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S U M M A R Y
We analyse the effect of uneven ray coverage in global surface wave tomography. An inhomo-
geneous distribution of seismic rays may bias tomographic models because certain areas are
better sampled than others. It is possible to suppress this bias, known as the spectral leakage,
by using a linear inversion technique with a specific data weighting. We use finite-frequency
sensitivity kernels to calculate the appropriate data weightings which suppress spectral leak-
age. Exact calculations are very computer intensive and approximations are needed. We give a
rule-of-thumb for the parameters entering the approximation. We show that a low-degree phase
velocity model constructed from real data, without special precaution, suffers from noticeable
spectral leakage. This leakage effect is stronger than any contamination of the solution by
data errors. Model damping cannot correct for spectral leakage unless the inverse problem is
overparametrized. Model damping implies varying resolution of retrieved features and makes
a precise geodynamic interpretation of the images difficult. Increasing computer power makes
spectral leakage corrections possible, allowing tomographic images with perfect resolution.

Key words: finite-frequency effects, inverse problem, spectral leakage, surface wave
tomography.

1 I N T RO D U C T I O N

Precise geodynamic understanding requires tomographic models of
higher and higher precision. As a result of automatic data process-
ing, surface wave tomography has made a great leap forward in
recent years and the trend is to recover smaller and smaller scale
structure by increasing the data coverage manifold and thus being
able to reduce damping in the inversion. The risk is to push existing
techniques beyond theoretical limitations. The limits of commonly
used ray theory have been given by Wang & Dahlen (1995), who
showed that the width of the first Fresnel zone has to be smaller than
the scalelength of heterogeneity. Spetzler et al. (2002) analysed the
biases introduced by ignoring this limitation. By reducing the damp-
ing, biases due to spectral leakage might become an issue (Trampert
& Snieder 1996). It is common practice to truncate model expan-
sions at a certain arbitrary spherical harmonic degree. Information
in the data on the neglected basis functions may lead to spectral
leakage due to uneven data coverage (Snieder et al. 1991). Spectral
leakage is the mapping of small-scale structure not accounted for in
the model expansion into the inverted low-degree structure.

We will investigate spectral leakage in a global surface wave
tomographic experiment using the extensive phase velocity mea-
surements of Trampert & Woodhouse (2001). Instead of using the
great circle approximation, we implement finite-frequency data ker-
nels calculated by Spetzler et al. (2002). We make spectral leakage
corrections following Trampert & Snieder (1996) and compare the

results to classical least-squares inversions (Tarantola 1987). The
two inversions differ in the way that data are weighted. Trampert &
Snieder (1996) used a synthetic modelling experiment without data
errors. In our work, we specifically explore the effect of data errors
on the solution using a spectral leakage inversion and a classical
least-squares approach. As soon as the data weighting is changed in
the inversion, data errors effect the final model differently. Classical
least-squares inversions optimize noise propagation (Menke 1989),
but spectral leakage corrections could change this.

In Section 2, we briefly review the theory for spectral leakage
corrections. We explain, in Section 3, how the spectral leakage so-
lution is combined with finite-frequency kernels from surface wave
scattering theory. An extensive synthetic modelling experiment rep-
resentative for global surface wave tomography is set up in Section 4.
We focus on two main questions: what is a reasonable range for the
parameters needed in a spectral leakage inversion and how strong is
the influence of data error propagation using a realistic description
of noise in our data set. In Section 5 we point out the differences
in tomographic models, based on real data, obtained using spectral
leakage corrections and the classical least-squares approach. A brief
discussion follows in Section 6.

