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A B S T R A C T

Temporary storage of sediment within alluvial valley floors modulates the long-term transport of sediment through
landscapes. The fate of weathering minerals or sediment-bound constituents in fluvial environments depends on the
relative time scales of constituent degradation and particle residence time within valleys. Particles follow a set of
trajectories through valley floors: some particles pass directly through the channel, reaching the basin outlet rapidly
after being introduced to the fluvial system; others remain for long periods in deposits such as flood plains. Traditional
sediment routing theory, based on the principle of sediment mass conservation along reaches of channel, does not
account for exchanges of sediment with temporary sediment storage reservoirs outside the channel, such as flood
plains, deltas, and alluvial fans. This article formalizes a theory that incorporates the role of such exchanges in the
migration of sediment through river systems, by computing the probabilistic structure of particle trajectories through
alluvial valley floors. Equations are developed for computing these trajectories from the sediment budget of a valley
floor in steady state. Mathematical strategies for using such relationships to model transient storage conditions are
proposed, and other potential model enhancements are discussed. The approach is illustrated using a hypothetical
valley floor as an example. The theory can be used to examine rates of sediment overturn in valleys, map particle
residence times, and account for the redistribution and decomposition of weathering minerals and particle-bound
constituents. The theory has numerous potential management applications, some of which are discussed herein. The
hypothetical example demonstrates that the probability distribution of particle residence times in the valleys of most
alluvial rivers should be strongly right skewed.

Introduction

Sediment eroded from upland sources is often de-
posited in the alluvial floors of river valleys. Sed-
iment can be deposited in a variety of storage res-
ervoirs within the valley floor, including the
channel bed, bars, flood plains, and deltaic deposits
(fig. 1). However, routing sediment through rivers
is usually treated as a one-dimensional mass con-
servation problem, in which sediment transport
rates are estimated at channel cross sections and
changes in storage are computed between them
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(Vanoni 1975). This approach has been valuable in
a wide range of engineering and scientific appli-
cations, but it has at least two important limita-
tions. First, it is widely understood that large quan-
tities of sediment are stored outside river channels
in deposits such as flood plains, and the annual
rates of exchange between channel and flood plain
can exceed the annual downstream flux (Meade
1982; Kesel et al. 1992; Dunne et al. 1998). Typical
sediment routing models do not account for ex-
changes of sediment with such deposits or for the
role of these deposits in modulating downstream
sediment delivery. Second, the mass balance ap-
proach predicts changes in sediment storage along
reaches of channel but cannot track individual par-
ticles through the valley floor. This important lim-
itation makes it difficult to use traditional sedi-
ment routing models to predict the behavior of
sediment-bound constituents in watersheds. Many
pollutants, tracers, and nutrients enter fluvial sys-
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Figure 1. Schematic diagram illustrating the geomorphic context for using probability theory to analyze the tra-
jectories of particles through alluvial valley floors. The state space of this example has eight transient states distributed
among three reaches (channel bed, bars, and flood plains in reaches 1 and 2, and channel and delta deposits in reach
3) and a single absorbing state representing sediment delivery to the ocean. Reach boundaries are chosen at geo-
morphically significant locations, such as major tributary junctions or abrupt changes in valley morphology.

tems contained in or bound to particles. There are
many applications in which it would be valuable
to model their long-term redistribution and deliv-
ery in the alluvial environment.

One possible solution to both of these problems
is to analyze the trajectories of particles as they
move through a series of storage reservoirs in the
valley floor, taking a Lagrangian, rather than the
traditional Eulerian, approach to the sediment rout-
ing problem. Viewed over appropriate time and

space scales, the trajectory of a particle through an
alluvial valley floor is a random process consisting
of episodes of transport separated by intervals of
storage of varying length. Even if the rates of all
the sediment transport and exchange processes in
rivers were known precisely, the movement of a
particular particle would still be a random process.
For this reason, we followed the lead of Dietrich et
al. (1982) and Kelsey et al. (1987), who proposed
using probability theory to model the transport of
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sediment into and out of temporary sediment stor-
age reservoirs.

