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Elliptical Descriptors: Some Simplified Morphometric
Parameters for the Quantification of

Complex Outlines1
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Among morphometric methods, a method called Elliptical Fourier Analysis, has been developed to
decompose complex outlines into Fourier series. This elliptical Fourier formulation has been rarely
applied to date, which is probably explainable because of the mathematical complexity and the difficulty
of translating the Fourier coefficients into simple geometrical concepts. Utilizing elliptical analysis, a
simplified geometrical approach to the Fourier decomposition is proposed in this study. We showed that
the geometrical locus of the points associated with each harmonic used in the Fourier decomposition
is an ellipse. The contribution of each harmonic was then characterized with four new geometrical
parameters called elliptical descriptors. These are: the half-length of the major axis(LA j ), the half-
length of the minor axis(LB j ), the orientation of the major axis, and the phase angle. These descriptors,
in contrast to classical Fourier coefficients, possess geometrical significance, and allow for an estimate
of each ellipse consisting of: (1) the size of the ellipse (proportional to the product LA j · LB j ), (2)
the anisotropy of the ellipse (characterized by the ratio LA j /LB j ), and (3) the orientation of the ellipse
given by the orientation of the elliptical axes. These parameters completely define the geometry of the
ellipse associated with each harmonic, and provide an evaluation of the importance of the harmonic
contribution in the description of the form studied. Using these elliptical descriptors, an outline can be
described, as well as reconstructed. A methodology is then proposed to characterize and to compare
complex outlines using these elliptical descriptors. This new methodology allows the quantification of
any form, regardless of their degree of complexity, and allows the translation of the morphological
differences into simple geometrical concepts, a procedure difficult to carry out with conventional
Fourier coefficients.
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INTRODUCTION

Among the morphometric methods (Lestrel, 1997a), Fourier methods have been
extensively utilized to analyze outlines. Ehrlich and Weinberg (1970) were among
the first to develop, using Fourier series, a method to quantify simple outlines. This
method has been applied with considerable success in diverse disciplines such as
geology (Anstey and Delmet, 1973; Christopher and Waters, 1974; Ehrlich and
Weinberg, 1970; Flook, 1987; Kaesler and Waters, 1972), biology (Strojny and
others, 1987), osteology, and physical anthropology (Jacobshagen, 1986; Johnson
and others, 1992; Le Minor, Pister, and Kahn, 1989; O’Higgins and Johnson, 1993;
O’Higgins and Williams, 1987; Schmittbuhl and others, 1998, 1999), to name just
of few of the numerous studies now available.

A more sophisticated method called Elliptical Fourier Analysis, was devel-
oped by Kuhl and Giardina (1982) to decompose complex outlines into Fourier
series. This elliptical Fourier analysis (Diaz and others, 1989; Ferrario and oth-
ers, 1994; Ferrario and others, 1996; Le Minor and Schmittbuhl, 1999; Lestrel,
1997b; Lestrel, Bodt, and Swindler, 1993; Lestrel and Kerr, 1993; Lowe and
others, 1994; Schmittbuhl and others, 1997) has been seldomly applied to date.
This is probably explainable due to: (1) its mathematical complexity and (2) the
difficulty of translating the Fourier coefficients into simple geometrical
concepts.

Utilizing the theoretical developments of Kuhl and Giardina (1982), we de-
fined a new set of parameters which provides for a more direct connection with
the geometry of form. These new parameters called elliptical descriptors allow not
only the quantification of the form, but also allow for a fuller understanding of the
geometrical contribution of the Fourier harmonics.

THE CLASSICAL METHOD OF KUHL AND GIARDINA

Justification of the Method

Simple forms or holomorphic forms contain no reentrants (Beddow and
Meloy, 1980), and therefore all the radii emanating from the centroid intersect
once and only once the outline (see example in Fig. 1). Such holomorphic outline
can be represented in polar coordinates, and expanded into a Fourier series since
the polar function characterizing the outline is bijective (transformation which is
a one-to-one correspondence).

Complex forms or nonholomorphic forms are characterized by the fact that
the radii can intersect the outline at more than one place on the outline (see example
in Fig. 2). In this case, the Fourier expansion of the polar function describing the
outline becomes impossible, since this function is no longer bijective. In order to
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Figure 1. Simple or holomorphic outline. All the radii (R) emanating from
the centroid (G) intersect once and only once the outline. Example of the
foraminiferGloboquadrina primitiva.

fit a Fourier function to a complex outline now in Cartesian coordinates (instead
of polar), Kuhl and Giardina (1982) introduced two new bijective functions, de-
scribing the outline from the curvilinear coordinates of the points of the outline.
These new functions are parametric; that is, functions of a third variable (see next
section).

