
Geophys. J. Int. (2003) 155, 557–566

Use of multifractal seismic waveform parameters to characterize
the hydraulic properties of fractured media: numerical experiments

Fred Kofi Boadu
Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708-0287, USA. E-mail: boadu@akoto.egr.duke.edu

Accepted 2003 June 9. Received 2003 June 4; in original form 2002 November 4

S U M M A R Y
The multifractal characteristics of seismic waveforms that have propagated through fractured
media were studied using numerical experiments. The study suggests that multifractal wave-
form parameters (i.e. information dimension, correlation dimension, curvature and range in-
dices) bear correlations with the hydraulic properties of the fractured media. The characteristic
waveform parameters were estimated from a multifractal analysis of 1-D synthetic seismograms
generated using a variation of the reflectivity method. Waveforms from fractured zones were
obtained by a superposition of reflections from horizontal fractures with a varying distribution
of fracture length, aperture and spacing. The constructive and destructive interferences of the
composite reflections from the fractures in the fractured layer result in waveforms that possess
multifractal attributes. The characteristic parameters extracted from the waveforms are shown
here to correlate with the hydraulic properties of the fractured rockmass, which include the
fracture permeability, the discontinuity index and the fracture density parameter.
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I N T RO D U C T I O N

Most surface and subsurface crustal rocks exhibit some degree of
natural fracturing that varies in intensity and scale. Fractures are
important in engineering, geotechnical and hydrogeological prac-
tice as they play an important role in the storage and migration of
geological fluids, water, oil and gas through the Earth’s crust. The
permeability and distribution of pore fluids in crystalline rocks are
determined primarily by the density and distribution of fractures
(Brace 1980). Special methods for increasing the extent of under-
ground reservoirs with fracture systems have been developed to
allow for effective transport of petroleum and gas. In the mining,
geothermal and petroleum industry, the geometry of fractures is
quite important as the vast majority of targeted natural resources are
found in fractured rocks (Chernyshev & Dearman 1991). Fractures
are also thought to play an important role in predicting earthquakes
(Crampin et al. 1984).

Research relating quantifiable seismic information to hydraulic
properties of fractured rockmass is limited. Recently, several in-
vestigators have attempted to characterize and predict the hydraulic
properties of fractured rockmass from geological information and
geophysical measurements such as seismic velocity (Myer 1991;
Pyrak-Nolte et al. 1995; Boadu 1997a,b). Evidence of direct re-
lationships between hydraulic and seismic waveform properties is
presently lacking. However, Boadu (1997a) has recently obtained
promising relationships between permeability and seismic attributes
(i.e. instantaneous frequency, amplitude and bandwidth).

Seismic waves propagating through a single fracture or a set
of fractures are scattered and diffracted at the fracture boundaries
and these scattered waves may interfere constructively or destruc-
tively. The non-linear constructive and destructive interferences or
interactions of scattered and diffracted wavefields result in irregular
waveforms for which the amplitude distributions exhibit a chaotic
behaviour and hence a fractal phenomenon (Feder 1988; Zosimov
& Lyamshev 1995). Such amplitude distributions can be uniquely
characterized using a particular parameter, the fractal dimension. If
we can conceive that the very geometric properties of the fractures
that affect the irregular characteristics of the seismic waveforms do
indeed affect the hydraulic properties, then we should expect some
relationships among parameters that quantify the waveforms and
the hydraulic properties.

In this study, I investigate the possibility of estimating the hy-
draulic properties of fractured rockmass using information obtained
from the fractal properties of seismic waveforms. The investiga-
tion is based on the analysis of reflected waveforms from fractured
zones in geological media using multifractal measures. Seismic
waveforms have been utilized in delineating saturated porous zones
(Boadu 2000) and in studying wedge models (Robertson & Nagomi
1984). However, to the best of the knowledge of the author, the rich
information inherent in these attributes has not been exploited in
fracture characterization. Using the modified displacement discon-
tinuity (MDD) model developed in Boadu & Long (1996) and Boadu
(1997a,b), I designed numerical experiments to further explore the
relationships between characteristic fractal properties of seismic

C© 2003 RAS 557

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/155/2/557/598798 by guest on 30 January 2022



558 F. K. Boadu

waveforms after propagation through a fractured zone and represen-
tative parameters quantifying the hydraulic or transport properties
of the zone.