Dietrich et al. (1982) presented equations to com-
pute the residence time of sediment in steady state
channel and flood plain reservoirs. They illustrated
the procedure using dendrochronology of flood
plain trees (Everitt 1968) and showed how the travel
time of particles through such a deposit can be
computed from the age distribution of sediment in
that deposit. They emphasized that particle resi-
dence time in the active channel is always less than
the residence time of sediment in the valley floor
because of the possibility of sediment storage out-
side of the channel. They proposed that sediment
exchanges among deposits of differing mobility
could be expressed as transition probabilities.

Kelsey et al. (1987) elaborated this idea by char-
acterizing the long-term movement of sediment
through an alluvial valley floor as a discrete time
Markov chain. They developed a Markov model of
sediment transport in Redwood Creek, California,
which routed sediment through three contiguous
reaches of valley floor and into the Pacific Ocean.
The authors computed the mean particle transit
time to the ocean for particles starting in each of
12 temporary storage reservoirs. They modeled the
changes in the volume of active, semiactive, in-
active, and stable sediment reservoirs using mea-
surements of reservoir volumes and estimates of
bed load transport. This study demonstrated the
feasibility of using probability theory to model
long-term sediment movement through valleys.

Neither of these studies addressed the physical
mechanisms by which sediment is exchanged with
the flood plain and other temporary storage reser-
voirs. The purpose of this article is to formalize a
process-based, probabilistic approach to sediment
routing and to develop a general framework for pa-
rameterization using the sediment budget of a valley
floor. We present equations for estimating trajectory
probabilities and for using these probabilities to map
particle residence times to evaluate the rate of sed-
iment overturn in the valley floor and to examine
the loci and duration of temporary particle storage.
We also present a means of accounting for redistri-
bution and degradation of particle-bound constitu-
ents. Some of the basic ideas presented were de-
scribed in an earlier article (Malmon et al. 2002),
which briefly demonstrated the potential of the ap-
proach for managers, using an example from Los Al-
amos, New Mexico. This article expands on and gen-
eralizes that study by presenting a more fully
elaborated theoretical framework and develops the
equations and procedures necessary to apply the the-
ory in other field areas.

The article is organized as follows. In “Theoret-
ical Development,” we develop the theoretical
framework, discuss model parameterization, and
introduce a hypothetical example. “Analysis of the
Model” contains equations for analyzing the model
in steady state, on the basis of the theory of discrete
time Markov chains. In “Discussion,” we discuss
the main limitations of the model in its current
form and outline mathematical strategies that
could be used to characterize three important as-
pects of natural fluvial systems for which equations
are not presented in the current text: multiple par-
ticle size classes, non–steady state conditions, and
the stochastic nature of forcing mechanisms.

Theoretical Development

The trajectory of a particle through an alluvial val-
ley floor is a stochastic process influenced by rates
of sediment transport, deposition, and remobiliza-
tion. The stochastic model presented analyzes the
trajectory of a hypothetical particle moving
through a valley floor consisting of a finite number
of sediment storage reservoirs in steady state. The
steady state assumption requires that the mass of
each of the deposits remains roughly constant over
time. This assumption is approximately valid in
many valleys over timescales relevant to the con-
tamination and recovery of flood plains; the pos-
sibility of adapting the model to the transient case
is discussed later.

A Markov chain is a stochastic process that takes
on a finite number of values in which the transition
from one state to the next is determined only by
the current state of the process and not by its prior
history (Ross 1997). If the future movement of a
particle depends only on its present location and
not its movement history, the process can be con-
sidered as a Markov chain. Because mathematical
properties of Markov chains are simple and well
understood, formulating the problem in such a way
capitalizes on a well-established body of mathe-
matical theory. The Markov chain is specified by
(1) the state space, or the universe of values or states
that the process can assume, and (2) the transition
probabilities, which govern the movement of the
process among the values in the state space.

