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S U M M A R Y
We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated
geological fault zones when they are heated uniformly from below. In particular, we have
derived exact analytical solutions for the critical Rayleigh numbers of different convective flow
structures. Using these critical Rayleigh numbers, three interesting convective flow structures
have been identified in a geological fault zone system. It has been recognized that the critical
Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length,
in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if
the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if
the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D
slender-circle flow structure is so close to that for the 3-D convective flow structure, the system
may have almost the same chance to pick up the 3-D convective flow structures. Also, because
the convection modes are so close for the 3-D convective flow structures, the convective flow
may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to
height ratio approaching zero. This understanding demonstrates the beautiful aspects of the
present analytical solution for the convective instability of 3-D geological fault zones, because
the present analytical solution is valid for any value of the ratio of the fault height to thickness.
Using the present analytical solution, the conditions, under which different convective flow
structures may take place, can be easily determined.

Key words: analytical solution, convective instability, critical Rayleigh number, flow struc-
ture, geological fault zone.

1 I N T RO D U C T I O N

Over the past 5 years, we have been making efforts to develop a
practical and predictive tool to explore for giant ore deposits in
the upper crust of the Earth. To this end, significant progress has
been made towards a better understanding of the basic physical and
chemical processes behind ore body formation and mineralization
in hydrothermal systems. On the scientific development side, we
have developed analytical solutions to answer the following scien-
tific questions (Zhao et al. 1998a, 1999a): (1) can the pore-fluid
pressure gradient be maintained at the value of the lithostatic pres-
sure gradient in the upper crust of the Earth and (2) can convec-
tive pore-fluid flow take place in the upper crust of the Earth if
there is a fluid/mass leakage from the mantle to the upper crust
of the Earth? On the modelling development side, we have de-
veloped numerical methods to model the following problems: (1)
convective pore-fluid flow in hydrothermal systems (Zhao et al.
1997); (2) coupled reactive pore-fluid flow and multiple species
transport in porous media (Zhao et al. 1999b); (3) precipitation and

dissolution of minerals and rock alteration in the upper crust of
the Earth (Zhao et al. 1998b); (4) double-diffusion-driven reactive
flow transport in deformable fluid-saturated porous media with par-
ticular consideration of temperature-dependent chemical reaction
rates (Zhao et al. 2000a); (5) pore-fluid flow patterns near geo-
logical lenses in hydrodynamic and hydrothermal systems (Zhao
et al. 1999c); (6) dissipative structure of non-equilibrium chemi-
cal reactions in fluid-saturated porous media (Zhao et al. 2000b);
(7) convective pore-fluid flow and the related mineralization in 3-D
hydrothermal systems (Zhao et al. 2001a); (8) fluid–rock interac-
tion problems associated with the rock alteration and metamorphic
process in fluid-saturated hydrothermal/sedimentary basins (Zhao
et al. 2001b). Note that Rice & Cleary (1976) and McTigue (1986)
have also studied the different aspects of this problem. In addition,
we have developed numerical methods to model various aspects
of the fully coupled problem involving material deformation, pore-
fluid flow, heat transfer and species transport/chemical reactions in
pore-fluid saturated porous rock masses. The above-mentioned work
has significantly enriched our knowledge concerning the physical
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and chemical processes related to ore body formation and miner-
alization in the upper crust of the Earth. However, the convective
instability of 3-D geological fault zone systems has not been well
studied so far. Since geological fault zones and their surrounding
rocks are favourite locations for ore body formation and mineral-
ization to take place, it is important to gain a theoretical insight into
convective flow structures in 3-D geological fault zones when they
are heated uniformly from below.