2 T H E O RY

A detailed description of spectral leakage and how to suppress it may
be found in Trampert & Snieder (1996) and Snieder & Trampert
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(1999, and http://samizdat.mines.edu). A continuous model param-
eter m(x) at a point x may be expanded using a complete set of basis
functions Bj(x) with appropriate coefficients mj. Such an expansion
is generally infinite and can be decomposed into a part mL(x) up to
an arbitrary truncation level L and a part m∞(x), which is built from
the remaining set of basis functions:

m(x) =
∞∑
j=1

m j Bj (x) = mL (x) + m∞(x), (1)

with

mL (x) =
L∑

j=1

m j Bj (x) and m∞(x) =
∞∑

j=L+1

m j Bj (x). (2)

In linear theory, a datum di is found from

di =
∫

Gi (x)m(x) dx + ei , (3)

where Gi(x) is the continuous data kernel and ei is the er-
ror in di. Expressing m(x) by its complete expansion of eq. (1)
yields

di =
∞∑
j=1

Ai j m j + ei , (4)

where the forward matrix elements

Ai j =
∫

Gi (x)Bj (x) dx, (5)

are the projection of the data kernel Gi(x) on the basis functions
Bj(x). The discrete forward problem of eq. (4) may then be written
in vector form as

d = Am + e. (6)

Using the truncation level L, the least-squares solution of eq. (6)
is

m̃L = A−g
L d, (7)

where A−g
L is the inverse of the matrix AL in the least-squares sense

given by

A−g
L = (

At
LC

−1
d AL + C−1

m,L

)−1
At

LC
−1
d . (8)

The forward matrix AL is constructed for model parameters up
to the (arbitrary) truncation level L, and the covariance matrix for
the truncated model vector and data is denoted by Cm,L and Cd ,
respectively, (Tarantola 1987; Menke 1989).

Rewriting m as a sum of mL and m∞ in eq. (6) shows the explicit
dependence of the data upon partitioning:

d = AL mL + A∞m∞ + e, (9)

where A∞ is the forward matrix corresponding to the infinitely di-
mensional model vector m∞. Inserting eq. (9) into the least-squares
solution for m̃L in eq. (7) illustrates the effect of spectral leakage,
and the estimated model vector m̃L up to truncation level L is written
as

m̃L = mL + (
A−g

L AL − I
)
mL + A−g

L A∞m∞ + A−g
L e. (10)

The last three terms in eq. (10) are responsible for deviations from
the true model mL . The second and the fourth term account for lim-
itations in resolution in the L-dimensional subspace and the effects
of data errors, respectively. The third term is due to spectral leakage
and A−g

L A∞m∞ is the projection of the contribution of m∞ in the
data on to the truncated model vector m̃L .

The cure for spectral leakage in the least-squares sense is given
in Trampert & Snieder (1996). To avoid notational complications,
we assume the simplest case where the data covariance matrix
is written as Cd = σ 2

d I and the model covariances similarly as
Cm,L = σ 2

m,L I and Cm,∞ = σ 2
m,∞I. Defining α2 = σ 2

d/σ
2
m,L and

β2 = σ 2
d/σ

2
m,∞, the least-squares solution for mL corrected for spec-

tral leakage is found to be

m̃W
L =

[
At

LWAL +
(

α2

β2

)
I

]−1

At
LWd, (11)

with

W = (
A∞At

∞ + β2I
)−1

. (12)

Unfortunately, the matrix A∞At
∞, which suppresses spectral leak-

age, is not necessarily invertible and a damping needs to be applied.
In the Bayesian framework, as used here, β2 expresses the relative
importance of data errors versus the expected (or assumed) variance
of the neglected model parameters.

By inspection, it is seen that the solution in eq. (11) corrected
for spectral leakage has the same form as the simple least-squares
solution in eq. (7), but of course the inverse operators differ. The
ordinary least-squares solution is a special case of eq. (11) where
β tends towards infinity. This is understandable since a high value
of β means that less power is implicitly allowed to be explained by
neglected basis functions (small σ 2

m,∞). Eq. (10) is general and thus
holds for both the classical least-squares inversion and the spectral
leakage inversion. However, because of different inverse operators,
the dependence of m̃L upon the true model and the data errors is
different in the two kinds of inversion approaches. Furthermore, the
solution corrected for spectral leakage does not depend on m∞ by
construction. We will discuss the effects of limited resolution and
error propagation on the solution below. In addition, it is useful to
estimate the range of values for all parameters involved in a realistic
global surface wave tomography experiment where real data can be
quite noisy.

