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Geostatistical Analysis of Inverse Problem Variables:
Application to Seismic Tomography1
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In this article we present a geostatistical approach to the transmission tomographic inverse problem,
which is based on consideration of the inverse problem variables (velocity and traveltime errors) as
regionalized variables (R.V.). Their structural analysis provides us with a new method to study the
geophysical anisotropy of the rock, an important source of a priori information in order to design
the anisotropic corrections. The underlying idea is that the geophysical structure can be deduced
from the spatial structure of the regionalized variables which result from solving the tomographic
problem with an isotropic algorithm. Also, the application of the structural analysis technique to the
anisotropic corrected velocity field allows us to characterize the reliability of these corrections (model
quality analysis). Geostatistical formalism also provides us with different techniques (parametric and
non-parametric) to estimate and even simulate the velocity in the areas where this field has been
considered anomalous based on field studies and on geophysical and statistical criteria. The kriging
acts as a low-pass smoothing filter for the anomalous model parameters (velocities), but is not a
substitute for an adequate filtering of the outliers before the inversion. This methodology opens the
possibility of considering the inverse problem variables as stochastic processes, an important feature
in cases where the tomogram is to be used as a tool of assessment to quantify the rock heterogeneities.
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RESEARCH INCENTIVE

Tomographic inverse problems are deterministic by nature. However, the presence
of inconsistent data generates artifacts in model parameters. Errors in observed
data are very common in tomographic experiments, and are mainly due to acquisi-
tion problems (Dyer and Worthington, 1988) and traveltime picking errors (Pratt
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and Chapman, 1992). These spurious data may cause the convergence failure of
numerical algorithms. This fact may be interpreted as a randomness phenomenon
introduced in the deterministic velocity field.

To explain this last assertion let us consider the continuous tomographic
problem of findings ∈ S⊂ L2(Ä) that satisfies them integral equations:∫

0i

s(x) dl0i = ti , i = 1, . . . ,m,

wheres(x) is the slowness model belonging to the model spaceS, ti are the ob-
served traveltime data belonging to the data spaceD, and0i are Fermat’s raypaths
between each pair of sources and receivers (Berryman, 1991). To solve this prob-
lem numerically, different kinds of least-squares-like methods have been proposed
(Berryman, 1991; Dines and Lytle, 1979; Gordon, 1974; Ivansson, 1986; Scales,
1987; Pratt and Chapman, 1992). The solution vector,s(x), can be interpreted as
the application of a deterministic transfer functionTf to the observed datat(x):

s(x) = Tf (t(x))

whereTf maps the data spaceD into the model spaceS.
Because of data inconsistencies, the observed datat(x) can be considered as a

random variable. Thereby, this randomness phenomenon is transmitted through the
deterministic filterTf to the slowness fields(x). A similar idea has been proposed
by Franklin (1970), who applies the theory of stochastic processes to obtain as much
information as possible from ill-posed linear problems. Also, Ivansson (1985)
introduced a statistical model to take into account data randomness in the discrete
linearized solution of the tomographic inverse problem.

Various state-of-the-art methods have been proposed to solve the problem
of data inconsistencies: singular value decomposition, damping, and robust opti-
mization techniques. Another possibility arises from considering a probabilistic
approach of the tomographic inverse problem. This kind of methodology has been
proposed by Tarantola and Valette (1982a,b), who formulated the inverse prob-
lem in a probabilistic framework, as a combination of information coming from
observed data, a priori information, and theoretical information (physics of the
problem). This approach to nonlinear inverse problems also has the properties of
uniqueness and consistency.

In this paper, we present a geostatistical analysis of the transmission tomo-
graphic inverse problem variables, applying this formalism to a crosshole data set
acquired in an area with granitic geology: the Grimsel test site – field 1 (NAGRA,
the Swiss National Cooperative for the disposal of Radioactive Waste). One of the
main difficulties in this approach is to select the random variables (R.V.), as the
original data (seismic traveltimes) are associated with the Fermat raypaths that are
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not defined on a grid and are generally unknown. To overcome this problem, we
first solve the inverse problem and consider as R.V. the velocity field and traveltime
errors calculated by the inversion algorithm in the last iteration. This methodology
is applied to the anisotropic and anisotropy-corrected velocity fields, providing
us important sources of a priori geophysical information (structural and model
quality analysis), opening the possibility of considering the inverse problem vari-
ables as stochastic processes, which is an important feature in the cases where the
tomogram is to be used as a tool of assessment.