The study of convective instability in fluid-saturated porous media
was initiated by Horton & Rogers (1945) and Lapwood (1948) ap-
proximately half a century ago. Since then, a large number of publi-
cations have been produced on this particular research topic. Nield
& Bejan (1992) and Phillips (1991) have summarized the related
research results in their books. Although the research on the general
aspects of the topic is extensive, it is very limited on the convective
instability of 3-D geological fault zones when they are heated uni-
formly from below. In this regard, a geological fault zone is usually
represented by a vertically oriented thin finite slab, which is com-
prised of fluid-saturated porous media. The large and small vertical
surfaces of the slab are called the sidewalls and end-walls, respec-
tively. Beck (1972), Zebib & Kassoy (1977) first solved the problem
without considering the sidewall heat loss, so their solution is of
little value for a vertically oriented geological fault. Considering
the sidewall heat loss, Lowell & Shyu (1978) and Murphy (1979)
used the Galerkin and simplified methods to obtain the approxi-
mate solutions, which may be only used to qualitatively judge some
kinds of convective flow structures in the system. To overcome the
shortcomings of the approximate solutions presented by Lowell &
Shyu (1978) and Murphy (1979), Kassoy & Cotte (1985) used the
linear stability approach to produce asymptotic solutions for the
above system. Since the asymptotic solutions are only valid when
the thickness of the fault approaches zero, it is impossible to use
such asymptotic solutions to predict the different critical Rayleigh
numbers, under which different convective flow structures, such as
the 2-D slender-circle convective flow, the 3-D standard convective
flow and the 3-D finger-like convective flow, may occur because the
critical Rayleigh numbers of these flows are very close each other,
especially for the case where the fault thickness to height ratio is
very small. Therefore, there is a definite need for developing exact
solutions of the system so that different convective flow structures
can be predicted exactly in a 3-D fluid-saturated geological fault
zone system. The main purpose of this study is to develop the re-
quired exact solutions for different critical Rayleigh numbers, using
which different convective flow structures with a similar possibility
of occurrence can be accurately identified in the geological fault
zone system.

2 G OV E R N I N G E Q UAT I O N S
O F T H E P RO B L E M

For a 3-D fluid-saturated geological fault zone, its thickness is much
smaller than both its length and height, as shown in Fig. 1. The fault
zone is assumed to be very permeable, compared with its surround-
ing rocks. The length of the fault may be infinite in the x1 direction,
but we consider the size of convection cells to be H 1 in this direction
so that the insolated and impermeable boundary conditions can be
added at both x1 = 0 and H 1. In the thickness direction, both the
geothermal gradient and hydrostatic pore-fluid pressure gradient are
considered and therefore, the geothermal gradient and hydrostatic
pore-fluid pressure gradient conditions need to be added at both
x2 = 0 and H 2. This means that any perturbation due to tempera-
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Figure 1. Geometry of the problem.

ture within the geological fault zone has little influence on the initial
thermal and flow pattern distributions of its surrounding rocks. It is
assumed that the fault zone is uniformly heated from below so that
the constant temperature and impermeable boundary conditions are
added at both x3 = 0 and H 3. In order to facilitate the forthcoming
theoretical analysis, the material of the fault zone is assumed to be a
homogeneous and isotropic porous medium. If Darcy’s law is used
to describe pore fluid flow and the Boussinesq approximation is em-
ployed to describe a change in pore-fluid density due to a change in
pore-fluid temperature, the governing equations of natural convec-
tion for an incompressible fluid in a steady state can be expressed
as

ui,i = 0 (1)

ui = 1

µ
k0(−p,i + ρ f gi ) (2)

(ρ0cp)u j T, j = (
λe

0T, j

)
, j

(3)

ρ f = ρ0[1 − β(T − T0)] (4)

λe
0 = φλ0 + (1 − φ)λs

0, (5)

where ui is the Darcy velocity component in the xi direction; p and
T are pressure and temperature; ρ0 and T 0 are the reference density
of the pore fluid and the reference temperature of the medium; µ

and cp are the dynamic viscosity and specific heat of the pore fluid;
λ0 and λs

0 are the thermal conductivity coefficients for the pore fluid
and solid matrix in the porous medium; φ and β are the porosity
of the medium and the thermal volume expansion coefficient of the
pore fluid; k0 is the permeability of the medium and gi is the gravity
acceleration component in the xi direction.