3 C O R R E C T I N G F O R
S P E C T R A L L E A K A G E

The problem in calculating W is to evaluate the matrix product
A∞At

∞, which involves an infinite-dimensional calculation. The
bias matrix in Trampert & Snieder (1996) shows that spectral leak-
age is highest for degrees closest to the truncation level. This sug-
gests an approximate way to calculate the matrix product by in-
cluding the next N degrees from the desired truncation level L
resulting in an upper limit lmax = L + N needed for the calcu-
lation. This has been used in the synthetic experiment of Trampert
& Snieder (1996). For real data, however, it is not obvious what the
choice of N should be given a fixed L. A closed form of A∞At

∞
can be derived which involves the Gram matrix. For ray theoreti-
cal calculations, the data kernel is non-square-integrable and hence
the Gram matrix is not defined. This problem is well known and
there are several ways around it. The most common are integral
quelling (Chou & Booker 1979), a priori model covariance functions
(Tarantola & Nercessian 1984) and finite ray widths (Michelena &
Harris 1991). We will use the latter technique where our ray widths
are a direct consequence of including finite-frequency effects into
the wave propagation problem. First-order scattering theory pro-
duces square-integrable data kernels. This allows us then to calcu-
late W exactly and evaluate the effect of introducing an upper limit
lmax.
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According to Spetzler et al. (2002), the relative phaseshift dscat be-
tween a station and receiver can be written as a sum of spherical
harmonics coefficients Cm

l multiplied by the Fréchet kernel K scat
l,m

for degree l and order m using first-order diffraction theory:

dscat =
∞∑

l=0

l∑
m=−l

Cm
l K scat

l,m . (13)

The theory takes the finite period of surface waves into account, and
it is valid for unconverted surface waves. The Fréchet kernel K scat

l,m

for degree l and order m is the projection of the sensitivity function
K scat(R, θ , ϕ) on to the spherical harmonic Y m

l (θ , ϕ) defined over
the sphere 
:

K scat
l,m =

∫



K scat(R, θ, ϕ)Y m
l (θ, ϕ) dθ dϕ. (14)

The reader is referred to fig. 1 in Spetzler et al. (2002) for an example
of the sensitivity function K scat(R, θ , ϕ). Comparing expression (5)
with the Fréchet kernel in eq. (14), we see that the data kernel Gi(x)
corresponds to K scat(R, θ , ϕ) and the basis functions Bj(x) to the
spherical harmonics Y m

l (θ , ϕ). In closed form, the matrix product
A∞At

∞ in eq. (12) is then given by

{
A∞At

∞
}

i j
=

∫



K scat
i (R, θ, ϕ)K scat

j (R, θ, ϕ) dθ dϕ − {
ALA

t
L

}
i j

,

(15)

where the subindexes in the sensitivity functions indicate the source–
receiver pairs i and j. The integral in eq. (15) is well defined because
the data kernels are square-integrable.

The calculation of A∞At
∞ with eq. (15) is very time consuming

and thus impractical for a full tomographic inversion, but it allows
one to evaluate the implications of approximating the matrix product
by{
A∞At

∞
}

i j
=

lmax∑
s=L+1

{A∞}is

{
At

∞
}

s j
, (16)

up to a suitable maximum angular degree lmax of the spherical har-
monics expansion much higher than the truncation level L.

Figure 1. The ray coverage of 10 000 paths used in our synthetic modelling experiment The grey-scale shows the ray density on a base 10 logarithmic scale.

4 S Y N T H E T I C M O D E L L I N G
E X P E R I M E N T S

To isolate the contribution of each of the terms in eq. (10) we per-
formed several synthetic modelling experiments with a well-known
input model. We show comparisons between inversions with spectral
leakage corrections (eq. 11) and without (eq. 7).