T H E M O D I F I E D D I S P L A C E M E N T
D I S C O N T I N U I T Y A N D S E I S M I C WAV E
P RO PA G AT I O N I N F R A C T U R E D M E D I A

In describing the MDD fracture model, we consider two half-spaces
bounded by surfaces that may be partly in contact with one another
in the x–y (horizontal) plane with a vertically incident wave in the
y–z plane (vertical). Regarding the boundary between the two half-
spaces as one of a non-welded contact, the boundary conditions for
an incident elastic wave have been described by Boadu & Long
(1996) as

τm(r ) = lim
�r→0

τm(r )

δεm(r )

δt
= lim

�r→0

[
δεm(r+�r )

δt
+ τm(r+�r )

Zm

]
; m = P, S, (1)

where τ p and τ s are the respective normal and tangential stresses,
ε p and εs are normal and tangential strains, and r is the radius
vector determining the plane of the fracture in (x, y, z) space. The
basic premise of this model is that when a seismic wave propa-
gates across a fracture, the associated stresses are continuous while
the displacements are in general discontinuous. The magnitude
of the ‘jump’ in the discontinuity of the displacement is determined
by the fracture impedance Zm (Zp is the longitudinal impedance and
Zs is the transverse impedance).

The fracture impedance is obtained by exploiting the well-
established analogies between mechanical and electrical quantities
(e.g. Anderson 1985). Relations between equations for acoustic
wave motion and electric transmission lines allow us to treat the
fracture as a transmission line for the passage of seismic waves.
When there is no rigid contact between the surfaces (non-welded
contact), the transmission of the seismic wave at the fracture takes
place in the form of a blow with some inertia, which results in the
delay of the transmission of the waves. The corresponding equations
of motion have been developed and solved for the transmission and
reflection coefficients for an incident P or S wave (Boadu & Long
1996) and will only be summarized here.

The expressions for the fracture impedances for a seismic wave
propagating with frequency ω have been derived in detail by Boadu
& Long (1996) and are given as

Z p = E f

2iωh
+ zcp

l
coth

γp(1 − f )l

2

Zs = µ f

2iωh
+ zcs

l
coth

γs(1 − f )l

2
, (2)

where E and µ are the Young’s modulus and shear modulus of the in-
tact rock, respectively; f is the fractional area of the fracture surface
in contact; l is the length of the open fracture; h is the region of influ-
ence (the ratio of the square of the fracture length to the wavelength
of the incident wave); zcp and zcs are the characteristic impedances,
γ p and γ s are the propagation constants. The subscripts p and s
denote compressional and shear waves, respectively. For example,
the characteristic impedance and the propagation constant for the
case of an incident compressional wave on a fracture are given as

γp =
√

iω

µh

(
E

iωh
+ iωρh + 2η

)
,

γs =
√

iω

Eh

(
µ

iωh
+ iωρh + 2η

)

zcp =
√

µh

iω

(
E

iωh
+ iωρh + 2η

)
,

zcs =
√

Eh

iω

(
µ

iωh
+ iωρh + 2η

)
, (3)

where η is the dynamic viscosity of the fluid filling the fracture and
ρ is the density of the intact rock in which the fracture is embed-
ded. The influence of the fracture on the propagation of the elastic
wavefield can be assessed using a dimensionless quantity given by
the ratio of the acoustic impedance of the intact medium W p to the
fracture impedance Zp (Boadu & Long 1996). This ratio, termed
the inhomogeneity factor, ξ p , is a function of the fracture length,
the aperture, the viscosity of the infilling fluid, the fractional area of
opposing fracture surfaces (f ) and the frequency of the propagating
waves, and is given by

ξp = Wp

2Z p
. (4)

For a compressional wave of unit amplitude incident at an angle
θ to the plane of the fracture, the complex frequency-dependent
reflection and transmission coefficients are given as

RP P = −AP P
ϕP PξP

ϕP PξP + 1
+ (1 − AP P )