The corresponding boundary conditions are as follows:

u1 = 0, T,1 = 0 (x1 = 0 and x1 = H1) (6)

p = ρ0g3(H3 − x3),

T = Tb − To

H3
(H3 − x3) + T0 (x2 = 0 and x2 = H2) (7)

u3 = 0, T = Tb (x3 = 0) (8)

u3 = 0, T = T0 (x3 = H3). (9)

It is noted that since the perturbed temperature is much smaller
than the base temperature on the two vertical surfaces (i.e. x2 =
0 and H 2), it is neglected in eq. (7). However, the effect of this
small perturbed temperature due to the convective flow can be offset
by using the effective thickness of the fault zone. Generally, the
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effective thickness of the fault zone should be a little larger than the
physical thickness of the fault zone.

In order to simplify eqs (1)–(3), the following dimensionless vari-
ables are defined:

x∗
i = xi

H
, T ∗ = T − T0

�T
, H ∗

i = Hi

H

u∗
i = Hρ0cp

λe
0

ui , p∗ = k0ρ0cp

µλe
0

(p − p0), (10)

where x∗
i are the dimensionless coordinates; u∗

i is the dimensionless
velocity component in the xi direction; p∗ and T ∗ are the dimen-
sionless pressure and temperature; �T is the temperature difference
between the bottom and top boundaries of the porous medium; H 1,
H 2 and H 3 are the length, thickness and height of the fault zone; H is
a reference length; p0 is the reference static pore-fluid pressure and
this reference pressure in the flow domain has a hydrostatic pressure
gradient. In the following analysis, H 3 is chosen as the reference
length (i.e. H = H 3).

Substituting the above dimensionless variables into eqs (1)–(3)
yields

u∗
i,i = 0 (11)

u∗
i = −p∗

,i + RaT ∗ei (12)

u∗
j T

∗
, j = T ∗

, j j , (13)

where e is a unit vector and e = e1i + e2j + e3k for a general 3-D
problem. For the particular problem considered in this study, e1 =
e2 = 0 and e3 = 1 since the acceleration due to gravity is only exerted
on the vertical direction. Ra is the Rayleigh number, defined as

Ra = (ρ0cp)ρ0gβ�T k0 H

µλe
0

. (14)

Using the dimensionless variables, the corresponding boundary con-
ditions can be expressed as

u∗
1 = 0, T ∗

,1 = 0
(
x∗

1 = 0 and x∗
1 = H ∗

1

)
(15)

p∗ = 0, T ∗ = 1 − x∗
3

(
x∗

2 = 0 and x∗
2 = H ∗

2

)
(16)

u∗
3 = 0, T ∗ = 1

(
x�

3 = 0
)

(17)

u∗
3 = 0, T ∗ = 0

(
x∗

3 = 1
)
. (18)

It is noted that the linear stability theory has been used to deal with
the convective instability problem in fluid-saturated porous media
for many years (Horton & Rogers 1945; Lapwood 1948; Phillips
1991; Nield & Bejan 1992), but there are very seldom analytical
solutions to the convective instability problem in 3-D geological
zones. Although Kassoy & Cotte (1985) used the linear stability
approach to produce asymptotic solutions for the similar problem
as stated here, their solutions are only valid when the thickness of the
fault zone tends to zero. Therefore, it is desirable to develop exact
analytical solutions to this problem so that the onset conditions of the
convective flow in the 3-D fault zones can be rigorously investigated.

From the mathematics point of view, the study of the convec-
tive instability in the 3-D fault zone is, in essence, to find non-
trivial solutions for the partial differential equations expressed in
eqs (11)–(13), with the given boundary conditions in eqs (15)–(18).
The conditions, under which the non-trivial solutions for the par-
tial differential equations can exist, are the onset conditions of the
pore-fluid convective flow in the fault zone, while the non-trivial so-
lutions are the convective flow modes of the fault zone. These onset
conditions are often expressed by the related non-dimensional pa-
rameters, that is, the critical Rayleigh numbers, of the system. The