From Cartesian to Curvilinear Coordinates

To fit a Fourier function to a nonholomorphic outline, Kuhl and Giardina
(1982) introduced a new expression for the outline in which eachx-coordinate and
y-coordinate of a point on the outline is expressed as a function of its position on
this outline. This means that eachx- andy-coordinate is expressed as a function of
the curvilinear coordinate (t) of the point being considered (see example in Fig. 3).
The outline is thus characterized by the parametric functionsx(t) andy(t). Since
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Figure 2. Complex or nonholomorphic outline. The radii (R) emanating from the cen-
troid (G) can intersect the outline more than once. Example of the radiolariaPterocanium
gravidum.

these two functions are always bijective and piecewise periodic, they can then each
be expanded into Fourier series.

Fourier Expansion of a Nonholomorphic Outline

The Fourier expansion of a nonholomorphic outline can be written as:

xf (t) = a0+
k∑

j=1

aj cos

(
2 jπ t

T

)
+

k∑
j=1

bj sin

(
2 jπ t

T

)

and

yf (t) = c0+
k∑

j=1

cj cos

(
2 jπ t

T

)
+

k∑
j=1

dj sin

(
2 jπ t

T

)
,
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Figure 3. Description of a nonholomorphic outline by the functionsx(t) andy(t). (Example
of the radiolariaPterocanium gravidum). Thex- andy-coordinates of each of then-sampled
points were expressed in parametric fashion as a function of the curvilinear coordinate (t) of
the considered point.

where the four Fourier coefficientsaj , bj , cj , dj of the j th harmonic are obtained
as:

aj = 1

2 j 2π2

n∑
i=1

1xi

1ti
·
[
cos

(
2 jπ ti

T

)
− cos

(
2 jπ ti−1

T

)]
,

bj = 1

2 j 2π2

n∑
i=1

1xi

1ti
·
[
sin

(
2 jπ ti

T

)
− sin

(
2 jπ ti−1

T

)]
,

cj = 1

2 j 2π2

n∑
i=1

1yi

1ti
·
[
cos

(
2 jπ ti

T

)
− cos

(
2 jπ ti−1

T

)]
, and

dj = 1

2 j 2π2

n∑
i=1

1yi

1ti
·
[
sin

(
2 jπ ti

T

)
− sin

(
2 jπ ti−1

T

)]
,

and the constant termsa0 andc0, respectively for thex(t) andy(t)-expansions, are
calculated as:

a0 = 1

T

n∑
i=1

1

2
· 1xi

1ti
· (t2

i − t2
i−1

)− 1xi

1ti
· ti ,
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and

c0 = 1

T

n∑
i=1

1

2
· 1yi

1ti
· (t2

i − t2
i−1

)− 1yi

1ti
· ti ,

wherej = order of the harmonic;k =maximum number of harmonics used for the
decomposition;T = perimeter of the outline;1xi = module of the step between
pointsi andi + 1 of the outline projected onto thex-axis;1yi =module of the step
between pointsi andi + 1 of the outline projected onto they-axis;1ti =module
of the step between pointsi andi + 1 of the outline;ti = curvilinear coordinate
of the point i ; n = number of points sampled on the outline (see example in
Fig. 3).

METHODOLOGICAL EXTENSIONS TO THE KUHL
AND GIARDINA ALGORITHM

Matrix Formulation of the Kuhl and Giardina Equations

The Kuhl and Giardina equations (1) were interpreted as a system of lin-
ear relations describing the transformation of a pointM(xi (t), yi (t)) into a point
N(x f (t), yf (t)). We chose to develop these linear relations as follows:

x f (t) = a0+ a1 cos

(
2π t

T

)
+ a2 cos

(
4π t

T

)
+ · · · + ak cos

(
2kπ t

T

)
+ b1 sin

(
2π t

T

)
+ b2 sin

(
4π t

T

)
+ · · · + bk sin

(
2kπ t

T

)
yf (t) = c0+ c1 cos

(
2π t

T

)
+ c2 cos

(
4π t

T

)
+ · · · + ck cos

(
2kπ t

T

)
+ d1 sin

(
2π t

T

)
+ d2 sin

(
4π t

T

)
+ · · · + dk sin

(
2kπ t

T

)
(1)