ϕP SξS

ϕP SξS + 1

TP P = AP P
1

ϕP PξP + 1
+ (1 − AP P )

1

ϕP SξS + 1

RP S = AP S
ϕP PξP

ϕP PξP + 1
− AP S

ϕP SξS

ϕP SξS + 1

TP S = −AP S
1

ϕP PξP + 1
+ AP S

1

ϕP SξS + 1
, (5)

where APP, APS , ϕPP and ϕPS are all functions of the angle of inci-
dence and the Poisson ratio of the intact material, where RPS rep-
resents incident P and reflected S. For example, the function App is
expressed as

App = (2d2 − sin2 θ )2

(2d2 − sin2 θ )2 + sin2 θ cos θ
√

4d2 − sin2 θ
(6)

with d being given by the expression

d =
√

1 − σ

2(1 − 2σ )
= VP

VS
, (7)

where σ is Poisson’s ratio, V P and V S are, respectively, the com-
pressional and shear wave velocity of the intact rock.

The method described in Boadu (1997a,b) is used to obtain syn-
thetic seismograms for a series of geological layers where one of
the layers is fractured (fractured zone). The fractures in this zone
are assumed to be horizontal and planar or subplanar fractures (see
Fig. 1) and can exhibit varying distributions of length, spacing and
aperture. For a propagating wave, we postulate two types of reflec-
tions: (1) reflections from the interface of two unfractured geological
layers and (2) reflections from the fractures themselves. A recursive
scheme is used to compute global reflection and transmission coef-
ficients for these two types of interfaces and synthetic seismograms
are then computed using the reflectivity method.
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Multifractal seismic waveform parameters 559

Figure 1. A simple model describing a series of geological layers where one of the layers is fractured (fractured zone).

The spectral responses of the horizontal and vertical displace-
ments at the surface (z = 0) have been derived (see Boadu 1997a;
Fuchs & Müller 1971, for a full derivation) and is given below. The
vertical displacement for an angle of incidence θ is given by Fuchs
& Müller (1971) as

u(r, 0, ω) = F(ω)k2
α1

∫ θ2

θ1

J1(kα1r sin θ )R pp(ω, θ )t(θ )g(θ )

× exp(−2ikα1 h1η1) dθ
(8)

and the horizontal displacement is given as

w(r, 0, ω) = F(ω)k2
α1

∫ θ2

θ1

J0(kα1r sin θ )R pp(ω, θ )t(θ )h(θ )

× exp(−2ikα1 h1η1) dθ.
(9)

The functions t(θ ), g(θ ) and s(θ ) are

g(θ ) = 4i(α1/β1)2κ1 sin θ/B (9a)

s(θ ) = 2(α1/β1)2 A/B (9b)

A = (α1/β1)2 − 2 sin2 θ (9c)

B = A2 + 4κ1η1 sin2 θ (9d)

η1 = cos θ (9e)

κ1 = [
(α1/β1)2 − sin2 θ

]1/2
(9f)

t(θ ) = cos θ sin θ (9g)

kα1 = ω/α1. (9h)

F(ω) is the Fourier transform of the source excitation function f (t);
J 0 and J 1 are Bessel functions of the first kind and of order zero and
one, respectively; vi and v′

i are the vertical wavenumbers for P and
S waves in layer i; k is the horizontal wavenumber; j = √−1; ω is
the angular frequency; hi is the thickness of layer i , �pp and � ps are
the P–P and P–S reflection coefficients of the free surface, and Rpp

is the complex global reflectivity function for the stack of layers.
For a series of reflections (from both geological contacts and

individual fractures), the generalized frequency-dependent complex
reflectivity function is computed using a recursive algorithm as given
by Boadu (1997a),

Ri+1(ω) = [ri+1 + Ri (ω) exp(2 jϕi − 2hiαi )][1 + ri+1 Ri (ω)

