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S U M M A R Y
When designing an experiment, the aim is usually to find the design which minimizes expected
post-experimental uncertainties on the model parameters. Classical methods for experimental
design are shown to fail in nonlinear problems because they incorporate linearized design
criteria. A more fundamental criterion is introduced which, in principle, can be used to de-
sign any nonlinear problem. The criterion is entropy-based and depends on the calculation of
marginal probability distributions. In turn, this requires the numerical calculation of integrals
for which we use Monte Carlo sampling. The choice of discretization in the parameter/data
space strongly influences the number of samples required. Thus, the only practical limitation
for this technique appears to be computational power. A synthetic experiment with an oscilla-
tory, highly nonlinear parameter–data relationship and a simple seismic amplitude versus offset
(AVO) experiment are used to demonstrate the method. Interestingly, in our AVO example,
although overly coarse discretizations lead to incorrect evaluation of the entropy, the optimal
design remains unchanged.
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1 I N T RO D U C T I O N

Finding an optimal geometry, or design, of a practical experiment
often means finding the design which maximizes the expected post-
experimental information of particular model parameters of interest.
This is equivalent to minimizing the expected post-experimental
uncertainties in those model parameters. Thus, experimental design
requires an understanding of the relationship between data and post-
experimental model parameter uncertainties (Box & Lucas 1959;
Atkinson & Donev 1992; Curtis 1999a,b; Curtis & Spencer 1999;
Curtis & Maurer 2000).

Consider a linearized problem in which the forward problem of
estimating data d given a model parameter vector m, and the asso-
ciated inverse problem solution are, respectively,

d = Gm0 m (1)

m = (
Gm0

T Gm0

)−1
Gm0

T d = Ld, (2)

where Gm0 is a matrix of derivatives of d with respect to m cal-
culated at a reference model m0, matrix L is defined in eq. (2),
and the matrix inversion in eq. (2) represents the classical least-
squares solution and must be replaced by m = Gm0

T (Gm0 Gm0
T )−1

∗Now at: Institute for Marine and Atmospheric Research, Utrecht University,
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d if the problem is under-determined. In the presence of null spaces,
the inverse operator L needs to be replaced by a more general ex-
pression including regularization (Tarantola 1987). To be consistent
with geophysical literature we refer to m as the model and call Gm0

the forward function (which is fixed for any particular experimental
design). Note that this differs from terminology in statistical experi-
mental design literature (thus in many references cited in this paper)
where the ‘model’ usually includes both Gm0 and m.

Uncertainties in the data are projected into the model param-
eter space as LCdLT , where Cd is the covariance matrix, so any
method for performing experimental design must alter either Gm0

or the uncertainties in d. For a linear problem (where Gm0 is con-
stant with respect to m0, hence we can write simply G), most meth-
ods for experimental design are based on optimizing the eigenvalue
spectrum of (GT G). That is, the spectrum should have as large
eigenvalues and be as flat as possible (Curtis 1999a,b). This is il-
lustrated in Fig. 1, which shows the geometry for a simple 1-D
experiment with one source and one receiver. The aim of the exper-
iment is to choose the best offset x for the estimation of the single
slowness m of the half-space below the surface from the traveltime
d of a direct wave between source and receiver. For this example a
slowness of 1/1500 s m−1 was used as the true slowness of the
medium.

Fig. 2 shows model-data relationships between m and d for 50 m
and 100 m offsets. The plots show the projection of an uncertainty
in a measured datum d0 of ±0.01 seconds into the model parameter
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* ∆
offset

s = 1/1500 s m−1

Figure 1. Geometry of a simple example of an experimental design. The
theory is given by d = xm, where d is the time [s], m is the slowness [s/m]
and x is the offset [m], or the distance between the source ∗ and the receiver
�. The experimental aim is to find the optimal offset for retrieving the true
slowness of 1/1500 s m−1.

space. These figures show that the function relating model param-
eters m and data d is steeper for the larger offset. For a constant
data uncertainty this results in a smaller uncertainty region around
the true model parameter value. So, for this simple experiment, the
larger offset is recommended for more accurate model parameter
estimates, and generally, as this problem is linear, the longer the
path through the medium the more accurate the results are likely
to be (Johnson & Leone 1977; Squires 1985; Atkinson & Donev
1992).

The example above illustrates that the aim of linear experimental
design can usually be thought of as increasing gradients G such that
post-experimental uncertainties are minimized. Therefore, G must
be estimated and maximized appropriately prior to conducting the
experiment. In the above 1-D example, the single eigenvalue of GT

G is the gradient squared. Hence, maximizing the gradient in Fig. 2
is equivalent to maximizing the eigenvalue of GT G.

In a linear problem G is constant over all reference model param-
eters m0 for any particular experimental design ξ. Hence, it does not
matter at which model parameter values the expected post-
experimental uncertainty is estimated, since the same estimates
for post-experimental uncertainty will be obtained whatever m0 is
chosen.