SYNTHETIC MODELING AND ANISOTROPY DETECTION

It is worth explaining that in what follows the term anisotropy has a dual sense:
while the geostatistical anisotropy concerns the spatial structure of the velocity
field, the geophysical anisotropy has to be interpreted as the angular dependence
of the velocity field deduced from 2D tomographic sections.

As mentioned before, the basic idea to characterize the direction of geo-
physical anisotropy is that anisotropy is implicit in the spatial structure of the
regionalized variables which result from solving the tomographic problem with
an isotropic algorithm (without taking into account the anisotropic corrections).
To prove this, we have generated two different synthetic anisotropic models and
we performed structural analysis (variogram surface calculation). The variogram
surface is perhaps the most effective technique for detecting anisotropy in the
pattern of spatial continuity of a R.F. This spatial tool is also used to determine
the preferential directions in which directional variograms should be calculated.
In this case we are not interested in performing a classical structural analysis, we
simply want to show that a rough characterization of the spatial structure of the
anisotropic velocity field can help us to detect the geophysical anisotropy of the
rock.

Figure 1 shows two different synthetic velocity fields and their corresponding
experimental variogram surface. It can be seen that the direction of maximum corre-
lation distance coincides with one of the main directions of geophysical anisotropy
(minimum velocity in this case). Thus, the conclusion is that structural analysis of
the anisotropic velocity field is a simple method to detect the main directions of
geophysical anisotropy.

GEOSTATISTICAL ANALYSIS OF THE GRIMSEL DATA SET

To illustrate this technique with real data, we apply the geostatistical method-
ology to the Grimsel crosshole data set – field 1 (Gelbke, Miranda, and Sattel,
1989). The geometry of the survey is approximately rectangular bounded by two
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Figure 1. Two different synthetic anisotropic models (tomograms) and their corresponding exper-
imental variogram surfaces. A rough characterization of their spatial structure (covariance models)
serves to delineate the direction of geophysical anisotropy.
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Figure 2. Grimsel data set 1. The acquisition survey is composed of two “parallel” boreholes:
B1 (sources) and B2 (receivers).

boreholes (B1 and B2). The dimensions of the granitic domain are 70× 140 m.
The survey is composed of 58 sources and 60 receivers separated by a distance of
2.5 m (Fig. 2).

Several research groups have inverted this data set. Gelbke, Miranda, and
Sattel (1989) studied the main sources of data errors: (systematic errors due to
acquisition problems, time shifts caused by the filtering techniques, etc.,) and
estimated the degree and direction of geophysical anisotropy using velocity ver-
sus azimuth plots. From this angular dependence they concluded that the gran-
ite can be modeled by a weak transverse elliptical anisotropy given by the
parameters:

β = N30◦W, λ = Vmax− Vmin

Vmax
= 3%,

whereβ andλ stand for the direction (the angle that maximum velocity,Vmax,
forms with the borehole direction measured counterclockwise) and the ratio of
anisotropy. These parameters are used in the tomographic algorithm to account
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for the anisotropic corrections. These earlier studies have been updated by Albert
and others (1998). Maurer and Green (1997) used a coupled inverse method, well
known in earthquake studies, to investigate the effects of coordinate misallocation
and weak anisotropy in the tomographic images for this granitic rock. The presence
of outliers in the data set created some artifacts in the velocity field (large range
of apparent P wave velocities).

Geostatistical Modeling of Anisotropic Velocities: Anisotropy Detection

The main R.V. is the anisotropic velocity field (Fig. 3(A)) which results from
solving the discrete linearized inverse problem in a rectangular grid of 3.1× 3.1 m
cells. To facilitate anisotropy detection we also consider as a secondary R.V. the
traveltime errors (Fig. 3(B)) calculated by the inversion code in the last iteration
of the numerical algorithm when the RMS error tolerance is reached.

