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S U M M A R Y
Based on experimental observations and theoretical analyses, the author introduces an ideal
microcrack model in which an array of cracks with the same shape and initial size is distributed
evenly in rocks. The mechanism of creep dilatancy for rocks is analysed theoretically. Initiation,
propagation and linkage of pre-existing microcracks during creep are well described. Also, the
relationship between the velocity of microcrack growth and the duration of the creep process
is derived numerically. The relationship agrees well with the character of typical experimental
creep curves, and includes three stages of creep. Then the damage constitutive equations and
damage evolution equations, which describe the dilatant behaviour of rocks, are presented.
Because the dilatant estimated value is taken as the damage variable, the relationship between
the microscopic model and the macroscopic constitutive equations is established. In this way
the mechanical behaviour of rocks can be predicted.
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1 I N T RO D U C T I O N

Dilatancy of rocks plays an important role for tectonic movements
inside the Earth as well as in many aspects of engineering (Brace
et al. 1966; Brace 1978; Tan Tjong Kie & Kang Wen-fa 1983).
Many laboratory studies have been stimulated by the hypothesis that
dilatancy is believed to play an important role in the mechanism of
shallow earthquakes (Nur 1972; Scholz et al. 1973). Basic studies
on dilatancy are very helpful in gaining a better understanding of
the complexity of fracturing in rock mechanics. The formation of
cracks and loosening substances around a tunnel, which may lead
to gradual instability, is also attributed to dilatancy.

To obtain a better understanding of the tectonics of the crust and
the genesis of earthquakes, a profound knowledge concerning the
brittle behaviour of rocks at various stresses and temperatures is
desirable (Tan Tjong Kie et al. 1989; Ngwenya et al. 2001). A basic
property of the rheology of rock is creep deformation. Under normal
stresses, the typical creep curve may be subdivided into three parts:
(1) transient creep in which the strain rate decreases with time; (2)
steady creep in which the strain rate is constant; and (3) tertiary
creep in which the strain rate increases progressively until failure.
However, the microscopic mechanism of creep in rocks has not been
studied comprehensively.

At low temperatures, it is observed that the volume strain of rocks
under pressure increases with time due to the extension of microc-
racks in rocks (Kranz 1979). During experiments, it is also found that
a crack often shows a significant extension rate at a value of stress in-
tensity factor lower than the critical stress intensity factor K c. Such
a phenomenon may be attributed to several mechanisms including

a dependence upon the chemical environment, among which stress
corrosion is mentioned most frequently (Martin 1972; Anderson
& Grew 1976; Atkinson 1984; Atkinson & Meredith 1987). Stress
corrosion involves the weakening of strained bonds at crack tips
with the chemical action of, for example, water, thereby facilitating
crack growth. Other contributing mechanisms include dissolution,
diffusion, ion exchange and microplasticity.

The concept of different scale media may be used to explain that a
rock can exhibit different mechanical properties. For example, brit-
tle rocks exhibit a creep-dilating behaviour under triaxial stresses,
but when rock material around microcracks is viscoelastic there is
no swelling. Such dilatancy is the result of an extension of microc-
racks, namely when dissipation of energy leads to subcritical growth
of cracks over time. Therefore, the rock specimen as a whole has
the properties of both viscoplasticity and time-dependent dilatancy,
while the skeleton of the rock is viscoelastic.

In this paper, rheological fracture mechanics is used to analyse
the process of crack growth for rocks during creep to explain the
mechanism of creep dilatancy for rocks. A differential equation that
describes the relationship between the deformation velocity of the
rock and time is obtained. By solving this equation, a relationship
between volumetric swelling and time is derived. It agrees well with
the character of typical experimental creep curves.

Moreover, equations for damage constitution and damage evolu-
tion are presented. In these equations, the dilatancy volume strain
is taken as the damage variable. The damage evolution equation
can be determined from the creep curves obtained via an analy-
sis of the course of microcrack extension. By this procedure we
intend to find a way to establish and describe the macroscopic
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mechanical behaviour of rocks through an analysis of their micro-
scopic structure.