This is not true in nonlinear or even pseudo-linear problems.
In such situations Gm0 varies as a function of m0 and the true
model parameter values are unknown. This leads to errors in the
estimated post-experimental uncertainties if a single erroneous ref-
erence model m0 is used (Curtis & Spencer 1999). This problem is
usually dealt with using classical nonlinear estimates for the quality
of an expected design ξ (Box & Lucas 1959; Johnson & Leone 1977;
Ford et al. 1989; Atkinson & Donev 1992; Chaloner & Verdinelli
1995; Curtis & Spencer 1999):

�(ξ) =
∫

M
φ(ξ, m)ρ(m) dm. (3)

In this equation φ(ξ, m) is called a quality measure and usually
consists of some measure of elements or eigenvalues of the for-
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Figure 2. Model-data relationships for the geometry shown in Fig. 1. In the left figure an offset of x = 50 m has been used, for the right figure x = 100 m.
The figures show the change in gradient G as a function of the offset. The dashed line and the dash-dotted lines represent the projection of the observed datum
d0 with an observational uncertainty of ±0.01 into the model parameter space.

ward operator Gm estimated at model parameter value m, where this
measure reflects the expected quality of a specific design ξ (the most
commonly used measure is φ(ξ, m) = det (Gm

T Gm) for design ξ).
That is, φ(ξ, m) reflects the expected post-experimental uncertainty
of model parameter estimates if m contains the true model param-
eter values and the model-data relationship is approximately linear
around m (within the data uncertainties). So, instead of using one ref-
erence model parameter value m0 to estimate the post-experimental
uncertainties, in eq. (3) a distribution of reference models ρ(m) is
used where ρ(m) embodies the prior knowledge about the likeli-
hood of possible model parameter values being the true values. In
this way the quality measure �(ξ) is an average measure of expected
information over the entire feasible portion of the model parameter
space.

There is a problem with this approach arising from the definition
of φ(ξ, m), which is generally a gradient-based measure. Curtis &
Spencer (1999) showed that in the case of a truly nonlinear situa-
tion, an error is committed whenever models within disconnected
regions in the model parameter space might fit the measured data to
within their given uncertainties. We illustrate this with the following
example, extended from Curtis & Spencer (1999).

Fig. 3 shows two 1-D sawtooth functions with different periods
of oscillation. Let Gm0 be the derivative matrix (in this case a sin-
gle value) [d f /dm|m0 ], where f is the sawtooth function and we
ignore points where Gm0 is not defined, let φ(ξ , m0) be the de-
terminant of GT

m0
Gm0 , the classical experimental design measure

(Box & Lucas 1959; Ford et al. 1989; Atkinson & Donev 1992;
Chaloner & Verdinelli 1995). In linear problems, this determinant
is constant with respect to m0 and represents a measure of the extent
to which measurement uncertainties propagate into expected post-
experimental model parameter uncertainties, similar to the slowness
example above. Let us now examine the use of this measure in the
nonlinear sawtooth example.

Data uncertainties of plus or minus 0.2 around a datum d0 = 2
are projected into the model parameter space using the linearized
local gradient method around a single model parameter value m0

in each plot in Fig. 3. This is visualized by the error bar projec-
tions flanked by solid lines in the figures. As the derivative of the
right function is larger than the derivative of the left function, the
corresponding projected uncertainty is smaller in the right plot. In
each plot individually, identical values for φ(ξ , m0) are found for
any model parameter value m0, since the magnitude of GT

m0
Gm0 is

constant at all points on the sawtooth functions (ignoring the ex-
trema). However, the quality measure �(ξ ) calculated using eq. (3)
gives �(ξ ) = 1 for the left figure and �(ξ ) = 4 for the right figure.
This is because, for fixed data uncertainties, the linearized model
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Optimal nonlinear experimental design 413

Figure 3. Sawtooth functions with 1 period (left) and 2 periods (right) between m = 0 and m = 10. In both figures a datum d0 = 2 ± 0.2 is projected into the
model parameter space using the linearized local gradient method, shown by the error bar projections between the solid lines. The union of all of the grey error
bar projections onto the model parameter space represents the true model parameter uncertainty in each case.

parameter uncertainties bounded by the solid lines are smaller in the
right figure than in the left figure. So, according to the classical esti-
mate for design quality, eq. (3), the experimental design producing
the right figure would be a better one than the design producing the
left figure.

However, the uncertainties described above are local, linearized
approximations and account only for one of several possible regions
in model parameter space that fit the measured data. In fact, the true
uncertainty in model parameter space is given by the union of all
of those possible regions, represented by the set of all vertical grey
regions in Fig. 3. As a result, the true post-inversion uncertainty
for both figures is exactly equal (the sum of the uncertainties in the
model parameter space in each case is 0.8). So in contrast to the result
from classical design theory above, the design producing the left
figure is probably a better design: the solution to the inverse problem
of estimating model parameters given any measured data d0 is easier
to calculate and represent, since it is less fragmented than in the right
figure (Curtis & Spencer 1999).

