-velocity fault zone and the permanent
displacements around sources. We include dislocation sources (in-
cluding a propagating rupture) in the fault zone and are able to
include an arbitrarily complex time history of slip to handle the
complexities of real events.

In modelling for subduction zones, we investigate waveform and
amplitude variation of SH waves propagating through a subducting
slab. The size of the subduction zone means that we need to take
account of the sphericity of the Earth and we have to make the ap-
proximation of working in a cylindrical coordinate system for SH
waves. Previous studies (e.g. Sekiguchi 1992) on waveform varia-
tion in subduction zones did not pay attention to effects of interface
waves and post-critically reflected waves sufficiently in regional dis-
tances, we investigate those effects by varying the relative position
of the source and the slab boundaries. In particular, since earth-
quakes are, in general, close to the boundaries of the subducting
slabs (e.g. Pankow & Lay 2002), there are considerable possibilities
for the development of interface waves that can travel considerable
distances along the slab.

2 A WAV E L E T - B A S E D M E T H O D F O R
E L A S T I C WAV E M O D E L L I N G

In this section, we briefly introduce the wavelet-based method which
is described more fully in Hong & Kennett (2002a,b).

The P–SV elastic wave equation system in 2-D including body
force terms ( f x, f z) and absorbing boundary conditions via attenu-
ation factors (Qx, Qz) is given by
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where (ux, uz) is the displacement vector and (σ xx, σ xz, σ zz) are
components of the stress tensor:
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and λ(x , z) and µ(x , z) are the Lamé coefficients. The attenuation
factors Qj( j = x , z) control the dissipation rate of waves at the
absorbing boundaries.

By introducing linear operators (Li j , i , j = x , z) for spatial differ-
ential operators and recasting the governing equation system (1) in
a displacement–velocity formulation, we obtain a set of first-order
partial differential equations (PDEs) in time:
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where (vx, vz) is the velocity vector and the operators Li j are given
by
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The equation system (3) can be written as a form of first-order
differential equation with a vector unknown U:

∂t U = LU + N, (5)

where U is (ux, vx, uz, vz)t and the operator matrix L is given by

L =




0 I 0 0

Lxx −2Qx Lxz 0

0 0 0 I

Lzx 0 Lzz −2Qz


 . (6)

N is composed of the body forces (0, f x/ρ, 0, f z/ρ)t. When ad-
ditional boundary conditions are considered, such as traction-free
conditions on a free surface or inside a medium (e.g. a medium with
a cavity), these conditions can be expressed via equivalent forces
using the stress values on the boundaries, added to the body force
components in N.

Spatial differentiations of displacement or velocity fields are con-
ducted on wavelet spaces by projecting the differential operators and
vector fields using a wavelet transform. The differentiated fields are
recovered by recombining all the wavelet space contributions us-
ing an inverse wavelet transform. For more details, refer to Beylkin
(1992) and Hong & Kennett (2002a,b).

With a semi-group approach (e.g. Beylkin & Keiser 1997), the
discrete time solution of eq. (5) is given by

Un+1 = Un + δtLUn + δt2

2
L2Un + · · · + δtm

m!
LmUn

+ δtNn + δt2

2
LNn + δt3

6
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(m + 1)!
LmNn, (7)
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where δ t is a discrete time step, Un is the displacement–velocity
vector at discrete time tn, N n is a vector of forcing terms and m
controls the truncation order in the discrete time solution.

As we can see from eq. (7), this scheme needs multiple spa-
tial differentiations on a delta function for a point force (e.g. LN
n), and numerical dispersion will occur if the matrix operator L

is applied directly. This problem can be avoided if the source re-
gions are assumed to be locally homogeneous, and linear opera-
tors are formulated in simplified forms where multiple first-order
differentiations are replaced by a second-order differentiation (e.g.
∂ x (a ∂ x u) → a ∂2

x u). So, the linear operators (Ls
i j ) in the source

region are represented by
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where λs and µs are values of the Lamé coefficients at the source
position and Ls

i j are the components of the matrix operator (Ls) in
the source region. By applying this source-region scheme with Ls

while the source is active, the WBM sustains numerical stability.
However, when a source is initiated in a heterogeneous region this

approach is no longer valid and needs to be modified as discussed
in the next section.

3 M O D I F I E D T E C H N I Q U E

3.1 Theory

We modify the source representation by using a linear combination
of operators to cope with heterogeneity, whilst retaining numerical
stability. We require that the operators both inside and outside the
source zone should be equivalent to the linear operators Li j in eq.
(4) for a general medium. We extract the Ls

i j contribution in the
source region, and write the new form of the linear operators Lr

i j as
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where (x s, zs) is the source position and l defines the size of the
immediate source zone. The additional operators Ld

j j ( j = x , z) in a
heterogeneous source zone take the form
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where �λ(x , z) = λ(x , z) − λs and �µ(x , z) = µ(x , z) − µs.
It can be readily proved that Ls

j j + Ld
j j is mathematically equiv-

alent to L j j . Also, note that the terms Li j (i 	= j) do not need to
be recast in the new form since only multiple differentiations in the
same direction (e.g. ∂ x∂ x or ∂ z∂ z) develop numerical instability and
they are not included in these operators. Therefore, the original form
of Li j can be implemented directly when i 	= j .