2 M O D E L O F M I C RO C R A C K S

Most rocks contain inhomogeneities such as small cavities or cracks,
particles with poor cohesion, as well as phases with different modu-
lus or strengths from those of the matrix. Generally, the distribution
of microcracks in rocks is very complicated. Therefore, it is very
difficult to analyse the growth of various cracks in a complete way.
However, based on experiments (Topponnier & Brace 1976; Waza
et al. 1980; Wong et al. 2001), the sharp inclined crack shown in
Fig. 1 is a model of a typical microcrack in rocks; two wings of the
crack lie parallel to the maximum principal compressive stress. As
for the mechanism of inelastic dilatancy in rocks, most studies fo-
cus on the sliding crack model first proposed by Brace et al. (1966).
The theoretical analysis by Nemat-Nasser & Horii (1982) and the
numerical simulation by Tang & Kou (1998) show that under tri-
axal compressive stresses, the inclined crack in solids will extend
in the direction at an angle of 0.39π from the crack inclination,
and continue to extend parallel to the maximum compressive stress
direction σ 1.

Based on experimental observations and a theoretical analysis,
the author introduces an ideal model for microcracks, which is quite
similar to the model proposed by Ashby & Sammis (1990). In this
model, an array of cracks with the same shape and initial size are dis-
tributed evenly in rocks (Fig. 2). Under triaxial compressive stresses,
the crack will extend parallel to the direction of the maximum com-
pressive stress. In accordance with Ashby & Sammis (1990), the
stress intensity factor at tips of a wing crack is analysed as follows.

The remote field stress σ 1, σ 3 (positive for dilatation and negative
for compression) will create a shear stress τ and a normal stress σ

on the surface of initial cracks. The sliding of cracks (resisted by
the frictional force, with friction coefficient µ), opens the mouth of
each wing crack. The wedging can be deemed to be a result of the
force F3 that is parallel to X 3 and acts at the midpoint of the crack.

Figure 1. A wing crack.

Stresses τ and σ are given by

τ = σ3 − σ1

2
sin 2ψ

σ = σ3 + σ1

2
+ σ3 − σ1

2
cos 2ψ,

(1)

where ψ is the angle between the initial crack and the main stress
σ 1.

F3 is the component of the sliding force acting parallel to σ 3,

F3 = (τ + µσ )2a sin ψ. (2)

It creates a stress intensity factor tending to open the crack (Tada
et al. 1985).

Also there is an average internal stress, σ i
3, acting on the wing

cracks that describes the interaction among cracks:

σ i
3 = F3

S − 2[L + cos(ψ)a]
, (3)

where S is the distance between the central points of two wing cracks
and 2a is the length of the crack. If the number of cracks in unit area
is N , the relation between S and N is

S = 1√
N

. (4)

Therefore, the stress intensity factor at tips of wing cracks is given
by

KI = F3√
π (L + βa)

+ (
σ3 + σ i

3

) √
π L

= F3

[
1√

π (L + βa)
+

√
π L

S − 2[L + cos(ψ)a]

]
+ σ3

√
π L.

(5)

We then choose β so that the first term in eq. (5) becomes equal to
that for the inclined crack when L = 0. The remote field compressive
stress σ 3 creates an additional stress intensity factor tending to close
the crack. The first term in the brackets of eq. (5) describes the
interaction between the wedging and cracks, and the second term
describes the closing effect due to the lateral compressive stress.

3 A N A LY S I S O F M I C RO C R A C K
E X T E N S I O N F O R C R E E P D I L ATA N C Y

Griffith (1924) has indicated that if a crack grows to length L, the
release rate of elastic energy is greater than or equal to the increas-
ing rate of surface energy, so the crack will be in an unstable state
and must extend. If we suppose that the medium around the crack
is viscoelastic, due to the stress singularity at the tips of cracks, a
higher dissipation of energy will occur, which will cause a subcriti-
cal extension of microcracks. In this paper the law of conservation is
applied directly as the failure criterion. This method is a generaliza-
tion of the classical Griffith approach for cracks in elastic materials.

Under the isothermal condition, the appropriate statement of the
global conservation of energy for extension of cracks in viscoelastic
media (Christensen 1982) is given by

dU

dt
+ d Dp

dt
+ d Se

dt
= 0. (6)

Herein U is the elastic energy in the infinite plate containing one
crack, Dp is the dissipation energy due to the rheology of the medium
and Se is the surface energy. Eq. (6) may also be written as

dU

d L
+ d Dp

d L
+ d Se

d L
= 0. (7)
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Figure 2. Model of extending microcracks.