× exp(2 jϕi − 2hiαi )]−1, (10)

where φi = ωhicos θ/vi is the phase change across the intact rock
section with P-wave velocity vi and attenuation coefficient αi that
lies above the ith reflector with reflection coefficient r i. In the model
described, stresses and displacements associated with a propagating
waveform will be continuous across the contact between two geo-
logical layers. However, when the waveform encounters a fracture,
the stresses will be continuous while the displacements will be dis-
continuous. When a seismic wave strikes either of these boundaries,
there will be reflected and transmitted P and S waves in general. The
reflected waves that arrive at the surface are the superposition of all
the reflections from the two types of boundaries. The local reflection
coefficients for the welded geological interfaces were computed us-
ing the computational procedure described by Kind (1976), taking
into account wave-type conversions (P to S). For local reflections
from the fractures, the expressions in eq. (5) for the reflection coef-
ficients were used. A combination of the local reflection responses
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560 F. K. Boadu

Table 1. Layer parameters for the model used in the experiment. An il-
lustration of the parameters of the intact rock of each layers used in the
computation of the synthetic seismograms. The permeability of the intact
rock units in the fractured layer (layer 3) is assumed to be 10−12 m s−1.

Layer Thickness V P V S Density Q
(m) (m s−1) (m s−1) (kg m−1)

1 20 1000 600 2600 100
2 20 2500 1500 2650 150
3 (fractured) 25 3000 1800 2660 200
4 20 3300 1980 2660 250
5 ∞ 4200 2700 2650 300

from the welded interfaces and those from the fractures is used in a
recursive algorithm (eq. 10) to give the frequency-dependent global
reflectivity function (frequency response) for the whole half-space
(geological section). Synthetic seismograms are obtained from in-
verse Fourier transformations of eqs (8) and (9).

Numerical results

I provide illustrative examples of numerical experiments which in-
volve a stack of geological layers over a half-space, one of the layers
being embedded with horizontal fractures. Such a geological setting
is typical of environments for exploration of oil and geothermal en-
ergy (van Golf-Racht 1982; Chernyshev & Dearman 1991). The
seismic parameters characterizing the individual layers are shown
in Table 1.

Ten discrete planar fractures are embedded in the fractured layer
or zone. A seismic source (Ricker wavelet) located at the surface
with a peak frequency of 400 Hz and a maximum frequency of
1200 Hz is used in the reflection experiment. Fig. 2 is a generated
synthetic seismogram for a vertically incident wave using the pro-
cedure described earlier in the text. Normally incident waves are
analysed here to illustrate the effect of the fractures on the seismic

Figure 2. Synthetic seismogram (vertical incidence) for a stack of geological layers with one of the layers containing fractures. The time zone known to
contain composite reflections from fractures is shown and is windowed for multifractal analysis.

waveform although the computational methodology is generalized
for all incidence angles. As expected based on the model in Table 1,
we observe a clean reflected signal at a time of 0.04 s followed by
a dispersed waveform. This waveform represents constructive and
destructive interference of wave reflections from the fractured zone
(windowed and shown in the inset). The dispersive characteristics
of the windowed wave train contain useful information concerning
the fractured zone and this information will be extracted using a
multifractal analysis.

F R A C TA L A N A LY S I S O F WAV E F O R M S
F RO M F R A C T U R E D M E D I A

Fractals are mathematical constructs that can have a high degree of
geometrical complexity and repeat at different scales (Feder 1988).
A very important characteristic of fractals useful for their descrip-
tion and classification is their fractal dimension, D, which measures
the degree of their irregularity over multiple scales. As the waves
propagate through the fractured medium, the distribution of the scat-
tered wave energy associated with the fractures becomes irregular
and non-uniform and can be subjected to fractal analysis. Given the
complex nature of the seismic waveforms from the fractured media,
it is insufficient to characterize the dynamic behaviour of waveforms
by a single value of their fractal dimension. Multifractal analysis is
the recourse, as it will allow us to characterize the distributional
properties of the amplitudes of the waveforms in greater detail.

In this study, the sample values of the waveforms, herein termed
amplitudes, are considered as variables and their distributions in
time are subjected to multifractal analysis to determine the multi-
fractal attributes. The multifractal attributes provide detailed infor-
mation concerning the concentration of waveform amplitudes in a
given time window and the statistical properties of such measures
are characterized by a continuous spectrum of fractal dimensions.