In addition, we can find that only the linear operators Ls
i j are

needed at the source position since the Lamé coefficient difference
terms (�λ, �µ) vanish at this point. So, with this modified linear
operators Lr

i j , one can treat any variation in the properties of source
regions without numerical dispersion.
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Figure 1. Representation of the two-layered medium used for the validation
test of the modified WBM. The domain is 10 ×10 km2 and a planar internal
boundary is placed at a depth of z = 4.53 km. The compressional wave
velocity (α1) in the top layer (�1) is 3.5 km s−1, the shear wave velocity
(β1) is 2.0 km s−1, and the density (ρ1) is 2.2 Mg m−3. The velocities in
the bottom layer (�2) are twice those in the top layer (i.e. α2 = 7.0 km s−1,
β2 = 4.0 km s−1) and the density (ρ2) is 3.3 Mg m−3. A vertically directed
point source is applied at (2.34 km, 2.97 km), and four artificial boundaries
(�T , �B , �R , �L ) are treated by absorbing boundary conditions. In order
to record time responses, eight receivers are deployed at depths of z =
3.75 km (Rj, j = 1, . . . , 4) and 6.88 km (Dj) from x = 2.5 km with a
constant spacing of 1.875 km.

3.2 Validation test

In order to test whether the modified procedure is equivalent to
the previous technique (Hong & Kennett 2002a,b), which has been
validated by comparison with analytical solutions and other numer-
ical methods, we compare the time responses of both techniques in a
heterogeneous situation. We implement several values of l and com-
pare the results to determine a suitable value for accurate and stable
modelling and also to investigate whether any numerical anisotropy
arises from the implementation of a combination of linear operators
(see, e.g., Käser & Igel 2001).

We consider a two-layered medium (Fig. 1) in a 10×10 km2

domain, represented by 128 × 128 gridpoints. The elastic wave
velocities in the lower layer are twice those in the upper layer and
the density ratio is a factor of 1.5. The four artificial boundaries
(�T , �B , �R , �L ) are treated via absorbing boundary conditions.
A vertically directed point force is applied at (2.34 km, 2.97 km)
inside the upper layer and eight receivers (Rj, Dj t j = 1, . . . , 4) are
deployed with a spacing of 1.875 km starting from x = 2.5 km at
depths of z = 3.75 and 6.88 km. A Ricker wavelet with dominant
frequency 4.5 Hz is introduced as the source time function.

When direct P and S waves are incident on an internal boundary,
reflected (PPr, PSr, SPr, SSr) and transmitted (PPt, PSt, SPt, SSt)
waves with phase coupling, interface waves and head waves develop
and propagate from the boundary as indicated in Fig. 2.

We consider three different implementations of the modified ap-
proach with different values of l, and compare the resulting seismo-
grams with those for the previous scheme. In case A we consider
using the sum of the two operators Ls

j j and Ld
j j across the whole

domain. In the other two cases we consider a more localized appli-
cation of the split operator. In case B we use three grid steps for l,
and in case C the extreme position where the modified technique
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Figure 2. Snapshots of elastic wave propagation in the two-layered medium of Fig. 1 at t = 1.5s. Incident P and S waves are reflected (PPr, PSr, SPr, SSr) and
transmitted (PPt, PSt, SPt, SSt) with phase coupling on the boundary.

is just the row and column of gridpoints in which the source are
placed.

Fig. 3 displays a comparison of the numerical results for the
three cases with reference solutions calculated using the previ-
ous approach. In general, the numerical results for cases A and
B agree well with reference solutions for the whole wave trains ex-
cept for a couple of slight misfits (indicated by the solid arrows
in Fig. 3). These effects may arise from numerical anisotropy (e.g.
Käser & Igel 2001), whereby the successive action of operators
can have different effects depending on the order of application
and analytically equivalent operators can have different numerical
properties.

Although case C needs much less computational effort, the qual-
ity of the time response is not satisfactory. There are numerically
dispersed phases arriving before the first-arrival phases and some
slight misfits among the main phases (marked by broken arrows).
The problem is that the operator is acting on too small a region to
achieve accurate results. The quality of the time response can be
ensured by applying the modified technique in a ‘sufficiently broad
localized’ area, i.e. a band of rows and columns including a source
position. Case B satisfies the number of gridpoints per wavelength
needed for the WBM based on Daubechies-20 wavelets, i.e. three
gridpoints (Hong & Kennett 2002a,b), and generates time responses
that match well with the reference solutions.