State Space of the Model. Figure 1 schematically
illustrates the nature of the state space in a valley
floor, consisting of transient and absorbing states.
Sediment stores such as the channel bed, bars, flood
plains, and deltaic deposits are transient states,
since particles reside in them temporarily. The
downstream boundary represents an absorbing
state, because a particle that enters it cannot return
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Figure 2. Venn diagram illustrating the derivation of
transition probabilities for a model with two transient
states, i and j, and a single absorbing state. The rectangle
represents the universe of possible outcomes after an in-
crement of time for a particle initially stored in transient
state i. The probability of each outcome is equal to the
proportion of the rectangle occupied by that outcome.
Circle Ei is the event that the particle is eroded from i,
and ovals Di and Dj are the events that the particle is
deposited in i and j, respectively, after first being mo-
bilized from i.

to any of the other states. Additional absorbing
states could be present where sediment is perma-
nently removed from the valley floor by tectonic
movements or by engineering, a capability that
could allow treatment of processes such as sedi-
ment deposition within a subsiding alluvial basin
or the impact of in-stream gravel extraction on the
migration of particles through rivers. For simplic-
ity, the model outlined contains only one absorbing
state (sediment transport past the downstream
boundary); thus, there are states in the stateb � 1
space (Q) of the process. We denote the set of tran-
sient states by the letter B, the set of absorbing
states by A, and the entire state space by Q. Set B
contains b temporary sediment stores, and set A
contains a absorbing states.

The valley floor can be divided into reaches to
account for downstream variations in sediment
storage and exchange rates. Reaches are delineated
on the basis of major tributary junctions, changes
in valley morphology, or at other points where sed-
iment and constituent flux are of interest (fig. 1).
Within each reach, the active portion of the valley
floor is treated as a set of discrete transient states.
Within each state, all particles are equally suscep-
tible to future erosion, sediment transport, and de-
position. The approximation of equal mobility

within each transient state is central to several of
the equations presented. Therefore, storage units
must be delineated in such a way as to ensure that
this is a reasonable approximation over some rel-
atively long timescale on the order of decades or
longer. Examples of such storage elements include
the channel bed, bars, flood plain units, or geo-
graphical subsets of these deposits.

The property of equal mobility for each transient
state is a fundamental assumption of the mathe-
matical treatment developed in this article. The
validity of the equal mobility assumption depends
entirely on a realistic delineation of the state space,
which must be based on a solid, field-based con-
ceptual model of the sediment budget. Several geo-
logic and geomorphic factors, such as particle size
and stratigraphy, must be considered with respect
to this assumption, which states that, at least in
an approximate way, all the particles within each
transient state are equally susceptible to future mo-
bilization, transport, and deposition.

Note that the equal mobility assumption does
not require that sediment in a reservoir be well
mixed. For example, the particles in a vertically
accreting flood plain that erodes by lateral bank
erosion could be considered equally mobile, even
though the flood plain could contain distinct layers
of sediment with different particle size and age
characteristics. An erosion event such as a bank
collapse would mobilize a sample of the entire
stratigraphic section, including layers of old and
young material. The issue of treating particle size
variability within the context of the equal mobility
assumption is elaborated in “Discussion.”

Let r denote a particular reach and Br denote the
subset of the transient state space located within
it (that is, ). In the following discussion, weB O Br

assume that all the deposits within reach r can be
reached from one another within a single time in-
crement. However, particles stored downstream of
r cannot reach any of the elements in Br.

Transition Probabilities and the Transition Matrix.
A particle in a transient state or geomorphic unit
i has a fixed probability of moving to state jp ≥ 0ij

after a unit time. These transition probabilities are
controlled by the rates of sediment transfer within
and through the valley floor. Kelsey et al. (1987)
assigned transition probabilities on the basis of a
qualitative ordering of the relative importance of
the various processes in the sediment budget. Here
we present a systematic strategy for computing the
transition probabilities directly from an estimate of
the sediment budget of the valley floor.