non-trivial solution corresponding to the minimum critical Rayleigh
number is called the fundamental convective flow mode of the sys-
tem. Bearing this in mind, the conventional linear stability theory
is used, in this study, to deal with the convective instability in the
3-D fault zone in a very flexible but logical manner. However, the
linear stability analysis is only valid in determining the onset of
the convective instability because, once the convective instability
occurs, the perturbation approach fails and the non-linear terms in
the governing equations cannot be neglected. In this regard, only
the most possible triggered convective flow mode of the system is
meaningful, if the linear stability theory is used. Since the geometric
characteristics of the 3-D fault zone are that the lengths of the fault
zone are finite in both the thickness and the height directions (i.e. H2

and H 3), and that the ratio of fault thickness to height (i.e. H 2/H 3)
is very small, the convective flow structure is mainly controlled by
the fault height to thickness ratio. As a result, several different con-
vective flow structures may have the same chance of occurring, even
if the linear stability theory is used. This means that the linear sta-
bility theory can be used to predict several different convective flow
structures because the differences in the critical Rayleigh numbers
are very small, as will be demonstrated in the next section.

3 A N A LY S I S O F C O N V E C T I V E
I N S TA B I L I T Y O F T H E FAU LT
Z O N E S Y S T E M

The main purpose in this section is to investigate the condition under
which the 3-D convective flow can take place in the fault zone sys-
tem defined in the previous section. Specifically speaking, the main
purpose is to determine the critical Rayleigh number, with which
the convective instability of the fault zone system can be examined.
From the linear stability theory, the first-order perturbation equa-
tions of the hydrothermal system considered here can be expressed
as follows:

û∗
i,i = 0 (19)

û∗
i = − p̂∗

,i + RaT̂ ∗ei (20)

−û∗
3 = T̂ ∗

, j j , (21)

where û∗
i is the dimensionless perturbation velocity components (i.e.

dimensionless convective velocity components); p̂∗ and T̂ ∗ are the
dimensionless perturbation pressure and temperature.

The corresponding boundary conditions for the perturbation vari-
ables can be expressed as

û∗
1 = 0, T̂ ∗

,1 = 0
(
x∗

1 = 0 and x∗
1 = H ∗

1

)
(22)

p̂∗ = 0, T̂ ∗ = 0
(
x∗

2 = 0 and x∗
2 = H ∗

2

)
(23)

û∗
3 = 0, T̂ ∗ = 0

(
x3 = 0 and x∗

3 = 1
)
. (24)

Inserting eq. (20) into eq. (19) yields the following equation:

p̂∗
,11 + p̂∗

,22 + p̂∗
,33 − RaT̂ ∗

,3 = 0. (25)

Substituting eq. (20) into eq. (21) yields another equation as follows:

p̂∗
,3 − RaT̂ ∗ = T̂ ∗

,11 + T̂ ∗
,22 + T̂ ∗

,33. (26)

For the given fault zone configuration shown in Fig. 1, since the
lengths of the fault zone in all the three directions are finite, the
well-known variable separation method in the mathematics is use-
ful to solve this problem. As we mentioned before, the study of the
convective instability in the 3-D fault zone is, in essence, to find
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non-trivial solutions for the partial differential equations expressed
in eqs (25) and (26), with the prescribed boundary conditions in
eqs (22)–(24). The conditions, under which the non-trivial solu-
tions for the partial differential equations can exist, are the onset
conditions of the pore-fluid convective flow in the fault zone, and
the non-trivial solutions are the convective flow structures of the
fault zone. This means that any useful mathematical methods can
be used to solve the convective instability problem considered in this
study as long as the onset conditions of the pore-fluid convective
flow can be found. From the general expression of the derived onset
conditions, we need to find the most possible onset condition, which
is in correspondence with the minimum critical Rayleigh number
of the system in the conventional linear stability analysis sense. For
the above reasons, the solutions that satisfy the boundary conditions
in the x∗

1 and x∗
2 directions are expressed as follows:

p̂∗ = f
(
x∗

3

)
cos

(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
(27)