and collecting the terms of same order:

x f (t) = a0+ a1 cos

(
2π t

T

)
+ b1 sin

(
2π t

T

)
+ a2 cos

(
4π t

T

)
+ b2 sin

(
4π t

T

)
· · · + ak cos

(
2kπ t

T

)
+ bk sin

(
2kπ t

T

)
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yf (t) = c0+ c1 cos

(
2π t

T

)
+ d1 sin

(
2π t

T

)
+ c2 cos

(
4π t

T

)
+ d2 sin

(
4π t

T

)
· · · + ck cos

(
2kπ t

T

)
+ dk sin

(
2kπ t

T

)
(2)

These two relations were then expressed in matrix form:

(
x f (t)
yf (t)

)
=
(

a0

c0

)
+
[
a1 b1

c1 d1

]
·
(

cos(2π t
T )

sin(2π t
T )

)
+
[
a2 b2

c2 d2

]
·
(

cos(4π t
T )

sin(4π t
T )

)

+ · · ·
[
ak bk

ck dk

]
·
(

cos(2kπ t
T )

sin(2kπ t
T )

)
(3)

corresponding to the matrix relation:

[N(t)] = [T0] +
j=k∑
j=1

[Tj ] · [M j (t)] (4)

where:

[M j (t)] was the column matrix

(
cos(2 jπ t

T )

sin(2 jπ t
T )

)
,

[N(t)] was the column matrix

(
x f (t)
yf (t)

)
,

[Tj ] was the matrix of Fourier coefficients of thejth harmonic

[
aj bj

cj dj

]
, and

[T0] was the column matrix

(
a0

c0

)
.

Geometrical Interpretation of the j th Fourier Harmonic

In the equation above (4), the right member was composed of a column
matrix and a sum of matrix products. Thej th term of the sum corresponded to the
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product of a 2×2 matrix (Fourier coefficients ofj th order) by the column matrix
(circular coordinates of the pointM j (t)). The result of this matrix product was
another column matrix, which could be interpreted as the linear transformation
[Tj ] of a point M j (t)) of coordinates (cos(2 jπ t

T ), sin(2 jπ t
T )) into the pointNj (t) of

coordinates (x′j (t), y′j (t)) and shown as:

[M j (t)]
[Tj ]−→ [Nj (t)], (5)

where:

[Nj (t)] = [Tj ] · [M j (t)]. (6)

Geometrical locus of the coordinate transform[Tj ].

A geometrical locus is a set of points verifying a given property (Walker,
1978). The locus of theM j (t) points (cos(2 jπ t

T ), sin(2 jπ t
T )) was a unit circle of

radius one, since the ratio2 jπ t
T varied from 0 to 2jπ . Thus, the property of the

geometrical locus of theM j (t) points located on the unit circle of radius one could
be expressed in matrix notation as follows:

t [M j (t)] · [M j (t)] = 1 unit circle of radius one (7)

and

<=> x2
j (t)+ y2

j (t) = 1 (8)

This provided the geometrical interpretation of thej th term of the Fourier
series and could be interpreted as the geometrical locus corresponding to the
coordinate transformation [Tj ] of the M j points intoNj points. The matrix [Tj ]
transformed the coordinates of theM j (t) points into Nj (t) and can be shown
as:

M j (xj (t), yj (t))
[Tj ]−→ Nj (x

′
j (t), y′j (t)), (9)

or, in matrix notation:

[Nj (t)] = [Tj ] · [M j (t)]. (10)
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The equation of the geometrical locus of theNj (t) points was obtained by
replacing [M j (t)] by [T−1

j ] · [Nj (t)] in the equation of the circle (7) yielding:

t [Nj (t)] · t
[
T−1

j

] · [T−1
j

] · [Nj (t)] = 1, (11)

[Dj ]

becauset [M j (t)] = t [Nj (t)] · t
[
T−1

j

]
. (12)

[Dj ] is a symmetrical matrix since the product of a matrix by its transposed form
is always a symmetrical matrix (Frazer, Duncan, and Collar, 1960).