Each transition consists of two distinct events:
(1) the erosion event Ei that causes the particle to
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Table 1. States in the State Space for Hypothetical
Valley Floor

State

1 Reach A channel
2 Reach A flood plain
3 Reach B channel
4 Reach B flood plain
5 Reach C channel
6 Reach C flood plain
7 (x) Absorbing state, transport past downstream

boundary

be mobilized from unit i and (2) the deposition
event Dj that places the particle in unit j. The Venn
diagram in figure 2 illustrates the derivation of tran-
sition probabilities for a particle stored in transient
state i within a valley floor consisting of two tran-
sient states, i and j (in the same reach) plus one
absorbing state.

If the particle is currently residing in unit i, the
task is to compute the probabilities that the par-
ticle will reside in unit i, unit j, and the absorbing
state after a time increment. The sum of these three
probabilities is 1 because these are the only three
outcomes in this simple model. The rectangle in
figure 2 represents the universe of possible out-
comes and has an area of 1. The proportion of the
rectangle area occupied by a given outcome cor-
responds to the probability of that outcome. There
are four distinct regions in the Venn diagram in
figure 2, but two of these represent trajectories that
result in the same outcome—the particle remain-
ing in unit i—and thus, there are only three out-
comes and three transition probabilities.

For a particle to move from unit i to unit j, it
must first be eroded from i (event Ei in fig. 2) and
then deposited in j (the conditional event Dj in fig.
2). In general, the transition probability per time
pij, where , is equal to the fraction of the entirei ( j
sample space occupied by event Dj:

p p P(E )P(DFE ). (1)ij i j i

Equation (1) is a rearrangement of Bayes’ formula
(e.g., Ross 1997, p. 14).

The particle can remain in i either by not being
mobilized (event the complement of Ei,) or bycE ,i

being mobilized and then redeposited in i (oval Di).
The transition probability pii is the sum of proba-
bilities of these two outcomes (see fig. 2):

cp p P(E ) � P(E )P(DFE )ii i i i i

p [1 � P(E )] � P(E )P(DFE ). (2)i i i i

If a particle is mobilized within the valley floor

and not redeposited in any of the b transient states,
it reaches the absorbing state, whose index is x (i.e.,
it leaves the system at the downstream boundary).
In figure 2, the probability that a particle starting
in unit i is transported directly out of the model
system at the downstream boundary, pix, is the frac-
tion of area inside Ei but not occupied by Di or Dj.
Generalizing this principle to a system containing
an arbitrary number, b, of transient states and a
single absorbing state at the downstream boundary,
we find that the probability per time that a particle
exits the valley floor is

b

p p P(E ) 1 � P(DFE ) . (3)�ix i j i[ ]
jp1

Using equations (1)–(3), we can compute the tran-
sition probabilities from , the erosion proba-P(E )i
bilities, and , the deposition probabilities,P(DFE )j i

which are determined using the sediment budget.
Erosion Probabilities. For transient state i, the

probability of any particle being mobilized perP(E )i
unit time is the inverse of the mean residence time
of sediment in that deposit. Dietrich et al. (1982)
presented equations for computing this residence
time from the age distribution of sediment stored
in a deposit, measured from dendrochronology ap-
plied to flood plain trees. However, in practice these
data are not available for every sediment reservoir.
If all particles within a reservoir can be considered
to be equally mobile (a requirement of the geo-
morphic delineation of the state space, as discussed
previously), then the erosion probability per unit of
time is the mass rate of erosion of deposit i divided
by the total mass of that deposit:

QEiP(E ) p , (4)i mi

where is the erosion rate of deposit i (mass/time)QEi

and mi is the mass of unit i. Equation (4) assumes
that all the particles in unit i are equally susceptible
to erosion. The transient states must be defined in
such a way as to ensure this assumption is a rea-
sonable approximation, as discussed previously.