Figure 4 shows the histogram and the graphical plot of normality of the
anisotropic velocity field. The mean (5.15 km·s−1) and the median (5.17 km·s−1)
are very similar and the statistical distribution of velocity is close to a Gaussian
distribution. The range of variation is 4.7–5.6 km·s−1. The normality plot shows
that model parameters can be considered close to normal behavior in the range 4.7–
5.80 km·s−1. This interval is consistent with the geological and geophysical studies

Figure 3. Anisotropic random variables used in the geostatistical analysis for anisotropy detection:
(A) anisotropic velocity field (km·s−1); (B) traveltime errors (ms). The direction of the geophysical
anisotropy can be deduced from the geostatistical analysis of their respective covariance models.
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undertaken in the granitic massif (Albert and others, 1998; Gelbke, Miranda, and
Sattel, 1989). Therefore it is possible to conclude that statistical analysis allows
us to unravel the presence of different statistical populations and to determine the
range of normal model parameters, i.e., the areas where velocity has been correctly
estimated.

In this case, prior to the structural analysis we have performed a normal score
transformation of the R.V., becuase the kriging estimator provides an optimum
result if the R.F. has a normal distribution.

Figure 5(A) shows the experimental variogram surface of the anisotropic ve-
locity field. As can be seen, the maximum range (correlation distance) occurs in
the N30◦–40◦W and does coincide with the direction of weak transverse elliptical
anisotropy revealed by previous geophysical studies (Gelbke, Miranda, and Sattel,
1989). Nevertheless there is a shorter spatial correlation in the northeast direction
(N30◦E), which has not been modeled. This second spatial structure motivates an
extravariability (higher sill) of the variograms inferred in the north to east direc-
tions. These structures could be related to a system of faults (NW directions) and
intrusions (NE directions) which are approximately orthogonal (Gelbke, Miranda,
and Sattel, 1989). The omnidirectional variogram of this R.F. corresponds to a
spherical model with a range of 50 m, a sill (statistical variance) of 0.65 with a
nugget effect contribution (microvariabilities) of 0.10. The directional variograms
obtained on the basis of structural analysis focusing on the main directions of
anisotropy showed that the fitted theoretical model is spherical with a maximum
range of 60 m N34◦W, a minimum range of 36 m N56◦E, and a sill of 0.57 (with
a nugget contribution of 0.10).

The main conclusion of this analysis is that geophysical anisotropy is im-
plicit in the spatial structure of the anisotropic velocity field. The direction of
geophysical anisotropy can be detected using structural analysis of this R.V. Nev-
ertheless the geostatistical anisotropy ratio does not coincide with the geophysi-
cal anisotropy ratio. This is understandable as both parameters describe different
phenomenon.

To confirm the results of the anisotropy detection we have also used the
traveltime errors in the last iteration of the numerical algorithm (Fig. 3(B)), fo-
cusing on the areas where the calculated errors are most significant (sources:
10–40, receivers: 10–40). Figure 5(B) shows the experimental variogram surface
for this secondary R.V. The direction of maximum error correlation is defined
by the line between sources and receivers of equal number, which is approx-
imately N30◦E. The direction of minimum error correlation (N30◦W) coincides
with the direction of geostatistical anisotropy unraveled by the structural analysis of
the anisotropic velocity field. The correlogram in this direction shows that errors
are correlated within a distance of 38 m (15 sources or receivers) and, as expected,
the variogram shows a larger contribution of the nugget effect (60% of the statistical
variance or sill).
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Geostatistical Modeling of Anisotropy-Corrected Velocities:
Model Quality Analysis

Using a SIRT (Simultaneous Iterative Reconstruction Technique; Dines and
Lytle, 1979) algorithm we have inverted the traveltime data on a 3.1× 3.1 m
grid, applying the anisotropy correction given by the elliptical model deduced by
Gelbke, Miranda, and Sattel (1989) from geophysical studies. As we have shown,
this model of geophysical anisotropy has also been confirmed by structural analysis
of the anisotropic velocity field.