The scheme developed by Boadu & Long (1994b) for multifrac-
tal analysis of fracture spacings is modified and used in this study
for the multifractal analysis of seismic waveforms and is described
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Multifractal seismic waveform parameters 561

below. Consider a signal S(t) containing N sample points or ampli-
tude values. First, the signal is transformed to emphasize significant
time variations in the amplitude values and to eliminate background
noise. The transformation of the original signal S(t) to Sω(t) is as
follows:

Sω(t) = |S(t + ρ) − S(t)|ω, (11)

where ω > 0 and ρ is the lag. The transformed signal, Sω(t), is
positive, a necessary requirement for multifractal analysis. The pa-
rameter ω controls the degree of variability of Sω(t): decreasing
ω causes Sω(t) to become smoother. The amplitudes of the trans-
formed waveforms are then normalized to the range (0, N). A cell
(time window) containing Nk sample points of size δ is considered
where the δ-axis is in the units of the sampled data. The probability
of finding a sample value δ in a cell number k (k = 1, . . . , M(δ))
is defined as pk . The multifractal properties of the signal are then
described in terms of the generalized dimension function D(q):

D(q) = lim
δ→0

1

q − 1

ln
[∑M(δ)

k=1 pq
k (δ)

]
ln δ

, (12)

where the moment order q is any number in the range −∞ to +∞
and the function D(q) is a spectrum of fractal dimensions character-
izing the signal. The generalized dimensions D(q) serve to introduce
higher-order fractal dimensions to make up for lack of information
that cannot be described by the fractal dimension alone. Values of
D(q) for q = 0, 1, 2, . . . are of physical interest (Boadu & Long
1994b) and will be examined for each waveform from a fractured
medium. I investigate the diagnostic and distinguishing characteris-
tics of D(q) values and their potential relationship to the fracture pa-
rameters and hence the hydraulic properties of the fractured medium.
Details of the computational procedure for D(q) using least-squares
regression analysis have been tested successfully for known fractal
functions by Boadu & Long (1994b) and will not be repeated here.

Figure 3. A schematic illustration of the spectrum of D(q) versus q for different fracture parameters (models) listed in Table 2. For example, Model C in
Table 2 is a fractured medium consisting of planar fractures with exponential distributions of fracture length, aperture and spacing with mean values of 0.68 m,
50 µm and 0.36 m, respectively.

For q → 0 we obtain from eq. (12),

D(0) = − lim
δ→0

ln
[∑M(δ)

k=1 1
]

ln δ
= − lim

δ→0

ln M(δ)

ln δ
. (13)

The above expression is exactly the definition of the Hausdorff–
Besicovitch dimension (also termed box-counting or similarity di-
mension) of a fractal measure (Grassberger & Procaccia 1983).

As q → 1 the application of L’Hospital’s rule to eq. (12) yields

D(1) = − lim
δ→0

S(δ)

ln δ
, (14)

where S(δ) = − ∑M(δ)
k=1 pk ln pk . S(δ) is a familiar expression from

information theory that describes the amount of information asso-
ciated with the distribution of pk values and thus D(1) is known
as the information dimension (Grassberger & Procaccia 1983). The
information dimension D(1) quantifies the gain in information as
δ → 0.

In the case where q → 2 eq. (7) yields

D(2) = lim
δ→0

1

ln δ
ln

[
M(δ)∑
k=1

p2
k

]
, (15)

where D(2) is termed the correlation dimension and D(2) ≤ D. Also,
eq. (10) reduces to the correlation integral introduced by Grassberger
& Procaccia (1983), which measures the probability that two sample
values lie within a cell of size or length δ. The correlation dimen-
sion thus estimates the probability that two points in the sample
space are separated by a distance smaller than δ, a measure that is
important in assessing the amplitude distribution of the waveforms
from the fractured medium. In general, since the summation term
in eq. (7) is, for q > 1, the total probability that q points of the
waveform in the sample space are within one cell, the spectrum
of D(q) is a measure of the correlation between different sample
points in the fractal waveform. It is thus useful in characterizing the
heterogeneous distribution of amplitudes in the waveforms.
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562 F. K. Boadu

Table 2. Mean values of the distribution of fracture parameters used for
experimental illustration of the behaviour of D(q) versus q.