In some cases, it might be necessary to separate
portions of geomorphic units to improve the valid-
ity of the equal mobility assumption for computing
erosion probabilities. For example, within a given
reach, the flood plain may be subdivided into areas
near the channel and farther from the channel,
since particles closer to the channel have a higher
probability of being eroded. However, as both a de-
position rate and an erosion rate must be estimated
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Figure 3. Schematic diagram of a Markov model for a hypothetical valley floor divided into three reaches, each
containing a channel and flood plain. In this example, a particle can be deposited in the channel or flood plain or
transported into the absorbing state. Odd-numbered states are the channel units, even-numbered states are the flood
plains, and state x is the absorbing state. The transition probabilities are computed from the sediment budget (table
1) and equations (1)–(8). The matrix containing the computed transition probabilities is presented in table 3.

for each transient state, increasing the size of the
state space requires a corresponding increase in the
amount of data required to parameterize the model.
The level of detail and realism represented by an
application of the model must be weighed against
the availability and reliability of sediment budget
data.

Deposition Probabilities. If both i and j are lo-
cated within reach r, then the conditional proba-
bility that a particle will be deposited in j, given
that it has eroded from i, is

QDjP(DFE ) p , (5)j i Q �� QO Dk�Br kr

where is the mass rate of sediment depositionQDj

into deposit j (mass/time), Br is the portion of the
transient state space B that is located in reach r,
and is the sediment flux out of reach r at itsQOr

downstream end. The summation repre-� QDk�B kr

sents the total rate of sediment deposition into all
the units located within reach r (including state j).
A particle in transport within reach r (whether it
entered from upstream or from external sources or
was eroded from one of the units located in that
reach) will either be deposited in one of the res-
ervoirs in Br or will exit the reach at its downstream
boundary. The denominator in equation (5) equals
the total mass of sediment in transport within
reach r, and the probability is the mass frac-P(DFE )j i

tion of that sediment that is deposited in j.
If the particle is not deposited in any of the units
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in reach r, it enters the downstream reach r � 1.
The probability that a particle leaves reachP(OFE )r i

r given that it was eroded from deposit i in reach
r is

QOrP(OFE ) p . (6)r i Q �� QO Dk�Br kr

If j is a transient state located in the reach im-
mediately downstream of the reach where i is lo-
cated, then in order for a particle to move from i
to j in a unit time, the following three events must
occur: (1) the particle must be eroded from i (in
reach r), (2) the particle must be transported out of
reach r, and (3) the particle must be deposited in j
(in reach ). In this case, the conditional prob-r � 1
ability that a particle is deposited in j, given that
it eroded from i, is the intersection of events 2 and
3:

P(DFE ) p P(OFE ) ∩ P(DFO )j i r i j r

QDjp P(OFE ) (7)r i Q �� QO Dk�Br�1 kr�1

for and , where the conditional prob-i � B j � Br r�1

ability is determined from equation (6).P(OFE )r i

In general, if i is located in reach r and j is located
in an arbitrary reach n downstream of reach r, a
particle must consecutively enter and leave each
intermediate reach and eventually deposit in unit
j. The probability of this occurring tends to de-
crease with increasing distance downstream, since
the deposition probability is the product of an in-
creasing number of terms less than 1:

P(DFE ) p P(OFE )P(O FO ) …j i r i r�1 r

P(O FO )P(DFO ) (8)n�1 n�2 j n�1

for and , where Bn is the set of geo-i � B j � Br n

morphic units or transient states located within
reach n.

In summary, all the transition probabilities can
be computed from the sediment budget, which con-
sists of (1) the erosion and deposition rates, andQEi

, of each geomorphic unit i; (2) the sediment fluxQDj

at the downstream boundary of each reach r;QOr

and (3) the mass mi of each of the storage reservoirs.

The transition probabilities are arranged in a tran-
sition matrix :P p {p }ij

… p p p11 1b 1x

_ 5P p , (9)p p p b1 bb bx
…0 0 1 

where x is the index of the absorbing state and b
is the total number of transient states in the tran-
sient state space, B. The final row contains the tran-
sition probabilities for particles starting in the ab-
sorbing state and indicates that particles that have
already been transported out of the system remain
out of the system with probability 1. The row sums
in P must all equal 1 to account for all possible
outcomes for a particle starting in unit i. All the
information for computing particle trajectories in
steady state valleys is contained in the transition
probability matrix.