When designing a nonlinear experiment �(ξ ) is usually max-
imized. In the above case this would mean that the final design
would produce neither of the two functions in Fig. 3, but instead
would produce a sawtooth with as many extrema as possible. Sim-
ilarly to above, this would fragment the region of model parameter
space fitting any observed data, and in reality would provide no re-
duction at all in post-experimental model parameter uncertainties.
Maximizing �(ξ ) according to classical measures for the quality of
a design would therefore result in a more difficult inverse problem
to solve with no expected gain in information. Hence, classical non-
linear (linearization-based) experimental design measures are not
robust in nonlinear situations.

2 T H E O RY A N D M E T H O D

To be able to construct a measure for experimental design that will
work for any nonlinear experiment, a framework without lineariza-
tion is now introduced. We use a Bayesian approach for model pa-
rameter inference in which probability density functions (p.d.f.s)
represent a given state of information.

According to Tarantola & Valette (1982), the solution to an inverse
problem is given by the posterior, or post-experimental p.d.f.,

σ (d, m) = ρ(d, m)θ (d, m)

µ(d, m)
, (4)

where ρ(d, m) represents the prior knowledge on data d and model
parameters m, θ (d, m) represents the information about the physics
relating data and model parameters, and µ(d, m) is called null in-
formation and represents an objective reference state of minimum
information (Tarantola & Valette 1982; Tarantola 1987). We will
adopt the following convention (which differs from that of Tarantola
& Valette 1982). We include within θ (d, m) the entire (uncertain)
relationship between the actual data measurements recorded and the
model parameters. Thus, θ (d, m) includes both (i) the relationship
between m and idealized, noise-free data, and (ii) the relationship
between these idealized data and the data values actually recorded
in the experiment. Then, ρ(d) includes only information about the
actual data values recorded (and not on their assumed uncertain-
ties). Thus, θ (d, m) represents the physical relationship between
data and model parameters including all uncertainties over which
we have some influence through the experimental design, and ρ(d,
m) contains only a priori information over which we have no con-
trol, other then through θ (d, m). In contrast, Tarantola & Valette
(1982), include relationship (i) within θ (d, m) and relationship (ii)
within ρ(d).

In designing an experiment we aim to maximize the information
about model parameters m that are expected to be contained within
σ (d, m). Therefore, it is necessary to be able to quantify the informa-
tion content of a p.d.f. The entropy of any random vector X may be
defined in relation to Shannon’s measure for information (Shannon
1948); see also Tarantola & Valette (1982), Shewry & Wynn (1987)
and Sebastiani & Wynn (2000),

Ent(X) = −I ( f (x)) + c = −
∫

X
f (x) log( f (x)) dx, (5)

where f (x) is the p.d.f. of X, and I is the information content of a
p.d.f. as defined by Shannon (1948). The measure of information
I is equal to minus the entropy, except for a constant c assuming a
uniform null distribution.

When designing an experiment a data set from that experiment
is not available, so we set ρ(d) = µ(d), assuming that the prior
distribution can be decomposed as ρ(d, m) = ρ(d)ρ(m) and that the
null distribution can be decomposed similarly. The post acquisition
information on model parameters m is described by the marginal
posterior distribution,

σ (m) =
∫

D
σ (d, m) dd. (6)
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Figure 4. Uncertainty distributions in the data space corresponding to a fixed uniform uncertainty distribution ρ(m) in the model parameter space for two
linear forward functions with different gradients. The left figure has a small data space uncertainty and a low value of Ent(d | ξ), the right figure has a large data
space uncertainty and a high value of Ent(d | ξ).

One might expect to be able to design an experiment such that in-
formation expected to be in σ (m) is maximized. However, θ (d, m)
can often be decomposed as θ (d, m) = θ (d | m) µ(m), i.e. θ (d, m) in-
corporates no additional information on m. Therefore, using ρ(d) =
µ(d), we often obtain from eq. (4) that σ (d, m) = ρ(m) θ (d | m)
and hence σ (m) = ρ(m). This does not vary with the experimental
design ξ and hence cannot be used to determine ξ.

Instead, experiments can be designed by maximizing the infor-
mation expected to be contained in the conditional posterior p.d.f.,

σ (m | d) = σ (d, m)

σ (d)
(7)

where σ (m | d) represents the probability of m being the true value
for the model parameter given any data measurement d. In eq. (7),
σ (d) is the marginal posterior distribution on the data d:

σ (d) =
∫

M
σ (d, m) dm. (8)

Prior to conducting an experiment, σ (d) embodies all information
about what data are likely to be recorded during the experiment. In
those frequent cases when σ (d, m) = ρ(m) θ (d | m), we see that
σ (d) simply contains prior information on the model parameters
projected into the data space through the physical relationship
θ (d | m).

A quality measure for nonlinear (nl) experimental design can then
be defined as,

�nl (ξ) = −
∫

D
Ent(m | d, ξ)σ (d) dd, (9)

where Ent is the entropy function and −Ent(m | d, ξ) represents
the amount of information contained in the conditional p.d.f.
σ (m | d) about the model parameters given a particular data mea-
surement d recorded using experimental design ξ. This measure of
information is weighted by the likelihood that data measurement d
will be obtained when performing the experiment, σ (d). Integration
over all possible data measurements d results in �nl (ξ).