The expression for the energy change rate (Jaeger & Cook 1976)
may be used for the model mentioned above. When neglecting K 
,

dU

d L
= −2K 2

I (1 − ν2)

E
, (8)

where ν is the Poisson ratio and E represents the Young’s modulus.
To make the analysis easier, we suppose the extension of cracks

will take place step by step. Accordingly, when the stresses act on
rocks for the time period T (L = 0), the crack begins growing to
a length L and then stops. At another time period T(L) later on,
the crack continues to grow to a new length L and stops again.
Furthermore, there exists a critical length Lc. When L is larger then
Lc, T (L) is equal to zero, which means crack growth will accelerate
until failure. T(L) is the time period from the stop of the last crack
extension up to the start of the next crack extension.

Considering the actual process of crack extension described
above, the stress around tips of cracks will be constant in dura-
tion of crack growth stopping temporarily, in accordance with the
correspondence principle. The stress formula for a type I crack is

σi j = KI√
r

fi j (θ ) (9)

where r and θ are polar coordinates, and the origin is at the tip of
the wing crack (which will move with the extension of the crack).
σ i j is the stress tensor and K I is the stress intensity factor. f ij(θ ) is
a function depending on loading type.

The viscoelastic constitutive equation for creep may be written
as follows:

ei j = Si j D(t)

ev = pK (t)

ev = εi i/3

p = σi i/3

ei j = εi j − ε0

Si j = σi j − pδi j ,

(10)

where D(t) and K(t) are the deviatoric strain creep compliance and
the volume strain creep compliance, respectively. σ i j and εi j are the
stress tensor and strain tensor, respectively, in a coordinate system
that moves with the crack extension. The origin of the coordinate
system is again at the tips of cracks. While Sij is the deviatoric stress
tensor, p is the hydrostatic stress, eij is the deviatoric strain tensor
and ev is the volumetric strain.

The dissipative energy Q at some point of the medium may be
calculated as

Q =
∫ T

0
σi jεi j dζ , (11)

where time T counts from the halting of crack growth. It is assumed
that the dissipation of energy is caused by the stress singularity at
tips of the cracks.
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Taking a circle around the tip of a crack, the total dissipative
energy may be calculated as follows:

d Dp = −
∫ d L

0

∫ π

−π

Qπ dθ dr

= −π K 2
I [G(T ) − G(0)] d L

(12)

d Dp

d L
= −π K 2

I [G(T ) − G(0)] (13)

G(T ) = 2

3
[(1 − ν)D(T ) + 2(1 + ν)K (T )] (14)

where negative signs indicate loss of energy.
The surface energy is

d Se

d L
= 2η (15)

with η representing the surface energy in unit area.
Combining eqs (8), (13), (15) and (7), the following formula can be
derived:

G(T ) = 2

π K 2
I

[
η − K 2

I (1 − ν2)

E

]
+ G(0). (16)

Eq. (16) must be satisfied by T(L).
If the viscoelastic creep compliance is taken as

D(t) = βs ln(1 + α0t)

K (t) = 0
(17)

the following equation can be found:

T (L) =
{

exp

[
3

πβs(1 − ν)

(
η

K 2
I

− 1 − ν2

E

)]
− 1

}
/α0. (18)

In accordance with the definition of T(L), the relation between
T(L) and the extending velocity of cracks can be described as

Vc = d L

dt
= 1

T (L)
. (19)

Figure 3. Creep volumetric strain curve computed by the model. The parameters for the computation are as follows: σ 1 = 120 MPa, σ 3 = 35 MPa, a = 0.2
cm, µ = 0.1, E = 50 000 MPa, ν = 0.25, β = 0.1, η = 1000 MPa, a0 = 0.05/h, βs = 1 (MPa)−1, N = 3.3, αc = 0.05 cm, ψ = 45◦.

Note that the time t herein is a scale for the total process of crack
extension, and that it is different from T .

If the crack is assumed to be planar, the relation between the
dilatancy volume strain and the extending length of cracks is

εvp = 2αc N L (20)

where αc denotes the width of cracks and N is the number of mi-
crocracks in a planar unit area. εvp is the dilatancy volume strain.