Thus, the equation of the geometrical locus of theNj (t) points was equal to:

t [Nj (t)] · [Dj ] · [Nj (t)] = 1. (13)

This equation was the expression of a quadratic form represented by the
matrix [Dj ], and corresponded geometrically to a conic. The nature of this conic
depends on the sign of the determinant of [Dj ] (Bix, 1998). The determinant|Dj |
could be expressed as a function of [Tj ] :

|Dj | =
∣∣t[T−1

j

] · [T−1
j

]∣∣ = ∣∣t[T−1
j

]∣∣ · ∣∣[T−1
j

]∣∣ = ∣∣T−1
j

∣∣ · ∣∣T−1
j

∣∣ = ∣∣T−1
j

∣∣2,
(14)

because|t [T−1]| = |T−1|. (15)

The determinant of [Dj ] was always positive showing that the conic was an ellipse.
Thus, the geometrical locus of theNj (t) points, image ofM j (t) points by the
transformation [Tj ], formed an ellipse centered on the origin (Q.E.D.).

Geometrical Description of the j th Ellipse

The equation of the geometrical locus of thej th ellipse was simplified by
writing it in the base defined by the axes of the ellipse. This was obtained by rotating
the ellipse in order to align its axes with the axes of the original coordinate system.
Mathematically, this operation corresponded to the diagonalization of the matrix
[Dj ]. The matrix [Dj ] was always diagonalizable since [Dj ] was symmetrical
(Frazer, Duncan, and Collar, 1960). The diagonal matrix [DjD ] was obtained as
follows:

[DjD ] = [α−1
j

] · [Dj ] · [α j ], (16)

where [α j ] was the rotation matrix.
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This diagonalization also allowed the determination of the eigenvalues and
eigenvectors of the matrix [Dj ]. The eigenvalues (λA j , λB j ) represented
respectively, the half-length of the major axis, and the half-length of minor axis of
the ellipse; while the eigenvectors defined the rotation angleα j .

Ordination of the Points on the j th Ellipse

In this derivation, the matrix [Dj ] associated to the equation of the geometrical
locus of the pointsNj (t), was composed of three independent parameters, whereas
the matrix [Tj ], associated with the coordinate transformation of the pointsM j (t)
into Nj (t), was defined by four independent parameters corresponding to the four
Fourier coefficients (aj , bj , cj , dj ). The consideration of the geometrical locus,
when compared to the coordinate transformation, involved the loss of one piece
of information. This information is to the positioning of the starting point on the
geometrical locus; this positioning is expressed as a phase angle determinating the
position of the starting point on each ellipse.

This phase angle was determined by factorizing the matrix [Tj ], since only
the matrix [Tj ] contained all the information. As every transformation defined by
a 2×2 asymmetrical matrix can be expressed as the product of a general rotation
[ω j ], with a nonrotational transformation (transformation for which the axes of the
ellipse are invariant by the transformation) represented by a symmetrical matrix
[ Pj ]) (Hobbs, Means, and Williams, 1976; Martin, 1982), the matrix [Tj ] was
expressed as follows:

[Tj ] = [ Pj ] · [ω j ], (17)

where [Pj ] was obtained by the following relation (Schmittbuhl and others, 1997):

[ Pj ] =
[
α−1

j

] · [D− 1
2

jD

] · [α j ], (see (16)) (18)

then

[Tj ] =
[[
α−1

j

] · [D− 1
2

jD

] · [α j ]
] · [ω j ]. (19)

Consequently, the general rotation [ω j ] representing the phase angle, was obtained
as follows:

[ω j ] =
[
[α j ] ·

[
D

1
2
jD

] · [α−1
j

]] · [Tj ]. (20)
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Elliptical Descriptors of the j th Harmonic

The j th harmonic was then characterized by a series of four new parameters
called the elliptical descriptors:

– half-length of the semi-major axis of thej th ellipse (LA j ) corresponding

to (λ−1/2
A j

),
– half-length of the semi-minor axis of thej th ellipse (LB j ) corresponding

to (λ−1/2
B j

),
– angle of rotation (α j ) determining the orientation of the major axis of the

j th ellipse with the axes of the original coordinate, and
– angle of phase (ω j ) corresponding to the positioning of the points on the

j th ellipse.

The elliptical descriptors above (LA j , LB j , α j , ω j ), in contrast to the Fourier
coefficients (aj , bj , cj , dj ), possess geometrical significance. They provide the
following estimates for each ellipse:

– the size of the ellipse, proportional to the product of the half-lengths of
the axes (LA j · LB j ),

– the anisotropy of the ellipse, characterized by the ratio of the half-lengths
of the axes (LA j /LB j ),

– the orientation of the ellipse characterized by the angle of rotationα j .