�nl (ξ) above and �(ξ) from classical nonlinear methods (equa-
tion 3) have similar form. The most important difference between
�nl (ξ) and �(ξ) is that the former requires no linearization of the
model-data relationship. The concept of maximizing a gradient has
not been used.

According to Shewry & Wynn (1987),

−�nl (ξ) + Ent(d | ξ) = Ent(d, m | ξ) = b, (10)

where b is a constant, if Ent(d, m | ξ) is design-independent. They
demonstrate that this is the case for many geophysical problems.

For example, the data-model parameter relationship θ (d, m) used
for most geophysical problems is,

d = f (m) + ε (11)

where ε is a vector of independent, random errors, which do not
depend on either the model parameter space or the design. It can be
demonstrated that eq. (10) holds for relationships of this type. There-
fore, instead of maximizing �nl (ξ), the optimal design can also be
found by maximizing Ent(d | ξ). For this measure only information
about σ (d) is required, hence the calculation is simplified.

Eq. (10) can be explained intuitively using Fig. 4. For linear ex-
amples we showed earlier that the optimal design can be found by
maximizing the gradient of the forward relationship between data
and model parameters. Consider the case where σ (d, m) = ρ(m)
θ (d | m) and θ (d | m) = D( f (m) − d) where D is the Dirac delta
function and f (m) is a noise-free model-data relationship. Suppose
we have two designs producing different 1-D, linear forward rela-
tionships f (m), and that we have a fixed uniform prior model param-
eter distribution ρ(m). Distribution σ (d, m) projects this distribution
through each forward relationship. We find that the corresponding
posterior measurement uncertainties σ (d) are uniform and differ-
ent for the two designs. For the left figure (small gradient of f (m),
least informative design), the corresponding measurement uncer-
tainty is small, hence we obtain a low value for Ent(d | ξ ). For the
right figure (high gradient of f (m), most informative design), the
corresponding measurement uncertainty is large, hence we obtain
a high value for Ent(d | ξ ). Therefore, the optimal design is the
one which gives the highest value for Ent(d | ξ ). The theory above
generalizes this for nonlinear and uncertain forward relationships
in θ (d, m).

For most nonlinear problems the p.d.f.s required to calculate
�nl (ξ) are not known analytically. Hence, for a generally applicable
method all integrations must be defined numerically. After testing
several methods we opted to use Monte Carlo integrations, (Lepage
1978),∫

X
g(x) dx ≈ 1

N

∑ g(x)

s(x)
, (12)

where N is the number of samples taken of a function g(x), and s(x)
is the sampling distribution-the probability that a sample is drawn
at position x.

In our method, samples are drawn only from the region where
σ (d, m) is non-zero. The samples are generated using ρ(m) in the
model parameter space and are distributed uniformly around the
forward function f (m) in the data space, whichever the shape of
the distribution of expected measurement uncertainties. In the 1-D
examples used in this paper, the true data uncertainty region around
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Figure 5. Parameter-data space geometry; this figure shows the discretiza-
tion of the data space (horizontal lines). Samples are drawn only in the grey
region where σ (d, m) is non-zero. For each sample, σ (d, m) is calculated
using eq. (4).

f (m) for any m is Gaussian, but samples are drawn uniformly from
a region f (m) ± 3δ, where f (m) represents the forward function
relating model parameters and data in eq. (11), see Fig. 5. δ is the
standard deviation of the Gaussian uncertainty.

To calculate σ (d), the data space is discretized into regular inter-
vals (Fig. 5). Applying eq. (12) to approximate eq. (8), the marginal
σ (d) is approximated by,

σ (d) ≈ 1

N

∑ σ (d, m)

s(m)
, (13)

where N now is the number of samples inside one discretization
interval of the data space and s(m) is the distribution as a function
of m of only those samples. Because s(m) is not always known an-
alytically within each data interval (as f (m) may not be analytic
and may be nonlinear), a numerical approximation to s(m) is made
by binning all the locations of the samples in the model parame-
ter space for each data interval in data space, and normalizing the
histogram to have unit volume. The obtained histogram is used as
an approximation to s(m) where for each individual sample a linear
interpolation method gives the final value of s(m). The procedure is
illustrated for one dimension in Fig. 6.

Finally, using the result for σ (d) from eq. (13), the complete
quality measure for experimental design is given by

Ent(d | ξ) ≈ 1

M

∑ σ (d)

s(d)
, (14)

where s(d) is a uniform distribution in the data space, as σ (d) has
been approximated using a regular discretization, Fig. 5. M is the
total number of intervals in the data space and hence the total number
of values of σ (d) available for the calculation of the entropy. M is
directly related to the size dx of the discretization interval in the
data space. This means that the total number of samples T will
approximate NM .

3 T H E E N T RO P Y O F A
S AW T O O T H F U N C T I O N

In the introduction, an example with sawtooth functions was used
to show that classical nonlinear design methods fail in multi valued
problems. The entropy method should be capable of dealing with
any problem, including those that are strongly nonlinear. This is
demonstrated by calculating Ent(d | ξ ) for sawtooth forward func-
tions with periods 1, 2, 5 and 10 similar to those in Fig. 3. All
sawtooth functions have an amplitude of 2.5 and for each model
parameter value m, the distribution θ (d | m) is given by a Gaussian
shaped uncertainty in the data space with standard deviation 0.1
around f (m) where f (m) is the sawtooth forward function and the
Gaussian is truncated at three standard deviations from the mean.
The model parameter space runs from 0 to 10 and ρ(m) is uniform
and equal to 1/10.

