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Compositional Geometry and Mass Conservation1

Robert F. Shurtz2

A geometrical structure is imposed on compositional data by physical and chemical laws, principally
mass conservation. Therefore, statistical or mathematical investigation of possible relations between
data values and such laws must be consistent with this structure. This demands that geometrical
concepts, such as points that specify both mass and composition in linear space, and lines in projective
space that specify composition only, be clearly defined and consistent with mass conservation. Mass thus
becomes the norm in composition space in place of the Euclidean norm of ordinary space. Coordinate
transformations inconsistent with this geometry are accordingly unnatural and misleading. They are
also unnecessary because correlation arising from the constant mass presents no unusual difficulty in
the analysis of the underlying quadratic form.
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INTRODUCTION

If X, Y, and Z in the triplet (X, Y, Z) represent masses of three components
that constitute a batch of systemXYZ, an increase in any one of them does not
necessitate a reduction in the sum of the others: it necessitates only an increase in
the total weight of the batch,M = X+Y+ Z.

But if X, Y, andZ represent the corresponding percentages (ratios, etc.) it is
implied thatM = 100 (M = 1, etc.), so that an increase in any one of them must
be accompanied by an equal reduction in the sum of the others. For example, an
increase of 1% inZ must be accompanied by a decrease of 1% in the sum ofX
andY in order to balance the equation

Z = 100− X − Y. (1a)

This is the equation of a plane and is indistinguishable from that for a linear
statistical regression ofZ on X andY (except for an omitted random term); it
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extends naturally to an (N− 1)-dimensional hyperplane representing a system of
any finite number,N, of components inN-dimensional space

XN = 100−
N− 1∑
k= 1

Xk. (1b)

To avoid confusion between this mass balance effect and regression possibly
due to other factors, various complicated coordinate transformations have been
suggested without apparent attention to their consistency with the law of mass
conservation. But, just as spherical coordinates are mandatory in terrestrial car-
tography, a linear coordinate space equipped with mass coordinates is mandatory
in compositional geometry. Such a space underlies every composition, but is most
easily understood in the case of the widely used and understood, ternary compo-
sition diagram. This is the subject of this paper.

A DETAILED EXAMPLE

The numbers in the triplet (6, 2, 3) may simply be values—in otherwise unde-
fined units—of the coordinates at the pointB in the three-dimensional orthogonal
coordinate systemXYZ shown in Figure 1 with theY-axis running away from the
observer. They may equally well be values of the masses of three identifiable con-
stituents in a recipe for, or a batch of, or an analysis of a compound, combination
or mixture ofX, Y, andZ, real or conceptual.

In Euclidean geometry the distance from the originO toB is 7: the square root
of the sum of the squared coordinate differences, 62+ 22+ 32 = 36+ 4+ 9=
49. To constructB, one starts atO and, at least conceptually, lays out thelengths,
6, 2, and 3, along theX, Y, andZ axes.

The distance fromO to B in mass coordinates is obviously 11, the ordinary
sum of coordinate magnitudes 6+ 2+ 3. To constructB, one starts atO and, at
least conceptually, lays outmasses, 6, 2, and 3, ofX, Y, andZ along the axesX,
Y, andZ.

Technically, distances from the origin to a point are norms (Taylor and Lay,
1980, p. 10), in this case, on the three-dimensional, real arithmetic space whose
“points” are triplets of numbers. More generally, they may be multiplets of any
finite numberN of real positive numbers. The norm of a coordinate difference
defines a metric, a distance between each pair of points, on any such space (see
any text on functional analysis, e.g., Kreysig, 1978, chap. 2). In Figure 1, the 7-unit
distance fromO to B is the Euclidean norm, and the 11-unit distance, the sum of
the coordinate magnitudes, may be called the mass norm.

It has no standard mathematical name, but is sometimes called the taxicab
norm. In three dimensions it is one of a class of norms
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Figure 1. The mass-coordinate spaceXYZ of three-component compositions with theY-axis running
away from the observer. Two constant-mass planes,M at M = 11 andm atm= 3.5, are shown, along
with a “sphere,” defined by the mass norm, The pointB in M represents a batch of 11 unit mass, six of
X, two of Y, and three ofZ. The pointb in m represents a batch half that size and illustrates the fact
that all compositions in the ratioX:Y:Z = 6:2:3 lie on a radial lineC, at all points of which the mass
ratios are the same, 6/11:2/11:3/11= 0.55:0.18:0.27. For additional explanation see text.