In the synthetic modelling experiment, we used source–receiver
positions from a subset of 10 000 Love wave phase velocity measure-
ments from the data set of Trampert & Woodhouse (2001). The use
of a subset is purely motivated by computer time requirements and
in the subsequent real data example we used the complete surface
wave data set. Fig. 1 shows the ray density obtained by the selected
10 000 measurements for the synthetic tests. The ray density is
shown on a logarithmic scale and clearly presents a heterogeneous
coverage. The highest ray density is on the Pacific Plate, in Eura-
sia and in North America while the poorest sampling is found on
the Southern Hemisphere. The gradients in ray path coverage in the
complete surface wave data set are similar to that in the selected
10 000 measurements.

The first term of eq. (10) is due to imperfect resolution and can
be written as (R − I)mL where the resolution matrix R = A−g

L AL . A
comparison between a classical least-squares inversion and a spec-
tral leakage corrected inversion can only be objective in the case of
the same resolution matrix. It is difficult to obtain the same reso-
lution as the two inverse operators are different, unless α = 0 and
then by definition R = I. This corresponds to the case of no overall
damping and requires the inverse problem to be stable. Given our
data coverage, an undamped expansion up to degree L = 10 is com-
pletely stable. This is probably a very conservative limit since with
a similar data coverage, Ekström et al. (1997) made an undamped
expansion to degree 16. The second term is A−g

L A∞m∞ and is due
to spectral leakage itself. For clarity, we neglect data errors at the
moment, but will treat the last term of eq. (10) later in this section.
The resolution matrix being equal to the identity matrix, in the case
of a spectral leakage corrected inversion eq. (10) reads

m̃L ≈ mL . (17)
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The last relation is only approximately true because the spectral
leakage term is suppressed in the least-squares sense, but not exactly.
On the other hand, in the case of an undamped ordinary least-squares
inversion the estimated model is given by

m̃L = mL + A−g
L A∞m∞, (18)

which differs from eq. (17) by the spectral leakage term A−g
L A∞m∞

only.
The synthetic experiment uses an input model built from two

spherical harmonic components of degree 8 and 12 only. The objec-
tive is to recover a model truncated at degree L = 10. The synthetic
input model has a long- and a short-wavelength structure, and if no
spectral leakage occurs, we should only recover the degree 8 part.
The amplitude of relative phase velocity perturbation is 5 per cent
for both, the large- and the small-scale structure. Synthetic aver-
age relative phaseshifts for 150 s fundamental mode Love waves
are computed using surface wave scattering theory (eq. 13) and the
10 000 source–receiver positions from Fig. 1. The synthetic data are
noise-free.

The antileakage matrix W in eq. (12) depends on two additional
parameters, β and the maximum angular order lmax used to approx-
imate A∞At

∞ in eq. (16). To check the accuracy of this approxi-
mation, we use the closed form in eq. (15). It turns out that the
off-diagonal elements using eq. (16) converge quickly to those us-
ing eq. (15). The diagonal elements converge very slowly. This is
fortunate because the diagonal elements trade-off with the value of
β. We find that as long as lmax is at least twice as large as L, the
approximation from eq. (16) is sufficient. β is then used to adjust
the diagonal elements in order to stabilize the inverse of A∞At

∞.
The optimal value of β is given by the peak of the histogram of
the diagonal values of A∞At

∞ obtained from eq. (16). Choosing a
value higher than the peak quickly diminishes the effect of leakage
correction and the higher β, the closer the result is to the ordinary
least-squares solution. Choosing a value smaller than the peak, does
not change the results significantly provided the inverse of A∞At

∞
remains stable.