These last three characteristics completely define the geometry of each Fourier
ellipse, and provide an evaluation of the importance of the harmonic contribution
in the description of the form studied (see example in Fig. 4). The description of
the ellipse from the elliptical descriptors constitutes a really simplified approach
compared to those proposed by some authors (Diaz and others, 1989; Kuhl and
Giardina, 1982; Rohlf and Archie, 1984).

Reconstruction of an Outline Using the Elliptical Descriptors

Using the elliptical descriptors, it becomes possible to reconstruct an outline.
This reconstruction is carried out point by point (Fig. 5). Each pointM j (t) be-
longing to the unit circle of radius one is transformed into a pointNj (t) by the
following matrix relation:

[N(t)] =
k∑

j=1

[ Pj ] · [ω j ] · [M j (t)], (21)

with [N(t)] =
(

x f (t)
yf (t)

)
, (22)
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Figure 4. Fourier ellipses. Example of representations of the first eight har-
monical ellipses determined from the elliptical Fourier analysis of the outline
of the radiolariaPterocanium gravidum. The evaluation of the importance
of the contribution of each harmonic in the description of the Radiolaria is
provided by the simultaneous examination of elliptic size and anisotropy.
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Figure 5. Steps of reconstruction of an outline using elliptical descriptors. As the vec-
tors
−→
ON j ( j∈{1,...,k}) are summed, the pointN corresponding to the extremity of the sum

vector (
∑−→

ON j ) converges towards its homologue on the original outline. (E1: 1st ellipse;
E2: 2nd ellipse;E3: 3rd ellipse;E4: 4th ellipse).

[M(t)] =
(

xi (t)
yi (t)

)
=
(

cos(2 jπ t
T )

sin(2 jπ t
T )

)
, (23)

and [Pj ] =
[
α−1

j

] · [D− 1
2

jD

] · [α j ] (see 16)

The first step of reconstruction is to calculate, for each harmonic, the angular
step (1ang) between theM j (t) prints on the unit circle of radius one. This angular
step (1ang) is a function of the harmonic order (j ) and of the number of points (n)
used for the reconstruction:

1ang= 2π j

n
(24)

The angular step increases proportionally with respect to the order of the
harmonic (j ).

The second step of the reconstruction for each harmonic consists of the cal-
culation of the transformation of theM j (t) points, intoNj (t) points:

→
OM j

[Pj ]·[ω j ]−→
→

ONj (25)
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with
→

OM j : vector directed from O (center of the unit circle of radius one) to
M j (t) (point belonging to the circle)

→
ONj : vector directed from O toNj (t).

This transformation is obtained by a rotation [ω j ] of the vectors
→

OM j , fol-
lowed by a nonrotational transformation [Pj ] of these vectors. This is equivalent
to an initial rotation of the pointsM j (t) (rotation of the starting point), followed by
a transformation corresponding, from the consideration of the geometrical locus,
to the transformation of circle into ellipse.

The last step corresponds to the summation of the
→

ONj vectors for each of the
harmonics considered (Fig. 5). As the vectors of each harmonic are summed,
the point N(t), corresponding to the extremity of the sum vector, converge to-
wards its original homologue on the outline. The harmonics of high order al-
low for the reconstruction of morphological details (Fig. 6). The accuracy of
the reconstruction is therefore increased with increasing number of harmonics
(see example in Fig. 7). However, the maximum number of harmonics (k) used
for reconstruction, which is a function of the number of sampled points (n),
is equal ton/2 due to Nyquist frequency considerations (Press and others,
1992).

Figure 6. Reconstruction of morphological details. The harmonics of high order allow
for the reconstruction of the morphological details; the 18th harmonic is presented as
example (1ang1,1ang18: angular step of the 1st and 18th ellipse; bold line: part of the
reconstructed outline ; simple line: part of the 1st ellipse).
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Figure 7. Stepwise reconstructions. Example of the outline of radiolariaPterocanium gravidumusing
the first 14 harmonics, and representation of the original outline. The accuracy of the reconstruction
is therefore increased with increasing number of harmonics.

METHODOLOGY FOR COMPARISON OF COMPLEX OUTLINES
USING ELLIPTICAL DESCRIPTORS

The purpose of this part is to present a methodology for the comparison of
outlines using elliptical descriptors.

Preliminary Operations of Normalization

Before the morphological comparison of a series of forms using elliptical
descriptors can be carried out, a number of preliminary normalization operations
are required.