‖M‖ = (|X|p + |Y|p + |Z|p)1/p, p ≥ 1 (2)

with obvious extension toN dimensions. Whenp= 2 Equation (2) gives the
Euclidean norm, and whenp= 1 it gives the mass norm. These two norms are
topologically equivalent (Kreyszig, 1978, p. 75); but their distinction must be
understood and accounted for in compositional geometry, just as the distinction
between spherical geometry and plane geometry must be understood in terrestrial
cartography.

It is to be expected that effects of this distinction will appear in all calcu-
lations involving mass, such as finding a mean, or average composition; and, as
shown by the following example, they do. Aitchison (1989, p. 788) calculates the
average of 25 percentage compositions in a three-component system and gets the
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percentages (49, 29, 22). He then transforms the 25 percentage coordinates into
logratio coordinates, calculates the average of the 25 logratios, and transforms it
back to get the percentage averages (60, 27, 13). Thus, what superficially seems
a plausible calculation becomes a physical absurdity: it creates 11 mass percent
of component 1, and destroys 2% of component 2 and 9% of component 3, in
gross violation of mass conservation. To avoid such bizarre results, compositional
geometers must use mass coordinates and the mass norm.

FROM MASS COORDINATES TO PROJECTIVE SPACE

All points lying 11 units of mass distance from the origin in Figure 1 may be
“constructed” by combining massesX of X, Y of Y, andZ of Z in consistent units
that total toM = X + Y + Z = 11. This is the equation of a plane that intersects
all three axes at points 11 mass units from the origin and extends without bound
in theXYZ coordinate system.

In as much as the mass norm is equal at all points in any plane with equal
intercepts on the axes, the unit-sphere in mass coordinate space is a unit-octahedron
instead, such as that shown in the inset in Figure 1. But, because mass always equals
or exceeds zero, only the points in the shaded triangular face of the octahedron,
on which all coordinate values equal or exceed zero, appear as compositions. The
points in this triangle do not constitute a vector space; but, just as distances between
points in a linear vector space are always regarded as positive even though they
may be measured in a negative direction, so positive mass values may be measured
in a negative direction. Then the entireXYZ space becomes mass coordinate space
in which the distance between points, generalized toN components, is defined as
the sum of the absolute coordinate differences,

d(X,Y) =
∑ N

1 |Xi − Yi |. (3)

Mass is continuous—at least down to the atomic scale—except at zero, where it
is one–sided continuous upward. So, if two of the three components are absent,
their masses may be regarded as having been reduced continuously to zero by
infinitesimal changes. There are three such mass coordinate points in Figure 1:
(11, 0, 0), (0, 11, 0), and (0, 0, 11). Each of them satisfies the equation of the plane
M, X + Y + Z = 11, at its intercept on the corresponding coordinate axis, all at
11 units of mass distance fromO.

If only one component is absent, its mass may be presumed to have decreased
continuously to zero. All possible mass points then lie on lines of intersection
betweenM and the three coordinate planes: (a) for points (0,Y, Z) they all lie on
the lineM = Y + Z = 11; (b) for points (X, 0, Z), they lie onM = X + Z = 11;
and (c) for points (X,Y, 0), onM = X + Y = 11.
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Figure 2. The projective space of three-component compositions corresponding to Figure 1. Radial
lines such asC, lying at the intersections of radial planes, such as those whose intersections withM
are shown by dashed lines atX = 54.5%, Y = 18.2%, andZ = 27.3%. Corresponding lines in the
constant-mass plane near the origin are also shown. For further explanation see text.

In Figure 2 three radial planes, defined by ratios,X/M = 6/11= 54.5%,
Y/M = 2/11= 18.2%, andZ/M = 3/11= 27.3%, are shown. They all intersect
in the constant-ratio lineC, at all points of which the ratios are those of the radial
planes, whose intersections with the coordinate planes are shown by arrows, while
their intersections withM are shown by dashed traces. The sum of the three ratios
is one, and of the percentages 100, so any two suffice to defineC.