Model A Model B Model C Model D

Mean fracture length (m) 0.59 0.48 0.64 0.68
Mean fracture aperture (µm) 52 43 57 50
Mean fracture spacing (m) 0.44 0.25 0.32 0.36

Fig. 3 illustrates the behaviour of D(q) versus q. The values of
D(q) are computed from generated waveforms from the fractured
zone. An example of such a waveform is shown as an inset in Fig. 2.
The fractures in the fractured zone possess exponential distributions
of fracture parameters (length, spacing and aperture) with different
mean values as shown in Table 2. It is seen that different combina-
tions of fracture parameters, that is, length, spacing and aperture,
give a different behaviour of D(q). When the relationship D(0) ≥
D(1) ≥ D(2) ≥ · · · ≥ D(∞) holds, the distribution of amplitudes
is heterogeneous and bears multifractal characteristics. The equal-
ity D(0) = D(1) = D(2) = · · · = D(∞) holds for homogeneous
distributions that exhibit monofractal behaviour. An interesting and
important dimension is D(∞), which sets a lower limit on the frac-
tal dimension. It gives information concerning the extent to which
the sample values are clustered in the waveform. The value of D(q)
for some theoretically defined fractal systems, for example the Can-
tor set, has been established analytically (Feder 1988). However, in
practice one can compute several values of D(q) and establish D(∞)
as the asymptotic value of D(q).

Figure 4. Cross-plots and corresponding least-squares fits of information dimension D(1) versus (a) fracture permeability, (b) mean fracture length, (c)
discontinuity index and (d) fracture density parameter. Parameters are extracted from windowed waveforms such as in Fig. 2 for various simulations.

R E P R E S E N TAT I O N S O F G E N E R A L I Z E D
D I M E N S I O N S

The generalized dimensions characterizing the multifractal proper-
ties of the waveforms are conveniently simplified using quantifiable
parameters. This is achieved by specifying four parameters obtained
from the function D(q): the information dimension D(1) or homo-
geneity index, the correlation dimension D(2), the curvature index,
α, and the range index γ . The curvature and range indices are defined
as

α = 2|D′(1)|
D(0) − D(1)

, γ = D(1)

D(∞)
. (16)

The α parameter is a contrast index and measures multifractality.
A low value of α signifies persistently small or large signal values,
while a high value is an indication of a broad range of values around
a mean value. In effect, α controls the width of the distribution
around α = D(1). The range index parameter, γ , is a measure of
the clustering of signal amplitudes. A value of γ = 1 implies a
homogeneous distribution (weak clustering) and a value γ � 1 is
associated with intense clustering. The value of D(5) is taken to be
approximately equal to D(∞).

F R A C T U R E PA R A M E T E R S A N D
H Y D R AU L I C P RO P E RT I E S O F
F R A C T U R E D RO C K M A S S

The hydraulic properties of a fractured rockmass can be described
by its permeability and quantifiable fracture parameters, such as the
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Multifractal seismic waveform parameters 563

fracture density parameter, C and the discontinuity index, I d. An-
other useful parameter is the linear fracture density, � (the number
of fractures per unit length), usually measured normal to the average
strike of the fractures along a scanline under field conditions.

The fracture density parameter has a strong correlation with the
transmissivities of fractured geothermal reservoirs and Watanabe
& Takahashi (1995) suggest using it in the prediction of hydraulic
properties of fractured reservoirs. The fracture density parameter,
C, is defined as

C = �

〈cos θi 〉(1 − ln rmin)
, (17)

where θ i is the orientation of the ith set of fractures relative to the
flow direction, 〈·〉 represents an average and rmin is the smallest
fracture length.