Also, it is worth mentioning that the solutions, except for case A,
display slight oscillations after main phases (see, a in the figure).
This phenomenon is also related to numerical anisotropy, which
develops through the transition of numerical schemes in limited ar-
eas. Here, note that the reference solutions are computed by the
previous technique in Hong & Kennett (2002a,b), which needs
both a source-region and a main-region scheme. In contrast, the
case A displays good results. However, the maximum amplitude
of the oscillations is less than 2 per cent of that of main phases
and reduces with time, and thus the oscillations do not affect wave-
fields. In the following modelling, we implement the scheme for
case A.

4 M O D E L L I N G I N FAU LT Z O N E S

The implementation of a realistic fault source in numerical mod-
elling has been a challenging issue, and many studies have con-
fined their scope to cases using simple single-body forces (e.g.
Huang et al. 1995; Igel et al. 2002). Although some SH stud-
ies based on finite-difference techniques (Vidale et al. 1985; Li
& Vidale 1996) have managed to incorporate dislocation sources
by considering near-field displacement fields with approximate an-
alytic representations, such dislocation modelling is still difficult
for P–SV waves. An attempt to incorporate dislocation sources in a
P–SV -wave system by controlling stress values around a source
position has been made by Coutant et al. (1995), but the pro-
posed scheme is unsatisfactory for accurate modelling. Moreover,
since a real fault zone is highly heterogeneous it is desirable to be
able to implement dislocation sources, including rupture in realistic
modelling.

The fault gouge zone has lowered velocities relative to its sur-
roundings and so is able to support trapped waves. Such trapping
phenomena have been investigated for fault zones by using 2-D (Li
& Vidale 1996) and 3-D (Graves 1996) finite-difference codes or
using analytic expressions (Ben-Zion 1998). The analytic expres-
sion for SH-type fault-zone trapped waves with a unit source in
a uniform zone have been established by several studies (e.g. Li
1988; Ben-Zion & Aki 1990; Li & Leary 1990; Li et al. 1990).
They demonstrated shear waveform variations for 2-D fault zones
as a function of the parameters of the fault zone and the obser-
vation pattern, e.g. fault-zone width, velocity structures, relative
source and receiver positions, and attenuation factors; they were
able to show clear development of trapped waves and head waves
as features of time responses in fault zones. The analytical ap-
proach demonstrates the presence of the phenomenon but is not
able to handle heterogeneity or more complex geometry. Such ef-
fects can, however, be examined with numerical methods such as the
higher-order finite-difference technique (e.g. Jahnke et al. 2002),
and they could treat a problem with seismic-wave initiation on a
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Figure 3. Comparisons of time responses, for several different versions of the modified WBM with a reference solution by the previous method (Hong &
Kennett 2002b). The seismograms are recorded at eight receivers (Rj, Dj, j = 1, . . . , 4) in Fig. 1. Amplified seismograms are provided for those of vertical
component in R4 (marked a). Case A applies the modified WBM technique to the whole domain, case B to a region three gridpoints across around the source
point, and case C to a row and a column of gridpoints including a source position. Major misfits in the waveforms for case C are indicated by broken arrows,
with solid arrows for other cases. The discrepancies for case C mainly arise from numerical dispersion. Records of Dj are amplified by a factor of the order of
6 for display.

material boundary in a fault zone. However, the finite-difference
scheme may generate artificially attenuated seismic waves in me-
dia with complex strong heterogeneities (Hong & Kennett 2003)
and has difficulty in treating a complex (unsmooth) source time
function. The WBM is particularly effective in this context be-
cause of its capacity to handle strong heterogeneity, and, as we
shall see, is able to include a propagating rupture with a rough
source time function within the heterogeneous zone. Note that
the WBM has been shown to preserve the energy of seismic
waves correctly even in strongly perturbed media (Hong & Kennett
2003).

4.1 Implementation of dislocation sources

Dislocation sources can be implemented in the WBM through the
double-couple force system based on a moment-tensor (M) rep-
resentation, and the equivalent body force f(t) for the dislocation
sources can be expressed as (e.g. Ben-Menahem & Singh 1981;
Komatitsch & Tromp 2002)

f(t) = −M · ∇δ(r − rs)D(t), (11)

where D(t) is the displacement history of a particle on the fault, r
is the location vector and rs is the location of the source, (x s, zs).
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Figure 4. Snapshots of elastic wave propagation from a 90◦ dip-slip fault in a homogeneous medium. Both permanent displacements (N) and transient
wavefields (P, S) are clearly shown.

Note that Ḋ(t) corresponds to the far-field source time function and
the area under Ḋ(t) is unity (Vidale et al. 1985; Lay & Wallace
1995).