T̂ ∗ = θ
(
x∗

3

)
cos

(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
, (28)

where k∗
1 and k∗

2 are the dimensionless wavenumbers in the x∗
1 and

x∗
2 directions, respectively:

k∗
1 = mπ

H ∗
1

(m = 1, 2, 3, . . .) (29)

k∗
2 = nπ

H ∗
2

(n = 1, 2, 3, . . .). (30)

Using eqs (27) and (28), the boundary conditions in the x∗
3 direction

can be expressed as

Raθ
(
x∗

3

) − f ′(x∗
3

) = 0
(
x3 = 0 and x∗

3 = 1
)

(31)

θ
(
x∗

3

) = 0
(
x3 = 0 and x∗

3 = 1
)
. (32)

Substituting eqs (27) and (28) into eq. (25) yields the following
equation:

−(
k∗2

1 + k∗2
2

)
f
(
x∗

3

) + f ′′(x∗
3

) − Raθ ′(x∗
3

) = 0. (33)

Inserting eqs (27) and (28) into eq. (26) yields another equation as
follows:

f ′(x∗
3

) = (
Ra − k∗2

1 − k∗2
2

)
θ
(
x∗

3

) + θ ′′(x∗
3

)
. (34)

Differentiating eq. (34) with respect to x∗
3 twice yields the following

equation:

f ′′′(x∗
3

) = (
Ra − k∗2

1 − k∗2
2

)
θ ′′(x∗

3

) + θ (I V )
(
x∗

3

)
. (35)

Differentiating eq. (33) with respect to x∗
3 once yields another equa-

tion as follows:

−(
k∗2

1 + k∗2
2

)
f ′(x∗

3

) + f ′′′(x∗
3

) − Raθ ′′(x∗
3

) = 0. (36)

Substituting eqs (34) and (35) into eq. (36) yields the following
equation:

θ (I V )
(
x∗

3

) − 2
(
k∗2

1 + k∗2
2

)
θ ′′(x∗

3

) − (
k∗2

1 + k∗2
2

)
(
Ra − k∗2

1 − k∗2
2

)
θ
(
x∗

3

) = 0. (37)

Inserting eq. (34) into eq. (31) yields the boundary conditions de-
pending on θ only:(
k∗2

1 + k∗2
2

)
θ
(
x∗

3

) − θ ′′(x∗
3

) = 0
(
x∗

3 = 0 and x∗
3 = 1

)
. (38)

The following function satisfies the boundary conditions expressed
in eqs (32) and (38):

θ
(
x∗

3

) = sin
(
k∗

3 x∗
3

)
, (39)

where k∗
3 is the dimensionless wavenumber in the x∗

3 direction:

k∗
3 = qπ (q = 1, 2, 3, . . .). (40)

Substituting eq. (39) into eq. (37) yields the critical Rayleigh num-
bers for different convection modes as follows:

Ra =
(
k∗2

1 + k∗2
2 + k∗2

3

)2

k∗2
1 + k∗2

2

. (41)

Substituting the dimensionless wavenumber into eq. (41) yields the
following equation:

Ra =
[
(m H3/H1)2 + (nH3/H2)2 + q2

]2
π 2

(m H3/H1)2 + (nH3/H2)2 . (42)

Note that eq. (42) is a general expression for the critical Rayleigh
numbers of the 3-D fault zone. These critical Rayleigh numbers de-
scribe the onset conditions of the convective flows in the system.
Since the linear stability concept is used in the analysis, it is im-
portant to find the minimum critical Rayleigh number, which corre-
sponds to the most possible convective flow structure in the system.
For the given fault zone configuration shown in Fig. 1, since the
lengths of the fault zone in all three directions are finite, we can set
m = n = q = 1 and allow H 1 to vary in the fault length direction.
This means that both the height and the thickness of the fault zone
are fixed as constants, but the length of the fault zone can change as
a variable of the system. Through selecting the appropriate value of
H 1, the minimum critical Rayleigh number of the system can be
determined. For this purpose, the critical Rayleigh number for the
3-D convection flow to take place can be expressed as