It is evident that all radial lines through points in the closed, constant-mass
triangle M are constant-ratio lines, each identified by the values of (any) two
percentages or ratios. A line in space, identified by two such numbers, is thus anal-
ogous to a point in a plane, identified by two coordinate values. Accordingly, these
radial lines may be regarded as elements of (points in) a two-dimensional space.

In standard mathematics the family of all radial lines in three dimensions is
called the projective plane (e.g., Roman, 1992, p. 324; Samuel, 1988, p. 1), so the
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sheaf, or pencil of radial lines from the originO through points in, or on the bound-
ary of, the triangleM constitutes a closed region in two-dimensional projective
space. From a center at the origin, this pencil of lines projects all constant-mass
triangles in the entire positive octant of mass coordinate space, such as the small
one near the origin in Figure 2, onto any one of them, such asM. Thus, each point
in, or on the boundary of,M is an end view of one of these radial lines looking
toward the origin.

The triangleM thus becomes a ternary composition diagram on which all
constant-mass triangles in the positive octant of the systemXYZ have collapsed.

For systems of more than three components, radial lines are still constant-
ratio lines and they project as points in hyperplanes of one less dimension than
the space itself. WhenN= 4, the three-dimensional hyperplane is a tetrahedron.
Each of its points is the projection—the end view—of a radial, constant-ratio line
in the four-dimensional mass coordinate space. This argument extends to mass
coordinate spaces of any number of components: the end view of a radial line is
always a point in a constant-sum, (N − 1)-dimensional flat, a hyperplane, in an
N-dimensional space.

Any pair of points may be regarded as end views of two radial lines that
intersect at the origin of coordinates in a system ofany finite numberof components.
Such a pair of lines defines an ordinary two-dimensional radial plane whose edge
view is the line connecting them. Any mixture of the two, point compositions must
lie somewhere on the line between them at a location which may be found simply
and graphically in two dimensions, regardless of the number of components.

CONSTRUCTING A COMPOSITION

Figure 3 shows a shaded triangle lying in a radial plane that is defined by
two, constant-ratio radial lines,C1 andC2. The third side of the triangle is the
line, m0, on which this plane intersects the constant-mass planem0 in which
the massm0 at all points equals the sum of the massesm1 andm2, at all points
in the constant-mass planesm1 andm2. The system in which the shaded triangle
lies may be of any finite dimension (number of components) equal to or greater
than two. The phantom three-dimensional mass coordinate system is shown only
for orientation with respect to Figures 1 or 2.

Fixing massesm1 and m2 defines batch vectors at the pointsB1 and B2

where constant-mass linesm1 andm2 intersect constant-ratio linesC1 andC2. By
conservation of individual component masses, the batch point of the mixture must
lie on the constant-mass linem0 at the pointB0 = B1 + B2 constructed by the
usual vector addition, shown graphically in the shaded triangle.

In mass geometry the mass length of the sum vector mustequalthe sum of
the mass lengths of the summed vectors,|B0| = |B1| + |B2|, in contrast to the
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length of the sum vector in Euclidean geometry which may be—and almost always
is—less thanthe sum of the lengths of component vectors, in this case,|B0| <
|B1| + |B2|.

This is the pivotal distinction between mass geometry and Euclidean ge-
ometry: Euclidean lengths are measured “as the crow flies,” cutting across the
coordinate grid, while the mass lengths are measured as the taxi must drive, along
the lines, the “streets,” of the coordinate grid. In Figure 3, this route in three di-
mensions is suggested by phantom lines running in order from the origin parallel
to theZ, theX, and theY axes. These segments do not lie in the shaded plane;
and, in higher dimensional cases, they cannot be depicted at all.