For an arbitrary fault the moment tensor can be expressed in
terms of strike angle (φ), dip angle (ξ ) and rake angle (η) of a fault
geometry (e.g. Lay & Wallace 1995; Kennett 2001). the strike angle
(φ) is measured from the north, the dip angle (ξ ) from the horizontal
plane normal to z direction and the rake angle (η) from the strike
direction on the fault plane.

We consider a thrust (90◦ dip-slip) fault, which is placed par-
allel to the E–W direction and the corresponding moment tensors
can be computed easily for the geographic reference frame (see,
e.g., Lay & Wallace 1995, p. 343; Kennett 2001, p. 72). With the
assumption that there is no structural variation in the y-direction,
the thrust fault source can be implemented in 2-D as a 90◦dip-slip
fault activated on a vertical plane (x–z plane). Here, x corresponds
to east and z is the downward vertical direction. The results for
this line source in 2-D can be adjusted to match the geometrical
spreading in 3-D for a point source by convolving seismograms
with 1/

√
t and differentiating in time (Vidale et al. 1985; Igel et al.

2002).
Fig. 4 displays snapshots of elastic wave propagation in a ho-

mogeneous medium (α = 3.15 km s−1, β = 1.8 km s−1, ρ =
2.2 Mg m−3) with 90◦dip-slip on a fault plane. Here a ramp ex-
citation model where a fault slip increases linearly with time during
the slip duration time (t r), is considered for the displacement time
function D(t); we take 0.1 s for t r in this study. Permanent displace-
ments induced by the dislocation are found in a four-lobed pattern
around the source position (N in Fig. 4), and diminish with distance
as r−1. On the other hand, a transient displacement activated by prop-
agating elastic waves falls off with distance as 1/

√
r (Vidale et al.

1985). Therefore, in the far field, only the transient displacements
are discernible in wavefields.
We are able to simulate the effect of rupture propagation by combin-
ing several dislocation sources with their own source time histories,
and model a simple rupture problem using a ramp source time func-
tion in Section 4.3.

4.2 Modelling with a point dislocation in a fault zone

We consider a model of a fault gouge zone with significant het-
erogeneity in a material with lower wave speeds than its surround-
ings and simulate the response from a dislocation source in the
fault zone. A horizontal fault zone (�1 in Fig. 5) with random

✸
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j=1,2,...,55
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1.17
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x

z

KjEj,

Figure 5. Representation of a domain (20 ×20 km2) with a perturbed fault
zone. The average compressional wave velocity (α1) in the fault zone (�1)
is 2.63 km s−1, the shear wave velocity (β1) is 1.5 km s−1, and the density
(ρ1) is 1.83 Mg m−3. The velocities in the background medium (�2) are
3.15 km s−1 for P(α2), 1.8 km s−1 for S waves (β2), and the density (ρ2)
is 2.2 Mg m−3. The perturbation of the fault zone is represented through
a stochastic process such that physical parameters are randomly perturbed
with standard deviations of 10 per cent for the wave velocities and 8 per
cent for the density. A 90◦dip-slip dislocation source is applied at (3.9 km,
4.0 km), and four artificial boundaries (�T , �B , �R , �L ) are treated by
absorbing boundary conditions. 220 receivers are deployed at z = 5.5km
(Rj, j = 1, 2, . . . , 55), z = 16.9 km (Dj), x = 8.59 km (Ej) and x = 16.9
km (K j) with a constant spacing.
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perturbation in physical properties (wave velocities, density) is set
in a homogeneous background medium (�2) where the P-wave ve-
locity (α2) is 3.5 km s−1, the S-wave velocity (β2) is 2.0 km s−1

and the density (ρ2) is 2.2 Mg m−3. The average wave velocities
in the fault zone are 2.63 km s−1 for P waves (α1) and 1.5 km s−1

for S waves (β1), and the average density (ρ1) is 1.83 Mg m−3. A
90◦dip-slip dislocation source is located in the middle of the fault
zone at x = 3.9 km, z = 4.0 km. The thickness of the fault zone
is 1.17 km and the perturbations in the zone are generated from a
stochastic representation using a von Karman autocorrelation func-
tion (cf. Sato & Fehler 1998) with Hurst number 0.25 and correlation
distance 56 m. The wave velocities in the zone have a 10 per cent
standard deviation and the density 8 per cent. More detailed infor-
mation on the construction of suitable stochastic media has been
discussed in previous studies of Hong & Kennett (2003) and Roth
& Korn (1993).

Fig. 6 displays snapshots of elastic wave propagation in the
medium with the fault zone, at t = 3.5 and 9.5 s. Various re-
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Figure 6. Snapshots of elastic wave propagation in the medium with a horizontal fault zone (see Fig. 5) with a 90◦dip-slip dislocation source. Multireflected
phases follow after direct phases (P and S in the figure) from the source. Also considerable trapped waves (T) develop inside the fault zone.

flected waves develop inside the fault zone, and parts of the mul-
tireflected waves drain continuously into the homogeneous back-
ground medium following after direct phases (P, S in the figure). In
particular, the P waves generated inside the fault zone give rise to
a multiplicity of SV head waves. Meanwhile, most of the S waves
are trapped in the low-velocity layer in the form of overcritically
reflected waves, and so significant energy is transported along the
layer (T in the figure) at a fairly slow group speed. The trapped
waves on the vertical component are much larger than those on the
horizontal component; this arises from the combination of the fault
zone geometry (i.e. horizontal extension) and slip direction of the
fault (i.e. 90◦ dip-slip).