The analytical solutions for the entropy Ent(d | ξ ) for each of these
sawtooth functions are identical, and are equal to 1.645. This shows
that the entropy method correctly evaluates the designs. It does not
necessarily favour designs with steeper gradients in contrast to the
classical gradient based methodology which does.

In practice, entropies are calculated numerically. There are three
sources of errors in the numerical calculations, assuming perfectly
known physics:

(1) the discretization interval size in the data space dx, Fig. 5,
(2) the discretization interval size in the model parameter space

dm, Fig. 6,
(3) the total number of samples T .

In the following sections, these effects are investigated individually.

3.1 Discretization of the data space

As a sawtooth function is essentially a sequence of linear functions,
σ (d ) can be calculated analytically and is equal to

σ (d ) = 0.1(−er f (5
√

2(−2.5 + d )) + er f (5
√

2(2.5 + d ))) (15)

where erf is the errorfunction. σ (d) is evaluated at different values
corresponding to midpoints of the discretization intervals, renor-
malized, and the corresponding entropy Ent(d | ξ ) is calculated nu-
merically from those analytical values as in eq. (14). Thus, the
dependencies on the number of samples N and the discretization
interval size of the model parameter space dm are removed from
the problem and it can be seen easily which discretization interval
size in the data space dx is needed for a good approximation of the
entropy.

In Fig. 7 (left) the entropy is plotted as a function of the discretiza-
tion interval in the data space dx. Fig. 7 (right) shows the sensitivity
of the entropy to uncertainties in the value of the distribution σ (d )
(since σ (d ) is approximated numerically). Clearly, even large un-
certainties do not have a significant influence on the calculation of
the entropy. Also, the effects are not particularly sensitive to the size
of the discretization interval below dx = 0.25. For discretizations
larger than dx = 0.3 it is not expected that any number of samples T
is sufficient, since even with an analytically known σ (d ) the entropy
can not be evaluated correctly.

3.2 Discretization of the model parameter space

The influence of the number of samples N and the discretization
interval dm was checked. Assuming that the sampling distribution
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Figure 6. The sequential steps in estimating the sampling distribution s(m). First the samples are drawn from the analytical sampling distribution (in this
figure a boxcar function (top left)). Then a histogram is made in which the locations of the samples in the model parameter space are binned (top right). Then
this histogram is normalized and with a linear interpolation (bottom left), the value of the numerical s(m) for each individual sample is deduced (bottom right).

s(m) will be close to a Gaussian or a boxcar depending on whether
the prior distributions are Gaussian or uniform, the tests were per-
formed for both a boxcar and a Gaussian distribution s(m), where
the Gaussian was truncated at three standard deviations from the
mean. Samples were drawn from these analytical functions. Then,
the numerical approximation for s(m) was estimated as illustrated
in Fig. 6.

Fig. 8 shows the average percentage difference between analyt-
ical (ana) and numerically estimated (num) distributions for s(m),
defined by

ε =
∣∣∣∣num − ana

ana

∣∣∣∣ ∗ 100, (16)

over the entire box or truncated Gaussian as a function of the dis-
cretization interval dm and the number of samples N . Instead of
the actual size of the discretization interval, the quantity (mmax −
mmin)/dm is used. So, if (mmax − mmin)/dm equals 5, there are five

0 0.2 0.4 0.6 0.8 1
1.55

1.6

1.65

1.7

1.75

1.8
Entropy as a function of discretization interval size dx

Interval size dx

E
nt

(d
|ξ

)

0 0.1 0.2 0.3
1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69
Entropy as a function of discretization interval size dx

Interval size dx

E
nt

(d
|ξ

)

η=0%
η=15%
η=30%
η=50%

Figure 7. Left: convergence towards the analytical value for Ent(d | ξ ) as a function of the data space discretization interval size dx. The analytical value of
the entropy is 1.645. Samples from σ (d) are taken at the center of each discretization interval and these samples are renormalized to obtain the numerical
approximation for σ (d). Right: convergence towards the analytical Ent(d | ξ ) as a function of dx in the case where a random perturbation is added to the analytical
value of σ (d). η represents the maximum range of uncertainty and the actual uncertainty is a random number between 0 and η.

intervals within the boundaries of the box or Gaussian. For highly
nonlinear problems note that the samples may occupy multiple dis-
connected regions in the model parameter space. (mmax − mmin)
should then be replaced by local values (mmax−local − mmin−local).

When calculating the entropy for a particular design, the sampling
distribution s(m) is estimated for each discretized data-interval.
Hence, the number of samples N considered in Fig. 8 is not the
same as the total number of samples T required to calculate the en-
tropy. It is the number of samples N required for the calculation of
σ (d ) using eq. (13) for each specific value of d.