The results are illustrated by looking at the amplitude spectra of
the different solutions. We define the rms amplitude of a model at
angular degree l as

rms(l) =
√∑l

m=−l

(
am

l

)2

4π
, (19)

Figure 2. Amplitude spectra of the input model and several inverted
models.
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Figure 3. Amplitude spectra of the difference between the true and esti-
mated models: (a) for several least-squares inversions and a spectral leakage
corrected inversion; (b) several spectral leakage solutions for different values
of β.

where am
l is the spherical harmonic coefficient of the model at angu-

lar degree l and order m. In Fig. 2, the amplitude spectra of different
least-squares inversion and the spectral leakage solution with op-
timal β are shown. The input model is plotted as a reference. It is
clear that the undamped least-squares inversion has significant un-
wanted power at degrees 9 and 10. Damping can reduce this power,
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Figure 4. Amplitude spectra of the difference between the true and inverted
models from the least-squares (ls) inversion and spectral leakage (splk) in-
version in the synthetic experiment, wherein the noise term is compared with
the spectral leakage term. β = 1.0 in the spectral leakage experiment.
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Figure 5. Global phase velocity models for Love waves at 150 s from a spectral leakage inversion and an undamped least-squares inversion. The yellow
circles are hotspots, the yellow lines show the boundaries between tectonic plates and coastlines are drawn with the black lines. The variations in the relative
phase velocity perturbations are given in per cent on a scale ±4 per cent with respect to the PREM model. The models are expanded to degree 10 in spherical
harmonics. (a) The phase velocity map obtained including spectral leakage corrections. The parameters are α = 0 and β = 0.5. (b) The phase velocity map
obtained from a least-squares inversion without any damping.

but will seriously distort degree 8 as well. Only the spectral leakage
corrected inversion is close to the input model at all degrees. The
different behaviour of (damped) least-squares inversion and spectral
leakage corrected inversions are perhaps best seen on plots of am-
plitude spectra of the difference between input and output models
(Fig. 3a). The undamped least-squares inversion has an increasing
difference power up to the truncation level. Increasing damping re-
duces that slope, but an unwanted peak appears at degree 8. We
also show the effect of β on the effectiveness of spectral leakage re-
duction and how increasing β converges towards the least-squares
solution (Fig. 3b).

The last term of eq. (10) is the contribution from data errors.
The inverse operators A−g

L differ, depending on whether the spectral

leakage corrections are included or not, and hence the effect of data
errors contaminating the estimated models manifests itself differ-
ently in the two cases. Again a synthetic modelling experiment is
used to estimated the importance of the term A−g

L e. We assume that
the noise has similar statistics for each measurement and is uncor-
related. Let σ d denote the standard deviation of this noise so that
e = σ dI. The relative rms error of the 150 s Love wave measure-
ments of Trampert & Woodhouse (2001) is 40 per cent. We adopt
this value here and σ d is given by

σd = 0.4

√∑ndata
i=1 d2

i

ndata
, (20)
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where di is a data point calculated from our synthetic input model
of degree 8 and 12 only, and ndata = 10 000 is the number of data
points in the experiment. Fig. 4 shows the amplitude spectra of the
term A−g

L e for the simple least squares approach and the spectral
leakage inversion compared with the term A−g

L A∞m∞ for several
cases. Overall, data errors affect the solution less than neglecting
spectral leakage. We further noticed a trade-off between spectral
leakage reduction and noise suppression which is controlled by β.
Spectral leakage reduction requires the smallest possible value for
β (which cannot be zero for stability reasons), while error reduction
requires the highest possible value. The best compromise is found if
β corresponds to the peak of the histogram of the diagonal elements
of A∞At

∞. This trade-off does not come as a surprise. Spectral
leakage reduction is optimized for small β. Increasing β makes
the solution converge towards the least-squares solution which is
optimized for error reduction.