The equivalent 3-D time response for two sets of 110 receivers
at 313 m spacing, placed at depths of z = 5.5 and 16.9 km, are
shown in Fig. 7. The upper set of receivers is set close to the fault
zone and so emphasizes near-field effects, whilst the lower set is
dominantly influenced by the far-field radiation. The onsets of the P
arrivals are relatively simple because they come in ahead of any of
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Figure 7. Time responses, with conversion to a 3-D response, at 110 receivers placed at (a) depth z = 5.5 (Rj in Fig. 5) and (b) 16.9 km (Dj) with an appropriate
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the scattered arrivals, but the influence of the heterogeneity is seen
in the significant S arrivals for the x component on the upper line
of receivers. The main trapped wave is of relatively low frequency,
reflecting evanescent decay outside the fault-zone waveguide, but
is accompanied by a higher-frequency coda with complex wave-
forms from multiple scattering in the fault zone (Tr in the figure).
A distinct complex of scattered energy is seen on the x-component
seismograms for small offsets from the source location. At larger
distances a more coherent set of arrivals follows S and becomes
more distinct for larger offsets.

The nature of the trapped wave phenomena can be most clearly
seen in a receiver profile across the fault zone as illustrated in Fig. 8.
The lines are set at 4.7 and 13.0 km from the source. On the closer
profile, Fig. 8(a), there is still a significant influence from near-field
effects and the main part of the trapped wave train tends to merge
with the direct phases. The heterogeneity in the gouge zone leads
to an extended coda of backscattered waves on the z component.
On the further line, Fig. 8(b), the nature of the trapping phenomena
becomes more evident. On the x component the fast P waves in
the surrounding material link into the slower P waves in the gouge
from which a significant SV head wave is being shed. The main
amplitude on the z component lies as expected in the S wave and
decays exponentially away from the fault zone so that relatively low-

frequency energy dominates at the receivers furthest from the fault
zone, and a similar pattern was reported in Li & Leary (1990, Figs 7
and 8). Part of the trapped waves consists of conversions between
P and S and these are again prominent on the z component. The
patterns of arrivals including long dispersed wave trains behind S
are similar to those recorded from aftershocks of the Hector Mine
earthquake in California (Li et al. 2002) in a similar profile across
the fault zone. In this case the concentration of high-frequency ar-
rivals was used as a means of mapping out the location of the fault
zone.

4.3 Modelling with rupture propagation

In studies of ground motion in the vicinity of earthquakes it is nor-
mally not adequate to approximate fault sources by a point dislo-
cation source since the radiation patterns and frequency content
of the transient waves are strongly dependent not only on fault
geometry but also on the dynamic source process. For instance,
Kasahara (1981) showed that radiation patterns vary with the ratio of
rupture velocity to shear wave velocity in the background medium
and they are shown to be elongated with an increase of rupture
velocity.
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For realistic modelling, the source process needs to be considered
and a direct representation of the faulting process is desired. In this
section, we introduce a simple rupture-propagation problem in a
fault zone by the superposition of multiple dislocation sources, each
of which may have their own displacement time functions along the
rupture-propagation direction in the fault zone. We consider once
again the fault gouge zone model problem of Fig. 5 and consider a
bilateral propagating rupture initiated at the same point as the line
force location in Section 4.2. The rupture velocity is taken as 0.9
times the shear wave velocity (β1) in the fault zone, and the rupture
terminates at a distance 0.43 km (corresponding to five gridpoints)
from the origin. Here we consider a simple case in which each
segment of the fault has the same particle displacement time history
(ramp model) and the same amount of energy release (i.e. the same
permanent dislocation at steady state). However, the same approach
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Figure 10. Time responses, with conversion to a 3-D response, for the propagating fault problem with 110 receivers placed at depths of z = 5.5 (a) and 16.9
km (b). the traces are amplified by a factor of 2 compared with Fig. 7. The main phases (P, S, Pr, Sr, Tr) are similar to those for a point dislocation but the
frequency contents of phases are lower than those in Fig. 7, since the rupture velocity is lower than the elastic wave velocities.
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Figure 11. (a) Description of a homogeneous medium, part of the circle with radius 22 km, for a validation test of the wavelet-based method in circular media.
Four receivers (Rj, j = 1, 2, 3, 4) are placed at a depth of 3.04 km and the source at a depth of 6.3 km. The four artificial boundaries (�R , �L , �T , �B )
are treated as absorbing boundaries. (b) Comparisons between analytic solutions and numerical results recorded at the four receivers (Rj) in a homogeneous
circular medium.

can readily be extended to much more complex problems where
every segment of the fault has own displacement time history and
energy release rate.