Fig. 8 shows two important results. First, both figures look very
much alike. However, in the case of a truncated Gaussian the errors
are larger. This is probably due to the way the mean percentages
were calculated. Eq. (16) shows that small values for the analytical
s(m) (low probability regions in model parameter space) can cause
larger values for ε due to sporadic errors in the numerical histogram
itself. Since in the case of a uniform distribution all analytical values
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Figure 8. The percentage difference between analytical and numerical s(m) as a function of discretization and number of samples N , when the analytical s(m)
is a boxcar function (top figure) or a truncated Gaussian (bottom figure). The samples are drawn according to the analytical s(m), then counted into a histogram.
This histogram is normalized and assumed to be an approximation for s(m) as shown in Fig. 6. Then, the numerical value for s(m) for each individual sample
is deduced by linearly interpolating the histogram. The percentage difference shown here is the average percentage difference over the entire box or truncated
Gaussian for one single run of the algorithm.

are equal, this tendency to emphasize areas with low probability has
no effect.

Second, Fig. 8 shows that it is more important to have sufficient
samples inside an interval than to have a large number of intervals.
The errors due to undersampling can become very large, while errors
due to a coarse discretization are relatively limited even if only 1 or
2 intervals are used.

The accurate estimation of s(m) is important for the calculation
of the entropy, but since this is calculated as an integration, it is
expected that up to a certain limit errors in s(m) may be cancelled
if the errors are random.

3.3 The number of samples T

We now fix a discretization and estimate the required total number
of samples T . The discretization in the data space is set to dx =

0.01; Fig. 7 shows that deviations from the analytical value are then
negligible. Taking into account the results in Fig. 8, the discretiza-
tion of the model space is fixed to (mmax − mmin)/dm = 5, for each
discretization interval in the data space. From hereafter a sawtooth
function with a period of 10 is used. Fig. 9 (top) shows the percent-
age difference between the analytical and the numerical values for
entropy as a function of the number of samples T . The solid line
is the average percentage difference over 50 runs, the dashed lines
are the minimum and maximum percentage differences over those
50 runs. Some artefacts are clearly visible. For very low numbers
of samples T the entropy converges rapidly towards the analyti-
cal value. But after approximately 500 samples the curve starts to
diverge, and beyond roughly 3000 samples the entropy converges
properly towards the analytical value. Also, the error around the
average percentage difference increases after 3000 samples before
decreasing again after approximately 4000 samples. Since the data
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Figure 9. Percentage difference between the analytical and numerical solu-
tion for Ent(d | ξ ) for the sawtooth example with period 10, as a function of
the number of samples T . A Gaussian uncertainty with standard deviation 0.1
was assumed as data uncertainty around the sawtooth forward function f (m).
The solid line is the average percentage difference over 50 runs, the dashed
lines are the minimum and maximum percentage differences over 50 runs.
The analytical solution is 1.645. The entropies were calculated with dx =
0.01 in the data space and dm = 0.002 in the model parameter space (top),
and dx = 0.05 and dm = 0.05 (bottom), equivalent to (mmax − mmin)/
dm = 1.

space discretization interval dx = 0.01 and the data are running
from approximately −2.9 to 2.9 (which means roughly 550–600
discrete intervals), it is likely that the former artefacts are due to
undersampling. Using 600 samples T , for instance, means that for
the calculation of each value for σ (d ) only 1 or 2 samples N are
available, which is clearly too few (Fig. 8). The local minimum lies
roughly at the point where each interval on average has 1 sample N .
The local maximum is roughly at the point where each interval has
on average 4–5 samples N .

The test was therefore repeated with dx = 0.05 and (mmax −
mmin)/dm = 1. Figs 7 (left plot) and 8 show that in general this will
degrade accuracy, but Fig. 7 (right plot) shows that large uncertain-
ties in the histograms only have a minor effect on the calculation
of the integral. The advantage of more coarse discretizations is that
fewer samples are required.

Fig. 9 (bottom) shows the results for a sawtooth with period 10.
The figure shows that with this discretization, only about 1000 sam-
ples T are required to get within 5 per cent of the analytical solution.

Fig. 10 shows that with certain discretizations only 200 samples
are required for the sawtooth to approximate the entropy to within
5 per cent of the analytical value – far fewer than the number of
samples suggested by Fig. 9. This shows the importance of choosing
a sensible discretization.

3.4 Results

We calculated the entropy of σ (d ) with dx = 0.05 in the data space,
dm = 0.005 in the model parameter space and 5000 samples for 4
sawtooth functions with periods 1,2,5 and 10. Since these sawtooth
functions have different gradients, this means that (mmax −mmin)/dm
varied for each sawtooth. However, the discretization dm and the
number of samples T should be sufficient to estimate the value of
Ent(d | ξ ) correctly for each sawtooth function. Fig. 11 shows that
indeed all sawtooth functions have the same entropy and are very
close to the analytical value of 1.645.

We can thus use the entropy criterion in a fully numerical imple-
mentation to obtain correct results in situations where the standard
Bayesian design theory fails. The most important factor in this cal-
culation is the choice of discretization, since this strongly influences
the number of samples, and hence the calculation time required.