4 C O M P U T I N G A N A LY S I S

Solving the differential eq. (19) using the Runge–Kutta algorithm,
the relation between the length L and time t, and the relation be-
tween the creep volume strain and time may be obtained. Plausible
values of parameters required for computational purposes are taken
as a particular example. Fig. 3 displays a theoretical curve that is in
line with a typical creep curve. The curve also includes three stages:
primary, secondary and tertiary creep. Referring to eq. (5), it is ob-
vious that in the primary creep stage, the stress intensity factor at
the tips of cracks decreases with time due to the confining pressure;
in the secondary creep stage, the stress intensity factor at the tips
of cracks remains approximately constant with time due to the in-
teraction of cracks and the confining pressure; while in the tertiary
creep stage, the stress intensity factor at the tips of cracks increases
quickly due to the interaction of cracks. These results show that the
model established in this paper is an effective approach to describing
the mechanism of creep dilatancy in rocks.

The influences upon the crack extension velocity of the initial
length of a crack, the inclination of a crack and the field stresses,
are as follows.

4.1 Initial length of crack

Apparently, the crack extension velocity increases with the initial
length of a crack. Fig. 4 shows a group of curves obtained with initial
lengths of cracks ranging from 0.23 to 0.26 cm. Other parameters
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Figure 4. Creep volumetric strain curves computed for different lengths of crack.

were unchanged (same as in Fig. 3). Fig. 4 reveals that the time of
failure for rocks with shorter cracks is longer than that for rocks
with longer cracks. The strain rate increases with increasing initial
length of pre-existing cracks.

4.2 Inclination of crack

Fig. 5 shows a group of curves obtained with crack inclinations
changing from π/3 to π/5 but with other parameters as in Fig. 3
during creep. Obviously, the strain rate increases when the inclina-
tion of cracks changes from π/3 to π/4, while it decreases when the
inclination of cracks changes from π/4 to π/5. So, it is interesting
that the extending velocity of cracks does not depend monotonically
on the inclination of cracks. This also means that the flat or steep
inclination of cracks will exhibit a longer failure time, or say the
cracks will extend with more difficulty.

4.3 Confining field stress

The influence of confining field stresses upon the extension velocity
of cracks falls in line with the theory and results we have expected.
With increasing confining pressure the crack will extend with more
difficulty and will require a longer failure time. This is shown in
Fig. 6.

5 C O N S T I T U T I V E E Q UAT I O N A N D
DA M A G E E V O L U T I O N E Q UAT I O N

Another major objective of this paper is to establish and describe
macroscopic mechanical behaviour through an analysis of the micro-
scopic structure. Rice’s internal variable theory including a micro-

to-macro transition has been employed to formulate a microme-
chanical, 2-D damage model of brittle deformation in compression
(Basista & Gross 1998). Yet, our analysis method will be different
from that of Basista & Gross. We introduce the associated constitu-
tive equation suggested by Tan Tjong Kie & Kang Wen-fa (1983),
namely

ei j = Si j

2G
+ 1 − 2ν

E
pδi j + F

(
σoct

f

) (
D∗δi j + Si j

σoct

)
(21)

ev = 3
1 − 2ν

E
p + 3D∗ F

(
σoct

f

)
(22)

with

σoct =
(

1

2
Si j Si j

)1/2

Si j = σi j − pδi j

p = (σ11 + σ22 + σ33)/3

f = f0 − mp.

Herein σ i j is the stress tensor, Sij is the deviatoric stress tensor, p
is the hydrostatic stress, eij is the deviatoric strain tensor, ev is the
volumetric strain, δi j is the Kronecker tensor, E, G and ν are the
elastic parameters: Young’s modulus, shear modulus and Poisson’s
ratio; D, n and f are material constants, where f is the threshold
value for dilatancy in shear, and F(σ oct/ f ) is a function describing
the dilatancy strain.

Eqs (21) and (22) include two parts: elasticity and plasticity. The
first two terms in eq. (21) and the first term in eq. (22) represent
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Figure 5. Creep volumetric strain curves computed for different inclinations of crack.

Figure 6. Creep volumetric strain curves computed for different confining pressures.
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the elastic strain characterized by the elastic parameters E, G and
ν; the last terms in eqs (21) and (22) show the dilatant part. The
parameter D characterizes the rock behaviour in the dilatancy regime
and is called the dilatancy parameter. It can be seen from the above
expressions that the dilatant strain is limited by the factor (σ oct/ f )
and by the function F(σ oct/ f ).