The discontinuity index, I d, is used as an indicator of whether or
not a fractured rockmass is permeable (Wei et al. 1995). This index
is defined based on the permeability threshold of a jointed rockmass
for a representative volume using percolation theory. For an average
or mean fracture length L in a given distribution, the discontinuity
index is defined as

Id = average fracture length

average fracture spacing
= �L . (18)

The average fracture spacing is by definition the inverse of the lin-
ear fracture density. Thus, fractured rockmasses with shorter and
higher fracture density will have lower permeability than those with
longer fractures and lower density. A fractured rockmass will tend to
be more permeable if I d ≥ 1, and hence the permeability increases
with an increase in I d.

Figure 5. Cross-plots and corresponding least-squares fits of correlation dimension D(2) versus (a) fracture permeability, (b) mean fracture length, (c)
discontinuity index and (d) fracture density parameter.

As a generalization of a fractured medium, consider a matrix
block with fractures of varying lengths, orientations and thicknesses.
When a fracture is parallel to the flow direction, the flow rate through
the fracture is given by

qf = bW
b2

12µ

�P

h
= W

b3

12µ

�P

h
, (19)

where b is the mean fracture aperture, W is the width of the fracture,
�P is the pressure difference across the block and µ is the viscosity
of the fluid. The intrinsic fracture permeability, kf, based on Darcy’s
law is given as b2/12. For an inclined fracture at an angle αn with
respect to the hydraulic gradient direction, with finite length L f,
width W f and thickness bn, its contribution to the discharge across
a section containing a suite of fractures is given by Chernyshev &
Dearman (1991) as

Qfd = qf f (L f/Ld)Wfcos2α, (20)

where cf is the hydraulic discharge through a continuous fracture
per unit width and under unit hydraulic gradient. The function
f (L f/Ld), is taken as L f/Ld or as e(Lf/Ld) (Boadu 1997a), where
Ld is related to the thickness of the block or section, h, by Ld =
h/cos α. The sum of contributions to the discharge from R fractures
divided by the section area gives the effective fracture permeability,
K a (Chernyshev & Dearman 1991),

Ka = (1/A)
R∑

n=1

Qfdn = (1/V )
R∑

n=1

(
qfn Afn cos3αn

)
, (21)

where V is the volume of the section and Afn is the area of the
nth fracture. Experimental and field measurements have reasonably
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564 F. K. Boadu

substantiated eqs (15) and (16) for known fracture systems (Hossain
1992). The total permeability of the fracture-intact rock system, K t,
may be represented as the sum of the intact rock permeability Km

and the effective fracture permeability K a.
The hydro-properties of the fractured rock described above, I d, C

and K a, can be used to characterize its hydraulic conditions. These
representative properties will be related to the representations of the
generalized dimensions quantifying the seismic waveforms.

S E I S M I C F R A C TA L AT T R I B U T E S A N D
F R A C T U R E H Y D RO - P RO P E RT I E S :
N U M E R I C A L E X P E R I M E N T S

An important objective of this paper is to investigate, through nu-
merical experiments, the possibility of the existence of relations
between seismic waveform parameters and hydro-properties of a
fractured rockmass. An exponential distribution of fracture lengths
with mean values ranging between 0.2 and 1.0 m were used in the nu-
merical experiments. The minimum and maximum fracture lengths
for all simulations were 0.05 and 2 m, respectively. The distribution
of the fracture spacings follows the Weibull distribution as described
by Boadu & Long (1994a) with the mean varying between 0.1 and
2 m. Fracture apertures are of exponential distribution with a cho-
sen average value of 4 µm. This value is reasonably representative
of aperture values found in some sedimentary and igneous rocks
(Chernyshev & Dearman 1991; van Golf-Racht 1982).

Figs 4(a)–(d) show cross-plots and least-squares (LS) polyno-
mial fits of information dimension D(1) versus fracture permeabil-
ity, mean fracture length, discontinuity index and fracture density

Figure 6. Cross-plots and corresponding least-squares fits of curvature index (α) versus (a) fracture permeability, (b) mean fracture length, (c) discontinuity
index and (d) fracture density parameter.

parameter, respectively. The information dimension is obtained from
the multifractal analysis of the wave train from the fractured layer
(see Figs 1 and 2) for each numerical experiment where the distri-
bution of the fracture parameters is known. We see a correlation
between the information dimension and the fracture permeability,
that is, D(1) is sensitive to fracture permeability and decreases with
an increase in fracture permeability. The coefficient of determina-
tion for the LS fit, R2, is 0.89, indicating a reasonable relationship
between D(1) and permeability. Both the discontinuity index and
the fracture density parameter correlate reasonably with D(1), with
R2 being 0.78 and 0.63, respectively. The mean fracture length as a
fracture parameter, bears a very weak correlation with D(1).