Ra3D
critical =

[
(H3/H1)2 + (H3/H2)2 + 1

]2
π2

(H3/H1)2 + (H3/H2)2 . (43)

Differentiating eq. (43) with respect to H 1 yields the following
equation:

d Ra3D
critical

d H1
= −2π 2

H 2
3

{ [
(H3/H1)2 + (H3/H2)2]2 − 1

}

H 3
1

[
(H3/H1)2 + (H3/H2)2]2

≈ −2π 2 H 2
3

H 3
1

. (44)

Note that eq. (44) is valid when H 3/H 2 � 1 and H 1/H 2 � 1,
which are true for the fault zone considered in this study. Eq. (44)
indicates that the minimum critical Rayleigh number of the sys-
tem is obtained only when H 1 tends to infinity. In such a case, the
wavenumber in the x1 direction is zero and the convective flow is
essentially 2-D convective flow, which is the degenerate case of the
3-D convective flow. We call this kind of convective flow the 2-D
slender-circle convective flow with the following minimum critical
Rayleigh number:

Ra2D
critical =

[
1 + (H3/H2)2]2

π2

(H3/H2)2 . (45)

Eq. (44) also indicates that when H 3/H 1 � 1, the critical Rayleigh
number of the system changes very slowly so that the differences
between the corresponding critical Rayleigh numbers and the min-
imum critical Rayleigh number of the system are very small. This
means that several convective flow structures may have almost the
same chance of taking place in the system. Since the 3-D standard
convective flow structures are only of interest here, we consider the
case of H 3 = H 1 and determine the corresponding critical Rayleigh
number below. If H 3 = H 1, we have the following equation:
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Ra3D
critical =

[
2 + (H3/H2)2]2

π2

1 + (H3/H2)2 . (46)

It is obvious that the critical Rayleigh number for 3-D standard
convective flow to occur is proportional to the ratio of the fault
height to thickness.

Clearly, the relative difference between Ra3D
critical and Ra2D

critical can
be expressed from eqs (45) and (46) as follows:

�̄1 = Ra3D
critical − Ra2D

critical

Ra2D
critical

= (H3/H2)4 + (H3/H2)2 − 1[
(H3/H2)2 + 1

]3 . (47)

Since H 3/H 2 � 1, eq. (47) can be written approximately as

�̄1 ≈
(

H2

H3

)2

. (48)

Eq. (48) indicates that the relative difference between Ra3D
critical and

Ra2D
critical is a second-order small quantity, provided that H 2/H 3 is

very small, just as considered in this study. For example, if H 2/H 3 =
0.01, the relative difference between Ra3D

critical and Ra2D
critical is approx-

imately 0.0001, which is indeed a very small number. In this case,
Ra3D

critical ≈ 98 716.2, while Ra2D
critical ≈ 98 726.1. It is noted that the

relative difference between Ra3D
critical and Ra2D

critical approaches zero as
H 2/H 3 tends to zero.

Similarly, for the 3-D finger-like convective structure, the corre-
sponding critical Rayleigh number can be expressed as

Ra3D-finger
critical =

[
m2 + (H3/H2)2 + 1

]2
π2

m2 + (H3/H2)2 (m ≥ 2). (49)

In the case of m = 3 and H 2/H 3 = 0.01, the corresponding
Ra3D−finger

critical ≈ 98 805. Again, this value is also very close to the min-
imum critical Rayleigh number of the system, Ra2D

critical ≈ 98 726.1.
This indicates that the 3-D finger-like convective flow can also take
place in the 3-D fault zones. As the recent numerical simulation of
the convective flow in a vertically oriented geological fault zone has
demonstrated, the 3-D finger-like convective flow indeed occurred
in the system (Rabinowicz et al. 1999).

The possible occurrence of the 3-D finger-like convective flow
has a significant geological implication for ore body formation and
mineralization within 3-D geological fault zones. Since the down-
temperature convective flow may result in mineral precipitation and
the up-temperature convective flow may result in mineral disso-
lution, the periodic mineral zonation can be produced within the
3-D geological fault zones. Such a quasi-periodic distribution of the
mineralization phenomenon has been observed in the Yilgarn ore
deposits, Western Australia.