For comparison with the results of the point-dislocation case (Sec-
tion 4.2), we consider the same magnitude of seismic moment M0 by
distributing the magnitude evenly along the fault plane over the total
rupture distance. The general character of the wavefields seen in the
snapshots (Fig. 9) are similar to the point-dislocation case (Fig. 6).
However, since the energy is released over a time interval at each
segment of the fault, the transient waves exhibit smaller amplitudes
and lower frequencies (see also, Fig. 10). Also, we note that there
is now a much weaker P disturbance in the fault zone and conse-
quently much fewer in the way of S head waves in the surroundings.
The permanent displacement patterns (N in Fig. 9) around the fault
display horizontal extension along the fault propagation direction
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in the x components. In contrast the permanent displacements are
concentrated at the end of the rupture on the z component and are
not discernible along the plane of rupture.

The time responses in Fig. 10 for the propagating rupture source
are displayed with twice the amplification used in Fig. 7. The mul-
tiple reflected waves following S waves for receivers at short offset
on the x components for the point dislocation case (Fig. 7) do not
appear in the profiles for propagating rupture.

5 M O D E L L I N G I N
S U B D U C T I O N Z O N E S

A further region in which sources occur within a zone of hetero-
geneity is in the coherent and systematic high-velocity zone of the
subducting slab. The majority of earthquakes associated with the
subduction zone lie within the slab but relatively close to its up-
per surface. Seismic waves generated from such sources within the
slab have the potential of strong interaction with the slab boundaries
with reflections and conversions. There is also the possibility of in-
terface waves associated with the contrasts in properties at the edge
of the slab. The combination of the effects introduced by the slab can
have significant effects on the local wavefield and also have the po-
tential to modify the high-frequency characteristics for teleseismic
propagation.

Waveform and amplitude variations of incident waves prop-
agating through a slab have been studied at regional distance
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Figure 14. Snapshots of SH-wave propagation in subduction zones with an intermediate depth of source at t = 31.5s. The wavefields are simpler than those
in Fig. 14, but the phases developing on boundaries are clearly shown to travel into the free surface. The main reflected waves (Sru, Srl), interface waves (I)
and head waves (H) are indicated.

with both numerical modelling (e.g. Cormier 1989; Sekiguchi
1992; Kennett & Furumura 2002) and observational analysis
(Lay & Young 1989). Recently, waveguide effects in the accre-
tionary prism above the slab have been investigated by Shapiro
et al. (2000). However, the generation of secondary waves in
subduction zones (such as reflected waves, interface waves) have
not received much attention. Moreover, when waves interfere
with a fast-velocity layer placed between low-velocity layers,
it is possible to get tunnelling effects (Fuchs & Schulz 1976;
Drijkoningen 1991), which depend on the frequency content of the
wavefield and the thickness of the layer, which can contribute to
waveform complexity. Thus, low-frequency waves with large wave-
length are hardly affected by the presence of the subducting slab but
the impact increases at higher frequencies.

We consider the SH-wave case at a regional scale, and show how
the WBM method can be used to handle the presence of a simpli-
fied subduction zone embedded in a radially stratified background
model, including secondary wave effects.

The subduction zone structure extends to such a depth that we can-
not ignore the influence of the sphericity of the Earth and so need
to adapt the WBM to a non-Cartesian coordinate system. Spheri-
cal finite-difference methods have been introduced for the simula-
tion of SH waves in the mantle (Igel & Weber 1995; Chaljub &
Tarantola 1997) and P–SV (Igel & Weber 1996) wave propagation
in the sphere. An alternative approach, which remains in 2-D, was
adopted by Furumura et al. (1998) with a cylindrical-coordinate
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representation for P–SV -wave equations in modelling using a
pseudospectral method. For a 2-D structure such as a subducting
plate, modelling with a spherical coordinate system, requires the
pole axis to be treated by a symmetry condition, with a vanishing
displacement vector on the axis, and thus an additional boundary
condition is needed. To preserve the simplicity of the situation we
use cylindrical coordinates for SH waves with the background radi-
ally stratified model based on ak135 (Kennett et al. 1995).

5.1 Numerical implementation

The SH-wave equation in a cylindrical coordinate (r , θ , y) system
(cf. Aki & Richards 1980) takes the form

∂2uy

∂t2
= 1

ρ

(
σr

r
+ ∂σr

∂r
+ 1

r

∂σθ

∂θ
+ fy

)
, (12)

where the stress terms σ r and σ θ are given by

σr = µ
∂uy

∂r
, σθ = µ

r

∂uy

∂θ
. (13)

This set of equations for SH can be recast in the wavelet represen-
tation in a similar way to that in Sections 2 and 3, working with
normalized radius.