If the dilatant volume strain is taken as the damage variable ω, it
indicates the internal irrecoverable state for rocks. It is easily found
that the second term in eq. (22) may be replaced by a damage variable
ω. Compared with the third term in eq. (21), the following damage
constitutive equation may be obtained from eqs (21) and (22):

ei j = Si j

2G
+ 1 − 2ν

E
pδi j + ω

(
δi j

3
+ C

Si j

σoct

)
, (23)

where C is the reciprocal of D. Apparently, the elasticity property
of rock here is supposed without any effect of dilatancy, and the
plasticity property of rocks is relative to the dilatant strain or the
damage variable. The parameter C also characterizes the plastic
deformation of the rock shearing mechanism.

In addition to the above constitutive equations, the evolution equa-
tion for damage is required to be set up. The following is the sug-
gested evolution equation:

dω

dt
= η

(
σoct − σy

σ0

)n

(24)

σy = H (ω) = H1 exp(−H2ω) − H3 exp(−H4ω) + H5

with H i being a positive material constant. The first term in the
function H (ω) represents an exponentially descending curve corre-
sponding to the strain softening portion of the stress–strain curve;
the second term indicates the exponentially ascending curve corre-
sponding to the strain hardening portion prior to the peak strength;
the third term reveals the yield strength in the residual state. When
H i is selected and satisfies the conditions H 4 > H 2 and H 3 H 4 >

H 1 H 2, the second term will lose the strain hardening features more
rapidly than the first item. H (ω) can be obtained by fitting the creep
curve of volumetric dilatancy strain with a non-linear least-squares
method. Eq. (23) is meaningful when σ oct > σ y . When ω = 0, the
formula σ y = H 1 − H 3 + H 5, is the threshold value at the starting
point of dilatancy. H 1, H 2, H 3, H 4 and H 5 have different values
under different confining pressures.

Fig. 7 shows the strain hardening–strain softening function H (ω),
which is obtained from the creep curve shown in Fig. 3. Solving
eqs (13) and (24) under the condition of constant strain rate 2.0 ×
10−4 s−1, the stress–strain relation for rocks can be derived numer-
ically. The computational steps are shown below:

�ω = η

[
σ k

11 − σ k
33 − H (ωk)

σ0

]n

�t (25)

�
(
σ k

11 − σ k
33

) = E

[
de11

dt
�t − (�ω + C�ω)

]
(26)

σ k+1
11 − σ k+1

33 = σ k
11 − σ k

33 + �
(
σ k

11 − σ k
33

)
(27)

ek+1
11 = ek

11 + de11

dt
�t, (28)

where k is the number of iterations. As the parameter C in eq. (26)
represents the shearing behaviour related to the dilatancy of rocks, it
cannot be derived from current theories. However, some experiments
indicate that C is close to 0.2 (Tan Tjong Kie et al. 1989). Therefore,
the value C = 0.2 is applied in the calculations. The computed
stress–strain relationship is shown in Fig. 8. The characteristics of
the curves during the deformation process are well indicated.

Figure 7. Hardening–softening H (ω) for the same parameters as Fig. 3.

Figure 8. The predicated behaviour of stress–strain under a constant strain
rate of 2 × 10−4 s−1.

6 C O N C L U S I O N

An approximate physical model for time-dependent microcrack evo-
lution in rocks under triaxial compressive stresses has been devel-
oped and analysed. The model is based on the subcritical growth of
an array of small and inclined wing cracks as well as their interac-
tions. The mechanism of creep dilatancy in rocks is well described
through this model. The general agreement of the computational re-
sults with the typical creep curve for rocks indicates that this model
is plausible. The analysis further indicates that the concentration of
stresses at tips of microcracks, interaction of microcracks and en-
ergy dissipation are three important factors for crack extension in
creeping rocks. The iterative analysis method for crack extension
constitutes a distinguishing feature of this paper.

However, our final objective is to derive a macroscopic model for
the mechanical behaviour of rocks through the analysis of micro-
scopic structures. The work in this paper is only an initial attempt
in this respect. It is concluded that the description of the mechan-
ical property of rocks using the damaging mechanical method is a
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possible way of establishing a bridge between the macroscopic be-
haviour and the microscopic structure.
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