It is noted that the following relation exists:

k∗
i = ki H, (50)

where ki is the dimensional wavenumber in the real physical system.
For the 3-D fault zone considered in this study, the dimensional

wavenumbers are as follows:

k1 = mπ

H1
, k2 = nπ

H2
, k3 = qπ

H3
. (51)

Finally, the dimensionless perturbation solutions for pore-fluid ve-
locity, temperature and pressure can be derived and expressed as

û∗
1 = − k∗

1 k∗
3

(
k∗2

1 + k∗2
2 + k∗2

3

)
k∗2

1 + k∗2
2

sin
(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
cos

(
k∗

3 x∗
3

)
(52)

û∗
2 = k∗

2 k∗
3

(
k∗2

1 + k∗2
2 + k∗2

3

)
k∗2

1 + k∗2
2

cos
(
k∗

1 x∗
1

)
cos

(
k∗

2 x∗
2

)
cos

(
k∗

3 x∗
3

)
(53)

û∗
3 = (

k∗2
1 + k∗2

2 + k∗2
3

)
cos

(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
sin

(
k∗

3 x∗
3

)
(54)

T̂ ∗ = cos
(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
sin

(
k∗

3 x∗
3

)
(55)

p̂∗ = cos
(
k∗

1 x∗
1

)
sin

(
k∗

2 x∗
2

)
f
(
x∗

3

)
, (56)

where f (x∗
3) can be determined by integrating eq. (34) with respect

to x∗
3 as follows:

f
(
x∗

3

) = − Ra − (
k∗2

1 + k∗2
2 + k∗2

3

)
k∗

3

cos
(
k∗

3 x∗
3

)
. (57)

4 P O S S I B I L I T Y O F C O N V E C T I V E
F L O W I N A G E O L O G I C A L FAU LT
Z O N E S Y S T E M

In this section, the analytical solution derived in the previous section
is used to investigate the possibility of convective flow in geological
fault zone systems. With an idealized geological fault zone taken as
an illustrative example, the following parameters were used in the
following analysis. For the pore fluid, the dynamic viscosity is 10−3

N s m−2, the reference density is 1000 kg m−3, the volumetric ther-
mal expansion coefficient is 2.07 × 10−4 (1 K−1), the specific heat
is 4185 J (kg K)−1 and the thermal conductivity coefficient is 0.6 W
(m K)−1. For the porous matrix, the porosity is 0.1, the thermal con-
ductivity coefficient is 3.35 W (m K)−1, the specific heat is 815 J (kg
K)−1 and the permeability is 10−12 m2, which is assumed as an ef-
fective value for a fractured environment (Berryman & Wang 1995);
the height and thickness of the fault are 10 and 0.5 km, respectively;
the temperature at the top and bottom is 25 and 225 ◦C, respectively.

Substituting the related parameters into eq. (14) yields the
Rayleigh number for the system:

Ra = (ρ0cp)ρ0gβ�T k0 H

µλe
0

= 1000 × 4185 × 1000 × 9.8 × 2 × 10−4 × 200 × 10−12 × 104

10−3 × 3
≈ 5380. (58)

The corresponding minimum critical Rayleigh number of the fault
zone of infinite length is

Ra2D
critical =

[
1 + (H3/H2)2

]2
π 2

(H3/H2)2
= (1 + 202)2π2

202
≈ 3967.6. (59)

The corresponding critical Rayleigh number for the 3-D standard
convective flow is

Ra3D
critical =

[
2 + (H3/H2)2

]2
π 2

1 + (H3/H2)2
= (2 + 202)2π2

1 + 202
≈ 3977.5. (60)

In the case of m = 3, the corresponding critical Rayleigh number
for the 3-D convective flow is

Ra3D-finger
critical =

[
m2 + (H3/H2)2 + 1

]2
π2

m2 + (H3/H2)2
= (10 + 202)2π2

9 + 202

≈ 4056.5. (61)