Hypothetical Example. To illustrate the model, a
hypothetical alluvial valley floor is divided into
three reaches, each containing a channel sediment
store and a flood plain store (table 1). For simplicity,
all the particles entering the valley are similar and
suspendible by flood flow. This situation might rep-
resent a well-sorted sand-bed river with sandy
banks. Adaptations depicting a wider range of nat-
ural sorting processes are discussed later.

During the course of a year, particles are ex-
changed between the channel and flood plain and
transported downstream. Figure 3 shows all the
transitions possible in a given year. In this example,
all the downstream and local (i.e., within the same
reach) states are accessible from each transient
state. The transition matrix is

p p p p p p p11 12 13 14 15 16 1x 
p p p p p p p21 22 23 24 25 26 2x

0 0 p p p p p33 34 35 36 3x

P p 0 0 p p p p p , (10)43 44 45 46 4x

0 0 0 0 p p p55 55 5x 0 0 0 0 p p p65 66 6x

0 0 0 0 0 0 1 

where the odd subscripts represent channel units
increasing downstream, the even subscripts repre-
sent flood plain units, and x is the absorbing state
(fig. 3).

A hypothetical sediment budget for this system,
with figures reasonable for a small stream, is pre-
sented in table 2. The total amount of sediment
stored within each reach is 21 million metric tons
(T), including 106 T of channel-stored sediment and

T in the flood plain. The sediment flux620 # 10
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Table 2. Sediment Budget of Hypothetical Valley Floor

Reach A Reach B Reach C

Channel mass (#106 T) 1 1 1
Flood plain mass (#106 T) 20 20 20
Downstream sediment flux (#106 T/yr) 2 2 2
Channel erosion/deposition rate (#106 T/yr) .5 .5 .5
Flood plain erosion/deposition rate (#106 T/yr) 1 1 1

Note. .T p tons

(QO) through each reach is T/yr. Half the62 # 10
sediment stored in the channel in a given year is
mobilized by channel erosion ( T/yr). Five60.5 # 10
percent of the flood plain sediment is mobilized by
bank erosion each year (106 T/yr; table 2), and this
material is replaced each year by flood plain sedi-
mentation. All the entries in the transition prob-
ability matrix (eq. [10]) can be computed from the
sediment budget in table 2 using equations (1)–(8).
For example, the probability of a particle moving
from the flood plain in reach A (unit 2) to the chan-
nel in reach C (unit 5) in any one year is:

p p P(E )P(O FE )P(O FO )P(D FO )25 2 A 2 B 1 5 2

610
p 6( )20 # 10

62 # 10
# 6 6 6( )2 # 10 � 0.5 # 10 � 10

62 # 10
# (11)6 6 6( )2 # 10 � 0.5 # 10 � 10

60.5 # 10
# 6 6 6( )2 # 10 � 0.5 # 10 � 10

p 0.0023.

The numerical subscripts on E and D refer to the
numbered units in the transient state space B (with
odd numerals representing channel units and even
units representing flood plains, as in fig. 3), whereas
the alphabetical subscripts on O refer to the name
of the reach. The remainder of the entries in the
transition probability matrix (table 3) are computed
in the same way. Note that all the row sums in
table 3 equal 1, with minor deviations due to round-
ing errors.

Analysis of the Model

Definition of Terms: Transit Time, Flushing Time, and
Residence Time. We adopt the relevant terminol-
ogy of Dietrich and Dunne (1978), Dietrich et al.
(1982), and Kelsey et al. (1987) wherever possible.