Figure 6(A) and (B) shows the velocity field corrected from anisotropy
(isotropic velocity) and the corresponding traveltime errors. It is important to
note that an adequate anisotropic correction will cause the isotropic velocity field
to exhibit an isotropic covariance model and the traveltime errors to show up
as a white noise or at least as a notable decrease in terms of spatial correlation
distance.

Figure 7(A) shows the experimental variogram surface of the anisotropy-
corrected velocity. The pattern of spatial continuity of this variable is very com-
plicated, and can be described as an isotropic R.V. in the shorter ranges (less than
35 m). For longer ranges the influence of two nested structures in the northwest and
northeast directions can be observed, which are due to the anisotropic correction.
Figure 7(B) shows the variogram surface model obtained with these three nested
structures. The first spatial structure has a range of 35 m and corresponds to the
isotropic feature identified in the variogram surface. The other nested structures
makes the R.V. zonal anisotropic, since spatial correlation in these models only
takes place in their respective directions (N25◦E and N68◦W). The directional
variograms showed that the fitted theoretical model corresponds to an isotropic
spherical model with a range of 32 m and a sill of 0.95 (with a nugget effect
contribution of 0.07).

Figure 8 shows the experimental variogram surface for anisotropy-corrected
traveltime errors, focusing on the areas where those are the largest (sources: 20–
60, receivers: 20–60) (Figure 6B). Errors still show a spatial correlation that has
decreased to 5 m (apair of sources or receivers) instead of 38 m, which was the
correlation distance in the case of the anisotropic traveltime errors.

Therefore, the structural analysis of the R.V. obtained by solving the trans-
mission tomographic problem with an isotropic algorithm (taking into account the
anisotropy correction) can be used to characterize the reliability of these correc-
tions. Also, from this analysis we infer a spatial model (covariance model) which
is going to be used in the kriging and in the conditional simulation stages.

To filter the anomalous features present in the isotropic velocity field we have
estimated this R.V on a finer grid (2.5× 2.5 m) by means of ordinary kriging,
using as available information the isotropic velocity field, which is defined in a
coarser grid (3.1× 3.1 m). The grid has been changed for filtering purposes, since



P1: JRX

Mathematical Geology [mg] pp1061-matg-477138 December 4, 2003 22:38 Style file version June 25th, 2002

Geostatistical Analysis of Inverse Problem Variables 963

F
ig

ur
e

6.
A

ni
so

tr
op

y-
co

rr
ec

te
d

(is
ot

ro
pi

c)
ve

lo
ci

ty
fie

ld
an

d
as

so
ci

at
ed

tr
av

el
tim

e
er

ro
rs

.A
n

ad
eq

ua
te

an
is

ot
ro

pi
c

co
rr

ec
tio

n
w

ill
ca

us
e

th
e

is
ot

ro
pi

c
ve

lo
ci

ty
fie

ld
to

sh
ow

an
is

ot
ro

pi
c

co
va

ria
nc

e
m

od
el

an
d

th
e

tr
av

el
tim

e
er

ro
rs

to
sh

ow
up

as
w

hi
te

no
is

e.



P1: JRX

Mathematical Geology [mg] pp1061-matg-477138 December 4, 2003 22:38 Style file version June 25th, 2002
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Figure 7. Experimental and model variogram surface of the anisotropy-corrected velocity. This R.V.
can be considered isotropic in the shorter ranges (less than 35 m). For longer ranges the influence of
two nested structures in the northwest and northeast directions (due to the anisotropic correction) can
be seen.

kriging is an exact estimator, i.e., the estimated field will pass through the available
infomation (velocity values on the original grid). As a pattern of spatial continuity
we adopted an isotropic spherical model with a range of 35 m, a sill of 0.95, and
a nugget effect of 0.10, inferred by means of a classical variography.