Because the above three critical Rayleigh numbers are very close
to each other and Ra > Ra3d−finger

critical , the corresponding three kinds of
convective flow may have a similar probability of taking place in
the geological fault zone considered here.
Note that the 2-D slender-circle structure of convection cells can
only take place when the length of the fault zone is infinite (i.e.
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H 1 approaches infinite). This means that no convection cell takes
place in the x1 direction and the 2-D slender-circle flow structure
is obtained in the plane perpendicular to the x1 axis. However, if
the length of the fault zone is finite, the corresponding convective
flow must be 3-D. Even if the length of the fault zone is infinite,
since the minimum critical Rayleigh number of the system (i.e.
3967.6) for the 2-D slender-circle flow structure is so close to the
critical Rayleigh number (i.e. 3977.5) for the 3-D standard con-
vective flow structure, the system may have a similar possibility
to pick up the 3-D convective flow structure. Since the convec-
tion modes are so close for the 3-D convective flow structures,
the convective flow may also evolve into a 3-D finger-like struc-

Figure 2. Convective flow mode in the 3-D fault (theoretical fundamental mode).

ture (e.g. m ≥ 2). This finding demonstrates the beautiful aspects
of the present analytical solution for the convective instability of
3-D geological fault zones, because this analytical solution is valid
for any value of the ratio of the fault height to thickness. Using
the present analytical solution, the conditions, under which differ-
ent convective flow structures may occur in the 3-D fault zone, can
be easily determined. This is the major advantage of the present
analytical solution in dealing with the convective instability of
3-D geological fault zones when they are heated uniformly from
below.

Figs 2 and 3 show the theoretical fundamental mode (m = 1)
and finger-like mode (m = 3) for the perturbed pore-fluid velocity
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Figure 3. Convective flow mode in the 3-D fault (theoretical finger-like mode).

on three particular cross-sections in a pore-fluid saturated geolog-
ical fault zone. The length and height of the fault zone are 10 km,
while the thickness of the fault zone is 1 km. It is obvious that the
convective pore-fluid flow takes place strongly in the vertical di-
rection. Indeed, the horizontal pore-fluid velocity is negligible on
both the sidewalls (i.e. x2 = 0 and H 2) of the fault zone, although
the hydrostatic pore-fluid pressure gradient condition is used in the
analysis. In the case of the finger-like mode, the pore-fluid flow
channeling can be clearly observed. This pore-fluid flow channel-
ing phenomenon can significantly influence the ore body formation
and mineralization patterns within the geological fault zone.

5 C O N C L U S I O N S

Exact analytical solutions to the critical Rayleigh numbers of dif-
ferent convective flow structures have been derived for 3-D fluid-
saturated geological fault zones when they are heated uniformly
from below. Using the corresponding critical Rayleigh numbers,
three interesting convective flow structures can be identified in a ge-
ological fault zone system. If the length of the fault zone is infinite,
the critical Rayleigh number has a minimum value, which corre-
sponds to the 2-D slender-circle convective flow structure with the
critical Rayleigh number expressed in eq. (45). This slender-circle
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convective flow structure takes place in the plane perpendicular to
the x1 axis.

If the length of the fault zone is finite, the corresponding con-
vective flow must be 3-D. Even if the length of the fault zone is
infinite, since the minimum critical Rayleigh numbers of the system
are very close to each other, the 3-D convective flow may have a
similar possibility of taking place in the system, especially when
the fault thickness to height ratio is very small. For the 3-D stan-
dard convective flow structure, the corresponding critical Rayleigh
number is expressed in eq. (46).

For the 3-D finger-like convective structure, the corresponding
critical Rayleigh number can be expressed in eq. (49).
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Finite element modeling of fluid-rock interaction problems in pore-fluid
saturated hydrothermal/sedimentary basins, Comp. Methods Appl. Mech.
Eng., 190, 2277–2293.

C© 2003 RAS, GJI, 155, 213–220

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/155/1/213/712886 by guest on 30 January 2022