4 A N AV O E X A M P L E

4.1 Theory and geometry

We present a detailed example using amplitude versus offset (AVO)
data. Using the amplitudes of waves generated by a surface source
reflected at a specific depth d and recorded at the surface again
(Fig. 12), it is possible to estimate the velocity α2 of the layer below
the reflector, for given assumptions on the other model parameters.
The design problem is to choose the optimal source-receiver distance
which is expected to give the most accurate post-inversion estimate
for α2.

Aki & Richards (1980) approximate the reflection coefficient for
P waves at a single interface by

RP = 1

2 cos2 i

�α

α
− 4β2 p2 �β

β
+ 1

2
(1 − 4β2 p2)

�ρ

ρ
, (17)

where α is the average P-wave velocity and equal to (α1 + α2)/2,
β is the average S-wave velocity and equal to (β1 + β2)/2, ρ is the
average density and equal to (ρ1 + ρ2)/2, i equals (i1 + i2)/2, �α

means (α2 − α1), and �β and �ρ are defined similarly. p is the
slowness given by Snell’s law:

p = sin i1

α1
= sin i2

α2
. (18)

Rewriting eq. (17) yields (Yilmaz 2001),

RP =
[

1

2
(1 + tan2 i)

]
�α

α
−

[
4
β2

α2
sin2 i

]
�β

β

+
[

1

2

(
1 − 4

β2

α2
sin2 i

)]
�ρ

ρ
. (19)

If we assume β = cα with some constant c (c = 1/
√

3 for a Poisson
medium) and �ρ = 0, this equation simplifies to

RP =
(

1

2

[
1 + tan2 i

] − 4c2 sin2 i

)
�α

α
. (20)

This is a nonlinear equation as a function of one model parameter
α2, given α1, c and i. Instead of using angle i, one usually works
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Figure 10. Number of samples T required to reduce the maximum percentage difference between the numerical and analytical value for the entropy over
50 runs to within 5 per cent of the analytical value for the entropy (1.645). This for a sawtooth with period 10 with a Gaussian uncertainty with standard
deviation 0.1 in the data space. For discretizations dx larger than 0.3 it is not expected that any number of samples is sufficient, Fig. 7. The corresponding
maximum dm is then also 0.3 ((mmax − mmin)/dm = 1).
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Figure 11. Ent(d | ξ ) with dx = 0.05 in the data space, dm = 0.005 in the
model parameter space and 5000 samples T for 4 sawtooth functions with
periods 1, 2, 5 and 10, with an amplitude of 2.5 and a Gaussian uncertainty
with standard deviation 0.1. Each dot represents one run and the solid line
connects the averages of 50 such points.

with offsets x, Fig. 12. Assuming a horizontal interface and a known
depth d, the offset translates into i as

i1 = arctan

(
x

2d

)
(21)

i2 = arcsin

(
α2

α1
sin i1

)
. (22)

The amplitude data are given by A1 = A0|RP|, where A0 is the
amplitude at the source and A1 is the measured amplitude at the
receiver and where we assume that the data have been adjusted to
remove the effect of geometrical spreading, so that A0 is 1, and A1 =
| RP|. The amplitude-data can be calculated given specific values for
α1, α2, the constant c and the depth of the reflector d.

i1

i2

i1’

x

d

α1,β1,ρ1

α2,β2,ρ2

∗ ∆
source receiver

Figure 12. Geometry of a single interface with a P wave source and a P
wave reflection and transmission. The distance or offset between source (∗)
and receiver (�) is given by x, the depth of the reflector is d, the incident
angle is i1 and assuming a horizontal reflector this is equal to the angle i ′

1,
the transmission angle is given by i2. The characteristics of the medium are
the velocities of the P (α1,2) and S (β1,2) wave velocities and the densities
(ρ1,2).

4.2 Results

We investigated two experimental design problems, specified by

α1 = 2750 m s−1 (23)

α2 = [3200, 3300] m s−1 (first), α2 = [3000, 4500] m s−1

(second) (24)

c = 1√
3

(25)

d = 500 m, (26)

where [a, b] m s−1 means that the prior information on α2 is given
by a uniform distribution between α2 = a m s−1 and α2 = b m s−1,
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Figure 13. Amplitude data as a function of the model parameter α2 for 4
different offsets, x = 500 m, x = 1000 m, x = 1500 m and x = 2000 m.
The velocity of the top layer is 2750 m s−1 and the depth of the reflector
is 500 m. The functions are calculated using dx = 0.001, dm = 100dx and
100 000 samples T .

and θ (d, m) = U [ f (m), δ], where f (m) is the absolute value of
RP, eq. (20), and δ = 0.01 represents the standard deviation of a
Gaussian expected measurement uncertainty.

Fig. 13 shows the forward function f (m), as a function of the
model parameter α2, for the offsets x = 500 m, x = 1000 m, x =
1500 m and x = 2000 m. The maximum gradient is of the order
of 0.01. The results of the previous section indicate that for the
calculation of σ (d ) in each data-interval, (mmax − mmin)/dm = 1
does not cause large errors. After checking this was also true for
the AVO example, all tests in this section were performed using
dm = 100dx , where dm is the discretization interval size in model
parameter space and dx is the discretization interval size in the data
space.