The intersection betweenm1 andC1 and that betweenm2 andC2 divide the
respective sides of the shaded triangle into two segments. OnC1, the mass lengths
of the segments in order, starting fromO, are proportional tom1 by congruence,

Figure 3. The lever-principle construction of mixed batches in projective space. In the inset, note that
the masses appear on the points of the lever thatare notendpoints of the segments to whose lengths the
masses are proportional. For further explanation see text, especially the equations in the Mass Balance
section. The phantom three-dimensional coordinates are for general orientation only: only the shaded
plane is essential to the construction.
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and tom2 by similarity of triangles. OnC2, the segments are in reverse order, the
length of the first ism2 by congruence, and that of the second ism1 by similarity of
triangles. By similarity of the triangles in the vector construction,B0 divides the
base of the shaded triangle alongm0 into two segments: one of length proportional
to m1 next to its intersection withC2, and one of lengthm2 next to its intersection
with C1: note the inversion. That this graphical construction solves the problem of
finding the sum vectorB0 will now be shown analytically.

MASS BALANCE

A process engineer, to whom calculations of mass balance are routine, would
see this construction as an awkward and superfluous way of approaching the trivial
problem of simultaneously solving two simple algebraic equations: (a) the total
mass balance equation,m1+m2 = m0; and (b) a mass balance equation forany
component common to bothC1 andC2, no matter how many there may be. For
thek-component, equation (b) isck1m1+ ck2m2 = ck0m0, whereck1, ck2, andck0

are the ratios or percentages of thek-th component at all points of the composition
linesC1, C2, andC0.

Eliminatingm0, givesm1|ck1− ck0| = m2|ck2− ck0|. This is the form of so-
lution that illustrates why, in compositional geometry for almost a century, this
solution has been called the Lever Rule or the Center of Gravity Principle (Levin
and others, 1964, p. 7): it says, simply, that the massesm1 andm2 balance on
lever arms of length|ck1− ck0| and |ck2− ck0| over a fulcrum atC0, as shown
in the inset in Figure 3. The differences between component concentrations, at
the intersections of any constant-mass line withC1, C2, andC0, are proportional
to the masses,|ck2− ck0|:|ck1− ck0|:|ck2− ck1| = m1:m2:m0. The unit of length
used to express mass distance between the points is immaterial: it cancels out. This
latitude in choice of length units is characteristic of projective geometry whose
points are lines between which no linear distance is defined.

COMPOSITIONAL STATISTICS

If a random set of data vectors in three-dimensional space is confined to
a plane, instead of spreading randomly over all three dimensions, the rank of
the matrix of correlation coefficients is two: accordingly, its determinant must
vanish: ∣∣∣∣∣∣∣

1 r XY r XZ

r XY 1 rYZ

r XZ rYZ 1

∣∣∣∣∣∣∣ = 0.
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The equation of the constant-mass plane, Equation (1), imposes two additional
constraints on the correlation coefficients: the regression coefficients both equal
minus one:

a =
∣∣∣∣ r XZ r XY

rYZ 1

∣∣∣∣/ ∣∣∣∣ 1 r XY

r XY 1

∣∣∣∣ = −1

and

b =
∣∣∣∣ 1 r XZ

r XY rYZ

∣∣∣∣/ ∣∣∣∣ 1 r XY

r XY 1

∣∣∣∣ = −1.

These three equations constrain the correlation coefficients whenN= 3.
But, in systems of more than three components, the vanishing determinant

and the equations for the regression coefficients impose fewer constraints,N, than
there are correlation coefficients, (N2− N)/2; accordingly, such systems are not
constrained.

The terms of the correlation matrix are sums of products of the form (xi −
mi )(xj −mj ) which are measured along specific coordinate axes and so take equal
values in both mass and distance units (compare the intercepts of a constant-mass
plane). Therefore, the matrix of the quadratic form can be estimated in the usual way
in mass coordinate space. Its diagonaliazation will, however, reveal an eigenvalue
of zero which means that one of the semiaxes of the characteristic quadric surface
(hypersurface) is infinite (Shilov, 1977, p. 291). Diagonalization also yields a new
set of random variables, one fewer in number than the original set, but mutually
orthogonal and expressed as linear functions of the original variables. These linear
functions contain all the information, about relations between variables that is in
the data. Other statistical procedures for application in mass coordinate systems
must be evaluated on a case-by-case basis.