The traction-free condition at the free surface and the core–mantle
boundary (if applicable) is σ r = 0, and this can be implemented via
equivalent forces in N, eq. (5), as in Hong & Kennett (2002a).

5.2 Validation tests

The accuracy of the wavelet-based method in cylindrical coordinates
has been tested with a variety of models where analytic solutions are
available. We illustrate these tests for a cylinder with small radius
where the influence of curvature is strong.
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Figure 15. Seismograms at the surface for shallow sources in the simplified subduction model. (a) The main features of the seismograms are well represented
by the reference model. The features associated with the presence of the slab are enhanced by considering difference seismograms. The main features of source
positions at the upper and lower slab boundaries can be seen from (b) reference case A (upper), (c) reference case C (lower). The more subtle differences arising
from the position of the source, inside or outside the slab, are apparent from the difference seismograms (d) case A–case B and (e) case C–case D. The main
differences arise from the time advance of the waves in the slab models when they pass through the slab. Reflected arrivals from the upper boundary of the slab
are important for sources near the upper boundary, and are more pronounced for case B where the source lies outside the slab.

We consider a portion of a uniform cylinder with radius 22 km
(Fig. 11a). Four artificial boundaries (�R , �L , �T , �B) are treated
by absorbing boundary conditions. Four receivers (Rj, j = 1, 2, 3, 4)
are placed at a depth of 3.04 km in a row with interval 1.61 km, and
a point force is applied at a depth of 6.3 km. The numerical model
is represented with 128 × 128 gridpoints, the shear wave velocity is
set to be 2.0 km s−1, and the density 2.2 Mg m−3. A Ricker wavelet
with dominant frequency 4.5 Hz is implemented for the source time
function.

As shown in Fig. 11(b), the wavelet-based method generates
time responses with correct traveltimes and amplitudes for this uni-
form cylinder case. A barely noticeable high-frequency jitter distin-
guishes the numerical simulation from the analytical results.

A similar comparison has been made for both the effects of the
free surface and layering for model segments placed at the surface
of the Earth so that curvature effects are minimized. The replication
of the analytic results matches that of Fig. 11(b) and so confirms
the accuracy of the cylindrical WBM method. For more complex
stratified models analytic solutions are not available but a strong
check on the validity of the WBM method is provided by the precise
match of the wave front patterns for both shallow and deep sources.

5.3 SH waves in subduction zones

The geometry of subducting slabs is approximately 2-D, but the
velocity anomalies revealed by seismic tomography indicate that
there can be significant variations along a single subduction zone
(e.g. Pankow & Lay 2002; Kennett 2002; Widiyantoro et al.1999;
Ding & Grand 1994).

Here we implement a simplified slab model based on a recent
study (Pankow & Lay 2002) of shear wave velocity structure in
the Kurile subduction zone. We consider a slab with a dip (θ ) of
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Figure 16. Comparisons among time responses of models for shallow
sources at two representative places (x = −100, 116.2 km): among (a)
reference model, cases A and B and (b) reference model, cases C and D. The
strong influence of passage through the slab is apparent in each case.

50◦ and a velocity anomaly raised by 5 per cent compared with its
surroundings (Fig. 12); the properties of the slab are constant across
its thickness. The slab is embedded in the radially stratified model
ak135 (Kennett et al. 1995). The thickness (h) of the slab is taken
as 40 km and the velocity anomaly of the slab starts at 0.68 km
depth. Two different positions of the source relative to the slab are
considered for both a shallow source (S1 in the figure, z = 11.88 km)
and an intermediate depth source (S2, z = 149.15 km) depths. The
two sources lie just below the upper boundary of the slab (case A), or
just above the slab boundary (case B). Here, the slab model in case
B is generated by a rotation of case A clockwise about the centre of
the Earth by 1.35 km.

The source location is kept fixed so that direct comparison of the
seismograms can be made for free surface receivers. The source time
function is taken as a Ricker wavelet with a dominant frequency of
1 Hz. The domain is represented with 512 ×256 gridpoints; three
domain boundaries (�R , �L , �B) are treated by absorbing boundary

30 35 40 45 50

Time (s)

intermediate-depth source

�  x= -137.8 km

�  x= -29.7 km

�  x= 18.9 km

reference
case A
case B

50 55 60 65

Time (s)

intermediate-depth source

�  x= 56.7 km

�  x= 78.3 km

�  x= 116.2 km

reference
case A
case B

Figure 17. Comparisons of seismograms for intermediate-depth sources at six representative locations (x = −137.8, −29.7, 18.9, 56.7, 78.3, 116.2km):
(a) reference model, cases A and B; (b) reference model, cases C and D. Both amplitude differences and traveltime anomalies are displayed in traces with
characteristic patterns depending on the configuration of the source relative to the slab.

conditions, and the top domain boundary (�T ) is considered as a
free surface. We consider a slab with a constant relative velocity
anomaly as a means of understanding the effects of slab boundaries
on the waveforms and the systematic deformation of wave fronts
due to subduction zones.