Cross-plots and corresponding LS fits of correlation dimension,
D(2), with fracture permeability, mean fracture length, discontinu-
ity index and fracture density parameter are shown in Figs 5(a)–(d),
respectively. The correlation dimension increases with an increase
in fracture permeability, discontinuity index and fracture density pa-
rameter with respective R2 values of 0.86, 0.77 and 0.60. Fractures
with relatively greater length, greater apertures and closer spacing
will produce distinct signal values that would probably interfere con-
structively and be correlated. The nature of these fractures is such
that they would also produce a higher permeability and disconti-
nuity index. Hence the correlation dimension will increase with an
increase in fracture permeability and discontinuity index.

Figs 6(a)–(d) show cross-plots and corresponding LS fits of the
curvature index with fracture permeability, mean fracture length,
discontinuity index and fracture density parameter, respectively.
There are discernible relationships between the curvature index and
the fracture permeability, discontinuity index and fracture density
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Figure 7. Cross-plots and corresponding least-squares fits of range index (γ ) versus (a) fracture permeability, (b) mean fracture length, (c) discontinuity index
and (d) fracture density parameter.

parameter with respective R2 values of 0.85, 0.79 and 0.55. How-
ever, there is a weak correlation of the index with the mean fracture
length with a low R2 value of 0.17.

The range index (γ ), and its relationship with fracture perme-
ability, mean fracture length, discontinuity index and fracture den-
sity parameter are shown in Figs 7(a)–(d), respectively. Again, the
fracture permeability, discontinuity index and fracture density pa-
rameter show reasonable correlations with γ , with R2 values of 0.9,
0.81 and 0.58, respectively. As the permeability and discontinu-
ity index increase, the γ index values decrease. The mean fracture
length, however, shows quite a weak correlation with γ (R2 = 0.2).
Regularity in amplitude distribution (γ → 1) implies persistence
in fracture aperture, spacing and length distributions and hence an
increase in the transmissive potential of the fractured rockmass.

S U M M A RY A N D C O N C L U S I O N S

The identification, location and characterization of fractured media
is important in engineering, geotechnical, hydrogeological and geo-
science applications. In this paper, multifractal analyses of seismic
waveforms obtained by numerical reflection experiments in frac-
tured media have been performed to extract quantifiable represen-
tative waveform parameters. Based on numerical experiments and
analyses, reasonable correlations between the extracted waveform
parameters and the hydro-properties characterizing the fractured
media have been established.

The results presented here are interesting and important and pro-
vide a wealth of information that warrant further investigation in-

volving either a laboratory or field study. The seismic waveform
parameters can be reasonably estimated from real seismic data ob-
tained from fractured terrain with a good signal-to-noise ratio. More
research work in this direction may lead to innovative and useful
ways of assessing the hydraulic properties of fractured rockmass
remotely from seismic information. For example, based on these
results, one may infer that with estimates of the correlation dimen-
sion and the α parameter of waveforms from two fracture zones,
the zone with relatively greater value of correlation dimension and
smaller value of curvature index, may possess greater storage and
transmission potential.

The sensitivity of the fracture permeability and the discontinuity
index to these waveform parameters may be due to the fact that, for
a given frequency range of the propagating waveform, the ampli-
tude distribution in waveforms is more sensitive to fracture spacing
and aperture, which also control the permeability and discontinuity
index than the length. The mean fracture length may not be repre-
sentative as it is possible that a few long fractures may dominantly
influence the fracture permeability, an observation that has been
established by Cheng-Haw & Farmer (1993). Although the mod-
els used in the numerical experiments are quite simple, the insight
gained is valuable for possible use as quantifiable criteria for assess-
ing the hydraulic properties of a fractured rockmass.
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