It is impossible to compare the results of the tests to an analyt-
ical solution, as this is a nonlinear example and the required in-
tegrals cannot be calculated analytically. Hence, the experimental
design problem was calculated for different discretizations and sev-
eral numbers of samples. Fig. 14 shows the entropy as a function of
offset for dx = 0.2 and 500 samples, dx = 0.1 and 500 samples,
dx = 0.01 and 1000 samples, and dx = 0.001 and 100 000 samples.
Two things are clear from this figure. First, comparing the curves for
dx = 0.01 and dx = 0.001 we see that the entropy shows no signif-
icant changes at small discretization interval sizes. Second, while it
is clear that for large discretization interval sizes, the values for the
entropy do not converge to the correct value, this does not change
the results of the experimental design problem: the overall shape of
the entropy-curves remains roughly the same and the desired max-
imum entropy design always occurs at the same offset. This is an
indication that it is safe to use a coarser discretization since the er-
rors due to undersampling are much larger and less predictable than
the errors due to too coarse a discretization.

The optimal offset is found to be at approximately 1500 m from
the source. Fig. 13 shows that this optimal offset is found where the
data are most sensitive to changes in the model parameters. This
suggests that we could have used a gradient based method. This
is probably due to the fact that this was not a strongly nonlinear
example (Fig. 13). The design problem is therefore repeated with a
different ρ(m). In the first example ρ(m) was uniform between α2 =
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Figure 14. Ent(d | ξ ) as a function of the offset in metres for the AVO ex-
ample with a Gaussian uncertainty in the data space with a standard deviation
of 0.01. Velocity of the top layer is 2750 m s−1, the depth of the reflector is
500 m and the model parameter space runs from 3200 m s−1 to 3300 m s−1.
The entropy is calculated using four different discretizations and numbers
of samples T . In all cases dm = 100dx has been used.

3200s m s−1 and α2 = 3300 m s−1. For the second example, ρ(m) is
set to be uniform between α2 = 3000 m s−1 and α2 = 4500 m s−1,
a much larger interval. Fig. 15 shows the relationship between data
and model parameters for four different offsets, x = 500 m, x =
1000 m, x = 1500 m and x = 2000 m. Clearly, this problem is more
strongly nonlinear. The discontinuity in the curves is at the velocity
where the angle of incidence reaches the value for the critical angle
of incidence.
The resulting values for Ent(d | ξ ) are shown in Fig. 16. Again, the
maximum value is at approximately 1500 m, but this is no longer
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Figure 15. Amplitude data as a function of the model parameter α2 for 4
different offsets, x = 500 m, x = 1000 m, x = 1500 m and x = 2000 m.
The velocity of the top layer is 2750 m s−1 and the depth of the reflector
is 500 m. The functions are calculated using dx = 0.001, dm = 100dx and
100 000 samples T .
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Figure 16. Ent(d | ξ ) as a function of the offset in metres for the AVO ex-
ample with a Gaussian uncertainty in the data space with a standard deviation
of 0.01. Velocity of the top layer is 2750 m s−1, the depth of the reflector is
500 m and the model parameter space runs from 3000 m s−1 to 4500 m s−1.
The entropy is calculated using five different discretizations and numbers of
samples T . In all cases dm = 100dx has been used.

obvious from the gradients in Fig. 15. Otherwise, the results are
comparable with the previous example; selection of the maximum
entropy design is unaffected by the range of discretizations consid-
ered here.

5 C O N C L U S I O N S

An entropy-based method for nonlinear experimental design has
been presented. In principle, this method is applicable to all experi-
mental design problems, but in particular those nonlinear problems
where classical nonlinear methods for experimental design fail.

The main difficulty in applying this method lies in choosing a
sensible discretization for model parameter and data spaces without
knowing the degree of nonlinearity of the problem in advance. This
choice strongly influences the number of samples required. Our re-
sults suggest that it may be better to choose a coarser discretization
to obtain final designs, since the errors associated with undersam-
pling are larger and less predictable than the errors associated with
too coarse a discretization interval size. The AVO examples above
suggest that the final experimental design remains unaffected by a
slightly too coarse discretization. However, further research is nec-
essary to determine to what extent this rule of thumb remains true.
For the synthetic sawtooth example, this limit is visible in Fig. 7
(left), since no number of samples is sufficient to estimate the en-
tropy for discretizations dx larger than 0.3.

For the examples shown in this report, a simple search with uni-
form steps throughout the design-space was used. For larger, high-
dimensional problems, it is strongly recommended to use an efficient
search-algorithm in order to keep the computational cost as low as
possible. The required computational cost appears to be the only
practical limitation to the application of this method.

For the practical application of this theory it is important to real-
ize that the examples as discussed in this paper are with one model
parameter and one receiver. More receivers automatically increases
the dimensionality of the problem. Further research is necessary to
apply this theory to realistic experiments with more model param-
eters and more receivers.
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