Size Normalization

A size normalization of the enclosed outline area is required in order to
compare the importance of the elliptical contributions. The importance of the
elliptical contributions, indeed, is related to the size of the ellipses, ellipse size being
proportional to the area enclosed by the outlines. The normalization is performed
by scaling the area to unit value (1.0); this procedure being already used by other
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authors (Lestrel 1989a,b; Lestrel, Bodt, and Swindler, 1993; Tanaka and others,
2000).

Angular Normalization

A common orientation of the outlines is needed in order to compare the
orientation of the ellipses of one specimen with those of another. The orientation
of the ellipses, related to the orientation of the elliptical axes, is a function of
the outline orientation. The angular normalization chosen in the present approach
consists in the alignment of each outline according to its conventional position
of reference. Thus, this angular normalization allows a comparison of forms with
respect to their reference positions, such comparisons being difficult to carry out
with the procedure of orientation developed by Kuhl and Giardina (1982), and used
by other authors (Ferrario and others, 1994, 1996; Lestrel, Bodt, and Swindler,
1993).

Phase Normalization

A same position of each starting point on the outline is required in order to
compare the phase angles of one specimen with those of another. This normaliza-
tion is obtained by shifting the starting point on each outline so that it is located
on thex- or y-axis (Kuhl and Giardina, 1982).

Calculation of the Elliptical Descriptors and Stepwise
Reconstructions of Outlines

The elliptical descriptors (LA j , LB j , α j , ω j ) are calculated for each harmonic
of the Fourier decomposition (Table 1). From these parameters, the size and the
anisotropy of each ellipse are estimated (Table 2, see example in Fig. 4).

Stepwise reconstructions of outlines are performed using an increasing num-
ber of harmonics (see example in Fig. 7). At each step of the reconstruction, the
convergence between the reconstructed outline and the original outline can be es-
timated visually and quantified by a fit index. The fit index chosen was obtained
from the sum of the squared distances between the reconstructed points and the
corresponded points on the original outline.

Morphological Comparisons of Outlines Using Elliptical
Descriptors and Stepwise Reconstructions

Using the elliptical Fourier analysis, precise morphological comparisons of
series of outlines become possible and reproducible. The corresponding statistical
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Table 1. Elliptical Descriptors of the Outline of RadiolariaPterocanium gravidum

Major axis Minor axis Orientation of the Phase
Harmonics (j) half-length (L Aj ) half-length (L Bj ) major axis (α j ) angle (ω j )

1 718.27 587.89 5.37 97.26
2 124.72 89.13 60.35 151.55
3 229.43 180.87 113.76 160.00
4 110.01 0.44 91.16 184.75
5 54.18 30.38 114.55 17.77
6 40.28 18.35 71.78 18.57
7 20.07 10.07 121.08 178.93
8 21.03 12.45 115.69 207.86
9 16.96 4.68 97.89 17.04

10 15.12 7.25 79.75 10.33
11 14.07 8.00 104.86 172.57
12 4.08 3.27 176.93 277.42
13 13.99 9.17 93.28 10.12
14 6.78 1.72 75.19 188.68

Note.Results for the first 14 harmonics.

analyses provide for intraspecific and/or interspecific comparisons of elliptical de-
scriptors associated to each harmonic. Multivariate statistical analyses (Reyment,
Blackitch, and Campbell, 1984; Sharma, 1996) of the elliptical descriptors can
be used to perform such comparisons. Stepwise reconstructions (Fig. 7) allow the

Table 2. Elliptical Descriptors of the Outline of Radiolaria
Pterocanium gravidum

Harmonics (j ) Size Anisotropy

1 422266.21 1.22
2 11116.59 1.40
3 41497.72 1.27
4 48.65 248.79
5 1645.75 1.78
6 738.91 2.20
7 202.02 1.99
8 261.92 1.69
9 79.39 3.62

10 109.65 2.08
11 112.49 1.76
12 13.34 1.25
13 128.32 1.52
14 11.68 3.93

Note.Size and anisotropy of the ellipses associated to the first
14 harmonics.
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establishment of direct relationships between elliptical descriptors variability and
real morphological variability. Previous works, based only on Fourier coefficients,
could not provide these interpretations and comparisons.

CONCLUSION

The elliptical descriptors developed in this study, not only allow for the quan-
tification of form, whatever their degree of complexity, but also allow for the trans-
lation of morphological differences into simple geometrical concepts; a procedure
difficult to carry out with the conventional Fourier coefficients.
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