A constant-mass plane in three dimensions is a two-dimensional surface and it
remains two-dimensional under continuous transformation of coordinates. If, how-
ever, the transformation isnonlinear, the surface remains two-dimensional but is no
longer a plane. Accordingly, a distribution of points in the original plane becomes
a distribution in whatever curved surface results from transformation. Unless ad-
equate adaptive measures can be found, the usual statistical methods for analzing
the data and for testing hypotheses about the original variables become invalid.

DISCUSSION

As already noted, correlation “built-in” by the implied constant-mass of com-
positions, has motivated efforts to mitigate its effect by transforming rectilinear
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coordinate systems to curvilinear coordinates. These are inconsistent with recti-
linear mass coordinate geometry just as, vice versa, the rectilinear coordinates of
plane maps are inconsistent with the spherical surface of the earth.

Distances between points in curvilinear coordinates, such as the logratio coor-
dinates mentioned in the Introduction, must be measured along curves, not along
straight lines, for the same reason that the distance between San Francisco and
Paris must be measured on a great circle on the surface of the earth, not on a
straight line through the earth.

Further, noninvertible coordinate transformations are unacceptable because
the original data cannot be recovered from the converted data. This means that
clusters or trends observed in the converted data cannot be attributed to possible
natural causes because they may be only mathematical artifacts. An example is
the closure operation,

C(zi ) = czi /(z1+ z2+ z3 . . .+ zd) (4)

which appears in a transformation proposed by Pawlowsky-Glahn and Egozcue
(2002, p. 261): it restricts the sum of the transformed coordinates to a chosenc,
such asc = 100%. The operation in Equation (4) is not invertible because the sum
in the denominator is lost and cannot be recovered from the values of theC(zi ),
once the division is performed.

More importantly, the closure in Equation (4) imposes a constant-sum con-
straint on the transformed data that is no different from that on the original data,
and which is the purported justification for transforming that data in the first
place. Moreover, this new constraint is in addition to the transform of the original
constant-sum plane which is still there, although no longer a plane. In the logratio
transformations, it is a surface which curves away to infinity.

Values of the logratio transform approach positive infinity as the denominator
of the ratio approaches zero, and they approach negative infinity as the numerator
approaches zero. All such boundary points lie in flats—the points, lines, planes,
and hyperplanes—that bound the positive region of mass coordinate space, on all
of which one or more of the masses is zero.

In efforts to avoid the embarrassment of infinite values, all these boundary
points have been relegated to a multitude of flats of the necessary dimensionality,
and called subcompositions. The idea is clearly stated in Atchison and others
(2000, p. 274): “. . . a composition with one of its parts absent may be chemically,
physically, or biologically completely different from compositions with all parts
positive.” This grossly contradicts everyday experience: to add a microgram of
sugar to a liter of pure water does not make any such difference in its properties;
and to add a molecule of sugar renders this statement preposterous.

Finally, there is no practical difference between values that increase to infin-
ity and infinite values themselves: they become far too large to make sense long
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before reaching those boundaries. This is illustrated in the simple series of logratio
compositions discussed by this writer (Shurtz 2000, Fig. 1). As the two composi-
tions there discussed approach boundary points on the sides of a ternary diagram
from its interior, the back transform of their logratio average approaches the corner
of the diagram at which both the originally predominant component masses have
vanished. The gross violation of mass conservation in this sequence is abundantly
evident long before the corner is reached.

CONCLUSION

In conclusion, it is evident that these efforts to transform away the constant-
sum constraint are unnecessary. The usual diagonalization of the fundamental
quadratic form in mass coordinate space reveals that the data lies in a space of
fewer thanN dimensions. In addition, it reveals a linear coordinate transformation
in which the new coordinates are expressed as linear functions of the original mass
coordinates, thus ensuring that original masses can be recovered. The quadratic
form contains all the information about underlying geological processes that can
be extracted from second- and lower-order moments of the data.

So it seems to this commentator that the best way to avoid the many problems
posed by physically impossible coordinate transformations is to “. . . be careful
not to befuddle ourselves with transformations so exotic that we lose sight of the
original nature of the geologic properties we are attempting to understand” (Davis,
1986, p. 92).
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