5 P H A S E V E L O C I T Y M A P S

We use the full data set (41 016 measurements) of Trampert &
Woodhouse (2001) to calculate phase velocity maps for 150 s Love
waves using the classical least-squares inversion and spectral leak-
age corrections, respectively. The truncation level is L = 10 so that
we do not need any overall damping and the comparisons are not
blurred by a limited resolution. The inversion of this large data
set with spectral leakage corrections has been carried out on a
64-bit shared memory computer (see acknowledgments). The rel-
ative phase velocity map for 150 s Love waves using the spectral
leakage corrections is shown in Fig. 5(a), while the ordinary least-
squares solution is plotted in Fig. 5(b). Comparing the estimated
phase velocity models, we see a good agreement between both phase
velocity maps in the long-wavelength structure. However, in the
shorter-wavelength structure close to the truncation level there are
significant differences for several tectonic features. This prominent
difference for degrees closest to 10 is best seen in the correlation
between the two models (Fig. 6). The plate boundaries most affected
by spectral leakage are the Carlsberg ridge, the South-West Indian
ridge, the East Pacific rise, the Peru-Chili trench, the Mid-Atlantic
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Figure 6. Correlation as a function of spherical harmonic degree between
the 150 s Love wave model (TW01) of Trampert & Woodhouse (2001) and
our ordinary least-squares model (LS) from Fig. 5(b) (thin dotted line) and
our model including spectral leakage correction (SPLK) from Fig. 5(a) (thick
solid line). Also shown is the correlation between our models (LS and SPLK)
from Figs 5(a) and (b) (thin solid line). All correlation are above the 99 per
cent confidence level.

ridge and the Japan trench. Since we do not know the true Earth,
we cannot easily decide which is the best model. The synthetic
tests, however, strongly suggest that the spectral leakage corrected
model is closer to the true Earth. Sometimes undamped low-degree
least-squares inversions are used to reject outliers in data sets (e.g.
Ekström et al. 1997). Our example shows that because of spec-
tral leakage, measurements could be incorrectly declared outliers in
many places on the globe.

6 D I S C U S S I O N A N D C O N C L U S I O N

It is clear from the synthetic modelling experiments of global sur-
face wave data that spectral leakage may bias models if no special
precaution is taken. Ordinary damping cannot correct for spectral
leakage and its effect is bigger than that induced by data errors and
thus should to be taken seriously.

The theory to compensate for the spectral leakage effect is based
on a specific weighting in the data space which is its main drawback.
Inverting a matrix of the size of the number of data is very com-
puter intensive. Knowing that the main degrees affected by spectral
leakage are those close to the truncation level, suggests an alter-
native. If the desired truncation level is again L, the model should
be expanded to L + N where N could be much larger than L be-
fore the difficulty of a data size matrix would be reached. Inverting
for more parameters increases the instability of the inverse prob-
lem and damping is certainly required. The nature of the problem
is such that the highest degrees need the most damping. If model
size damping is chosen, damping is uniform for all degrees and the
highest degrees will impose a damping which will clearly involve
the lowest degrees. We prefer Laplacian damping, which imposes
increased damping with increasing degree, thus effectively control-
ling the highest degrees without affecting the lower ones too much.
This is shown qualitatively in Fig. 6 where the correlation between
the spectral leakage corrected model and the Laplacian damped de-
gree 40 model of Trampert & Woodhouse (2001) is illustrated. The
overall high correlation indicates that overparametrization ensures
that the lowest degrees remain unaffected by spectral leakage. The
drawback of this approach is that the resulting varying lateral and
vertical resolution make geodynamic interpretations not straightfor-
ward. The aim is to produce more accurate Earth models showing
smaller and smaller scale structure. To make useful interpretations
of such models (e.g. the decay of power spectra, the depth extent of
features) we will have to move away from damped inversions and
explicitly avoid spectral leakage.

The spectral leakage corrections to the complete surface wave
data set of Trampert & Woodhouse (2001) took 10 CPU-days on
a fast shared memory computer (500 MHz clock frequency). The
synthetic modelling experiment, using 10 000 data points only (four
times less than the real data) was performed on a single-processor
Pentium IV Linux system with 1 Gb internal memory and the CPU
time was 6 h. Although computer intensive, spectral leakage cor-
rections will become increasingly feasible with the availability of
faster computer systems with large shared memory facilities.
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