Figs 13 and 14 compare snapshots for the two source positions
at t = 31.5 s for shallow source depths and intermediate depth of
source. The reference snapshot in the figure is computed in the
radially stratified Earth model ak135. The outlines of the perturbed
slab are superimposed on the snapshots to aid in identification of
the different classes of arrivals.

For shallow sources (S1), significant interface waves (I) and re-
flected waves (Sru, sSru) propagate along the upper boundary and
are mixed in with or follow both the S and sS phases. Weak reflected
waves (Srl, sSrl) can be recognized from their hook shape. The in-
terface waves (I) and reflected waves (sSru) following sS waves are
shown clearly in the 3-D perspective view, the last snapshot, in the
figure. Also, head wave effects outside the slab (H) are apparent
since they become detached from reflected waves with both dis-
tance and time (see, H in case B). We note that, when sources are
located around the lower boundary of the slab, head waves have a
less distinct identity (this figure has not been provided).

For the group of intermediate-depth sources (Fig. 14) the wave
front patterns are relatively simple and the effects of the slab
can be transferred updip towards the surface. Noticeable reflected
waves and interface waves develop along the boundary near the
source, and weak reflected waves are generated at the other bound-
ary of the slab. Head waves surrounding the slab appear in each
case.

The influence of the high-velocity slab can be clearly seen in the
seismograms recorded at the surface. We use a set of 60 receivers
with a spacing of 5.4 km, and enhance the various arrivals associ-
ated with the presence of the slab by using difference seismograms
between the difference cases. In Fig. 15 we show the seismograms
for a shallow source for the reference model and the difference seis-
mograms between cases A, B and the reference model. The general
pattern of the wave trains for the reference case is preserved in all
cases, but the introduction of a slab leads to traveltime anomalies
that depend on the relative positions of receivers to the source and
the slab. The main variations occur on the far side of the slab from
the source position as can be seen in the difference seismograms
(Fig. 15b), the strong contributions arise from the phase shifts in-
duced by the passage through the slab.

C© 2003 RAS, GJI, 154, 483–498



A wavelet-based method for heterogeneous media 497

Reflected waves from the upper boundary of the slab also play
an important role in the waveform variation in the later part of the
wave trains recorded above the slab in a narrow interval x = −60 to
−140 km, Fig. 15(b), corresponding to ranges of 80–160 km from
the epicentre. For the source inside the slab (case A) the reflected
waves are mainly generated by sS waves, but for an external source
(case B) both S and sS waves contribute and the amplitude is en-
hanced (see Figs 15b and c for x = −100.0 km).

The waveforms for a shallow source at two locations are compared
in Fig. 16. At x = −100 km, the influence of the reflected waves for
the upper boundary of the slab can be seen in the modification of
the later part of the main pulse. With the observation point on the
other side of the slab at x = 116.2 km, there is a bulk shift of the
waveforms.

For an intermediate depth source a rather different pattern of ar-
rivals is produced. Although the slab offers a fast propagation path,
energy is continuously shed from the high-velocity slab into the
lower-velocity surroundings (note the weakened wave fronts in the
slab in Fig. 14). As a result the waves emerging at the surface in the
slab zone are advanced in time but show rather small amplitudes
compared with the reference case (Fig. 17 at x = 18.9 km). Direct
transmission through the slab also induces some loss in amplitude
due to the contrasts at the slab boundaries (at x = 78.3, 116.2 km).
Reflected waves can contribute to local enhancement of the ampli-
tude just outside the slab zone (x = −29.7 km).

6 D I S C U S S I O N A N D C O N C L U S I O N S

The wavelet-based method (WBM) provides an effective means of
simulating elastic wave propagation in heterogeneous media, since
it can cope with rapid variations in physical properties without loss
of accuracy. With the improved scheme for source representation
introduced in this paper it is possible to place moment-tensor or dis-
location sources directly in regions of heterogeneity. This enables
the WBM to be used effectively in a variety of problems where sig-
nificant contrasts in physical properties occur in the neighbourhood
of the source.

In the case of sources within a highly heterogeneous fault gouge
zone, we get strong waveguide effects for P–SV waves, which
are modified somewhat when we introduce a propagating rupture.
The fault-trapped waves decay outside the fault zone and the pres-
ence of high-frequency energy provides a good guide to the location
of the fault zone itself.

In subduction zones, the slab represents a region of elevated wave
speed compared with its surroundings. Although propagation along
the slab is fast, substantial energy is shed in an antiwaveguide effect.
The contrasts at the boundaries of the slab have the potential to
generate reflected and interface phases that can add to the complexity
of the seismograms for stations in the vicinity of the slab.
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