Figure 9(A) and (B) shows the ordinary kriging tomogram and the indicator
kriging probability field for a cutoff of 5.0 km·s−1. As one can see, the spatial
structure of the isotropic velocity field (Fig. 6(A)) has been conserved in the
ordinary kriging velocity field (Fig. 9A), but the high anomalies in the corners of
the original R.V. (isotropic velocity field) have been suppressed. Also, the velocity
range of variation of the ordinary kriging field, 4.8–5.6 km·s−1, is consistent with
the geological and geophysical studies. As expected, kriging acts as a low-pass
smoothing filter for the anomalous model parameters. In the indicator kriging
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Figure 8. Experimental variogram surface for anisotropy-corrected traveltime errors. Errors still
show a spatial correlation that has decreased to 5 m instead of 38 m, which is the correlation
distance in the case of the anisotropic traveltime errors. This analysis serves to confirm the
reliability of the anisotropic correction.

field (Fig. 9(B)) the areas with higher probability (close to 1.0) delimit in the
tomogram the low velocity zones. This knowledge is important for the detection
and probabilistic classification of the break zones in a geotechnical study. Thus, the
kriging techniques (parametric and nonparametric) serve to estimate the velocity
field in the areas where this field has been considered anomalous and to quantify
the uncertainty of these estimations. The results shown in Figure 9(A) can be
improved by an adequate filtering of the outliers. If we consider a filtered data set,
the final result is slightly different: the north velocity field has a larger spatial range
towards the south. This conclusion is in agreement with results showed in Gelbke,
Miranda, and Sattel (1989). It is also important to note that these authors used a
complete angular coverage of the massif (three-ray data sets) while in our study
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968 Martı́nez, Pérez, González, Alvarez, and Su´arez

we only worked with one of these (data set 1). An important conclusion is that
the kriging filter does not substitute an adequate filtering of the outliers previous
to the inversion process. This is understandable since geostatistics does not create
new information.

Finally, the geostatistical methodology provides a powerful tool (conditional
simulation techniques) to study and quantify the massif heterogeneities. Tomogram
simulation is very important when these are used to generate plausible geological
models. This is the case in hydrogeological models for contaminant migration,
where the tomogram is used to infer the geology and the permeability field. The
aim of these models is to estimate the contaminant paths. These paths depend
nonlinearly on the hydrogeological parameters and, thus, simulation techniques
are needed. The use of kriging fields to estimate fluid paths will lead the models to
give an incorrect solution, because they are highly dependent on the maximal and
minimal values of permeability. Figure 10 shows two different conditional simu-
lations of the isotropic velocity, obtained via the sequential Gaussian simulation
algorithm (Deustsch and Journel, 1992) applied to the normal-score-transformed
R.V. (isotropic velocity field). As expected, the conditional simulation technique
reproduces a similar spatial structure to the original isotropic field and emphasizes
the R.V. heterogeneities smoothed by the kriging estimator.

As a main conclusion, the geostatistical methodology opens the possibility
of considering the inverse problem variables as stochastic processes, an important
feature in cases where the tomogram is to be used as a tool of assessment.

CONCLUSIONS

In this paper we have focused our attention on showing that the geostatistical
methodology is well suited to the probabilistic analysis of the deterministic ve-
locity field generated by inversion. The geostatistical analysis of these variables
(anisotropic and isotropic velocities and travcltime errors) provides us with a new
method for inferring crucial information about model parameters in seismic tomo-
graphic experiments (range of normal velocities and direction of the geophysical
anisotropy) and can be considered as a quality analysis tool to characterize the re-
liability of the anisotropy corrections incorporated into the numerical [algorithm].
These are important sources of a priori information for the numerical algorithms to
solve the tomographic inverse problem. Also, kriging techniques act as a filter for
the anomalous model parameters and serve to quantify the uncertainty of these es-
timations. Finally, the geostatistical approach to inverse problems opens the way
to the application of nonparametric kriging and conditional simulation techniques
to the model parameters (velocity field), which are very useful in cases where the
tomogram is to be used as a tool of assessment to quantify probabilistically the
rock heterogeneities.
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