The characteristic residence time of sediment in a
deposit is the expected amount of time a particle
will remain in that deposit before being remobi-
lized. The residence time of a deposit is thus the
inverse of the erosion probability of that deposit
(eq. [4]). Dietrich and Dunne (1978) estimated a res-
idence time (per meter of valley length) for channel
and flood plain deposits by dividing the volume per
meter of each reservoir by the volumetric bed load
flux. For the channel bed, this definition of resi-
dence time can be interpreted as the product of the
reach length with the inverse of the velocity of bed
load sediment through the channel. For the flood
plain, it is more difficult to interpret this definition
in terms of physical processes. Kelsey et al. (1987)
slightly modified this definition, dividing the bed
load flux by sums of reservoir volumes to increase
residence times for less active deposits. Regardless
of the denominator, the bed load flux in the nu-
merator is probably not a realistic measure of the
rate at which sediment is mobilized from storage,
particularly for deposits such as flood plains. Thus,
estimates of residence time for fluvial sediment res-
ervoirs have been somewhat arbitrary and
amounted to “an index of the size of the reservoir”
(Kelsey et al. 1987, p. 1742) rather than a quanti-
tative, process-based definition. A more general def-
inition of the expected particle residence time (for
a reservoir in steady state) is the inverse of the ero-
sion probability in equation (4): the mass of a par-
ticular deposit divided by the erosion rate of that
deposit. Note that this definition of residence time
does not specify the amount of time particles will
ultimately spend in a deposit because particles can
be mobilized and redeposited in the same reservoir
multiple times.

The residence time of a deposit is distinguished
from the transit time for a particle in that deposit,
which we define here as the length of time a par-
ticle takes to reach an absorbing state. This defi-
nition is different from the use of the term by Die-
trich et al (1982), in which the transit time function
referred to the cumulative age curve for sediment
leaving a particular reservoir (their description did
not include an absorbing state). Some particles will
be quickly mobilized and transported rapidly out
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of the valley, while others will remain in storage
for long periods or will be repeatedly stored in
downstream deposits. Thus, the sediment in each
transient state or sediment storage reservoir exhib-
its a probability distribution of particle transit
times. The mean of this distribution is what Kelsey
et al. (1987) called the flushing time of the deposit,
which is the expected amount of time a particle
starting in that deposit will spend in the valley
floor.

Probability That a Particle Will Be in a Given Place
at a Given Time. Matrix P (eq. [9]) contains the
transition probabilities pij for particle movement
during a single time increment. The probability
structure of particle transitions at an arbitrary time
t can be computed using the Chapman-Kolmogorov
equations, a fundamental theory for discrete time
Markov chains (Ross 1997). Let denote the t-P(t)
step transition matrix, which contains the proba-
bilities that a particle starting in state i willp (t)ij

reside in state j after exactly t years. The theory
states that

tP(t) p P . (12)

In other words, the t-step transition matrix is equal
to the tth power of the single-step transition matrix
(according to the definition of powers for a square
matrix). Thus, the probability that a particle will
reside in j at time t, given it started in i, is the entry
in the ith row and jth column of Pt.

The Chapman-Kolmogorov equations define the
probability structure of future particle trajectories
for all the sediment currently stored in the valley
floor and can be used in a variety of applications.
For example, if mining waste containing heavy
metals was introduced into a river channel or other
reasonably well-mixed sediment reservoir i (with-
out significantly affecting the total volume and
therefore the steady state condition of the valley
floor), and then the releases ceased, it is straight-
forward to compute the distribution of the metal
at any subsequent time t: the proportion of the in-
troduced metal stored in every state in the state
space at time t is the ith row of Pt.

Particle Transit Times. The particle transit time
is the time a particle takes to reach an absorbing
state, starting from some initial deposit i. Some
particles will exit the system rapidly, whereas oth-
ers will be stored repeatedly within intermediate
storage for long periods of time. Kelsey et al. (1987)
showed that the mean particle transit time for each
temporary storage reservoir could be easily com-
puted using the fundamental matrix (which is dis-
cussed further later). They also presented an equa-

tion (eq. [10] in their article) that can compute the
variance in transit times for particles starting in
each transient state.

If transit times were normally distributed, the
entire distribution of particle transit times could
be specified from the mean and variance. Dietrich
et al. (1982) hypothesized that particle transit times
for sediment transport through river valleys are
probably not normally distributed, so the mean
transit time (i.e., the flushing time) may be a poor
indicator for the bulk of sediment in a given storage
reservoir. They pointed out that, in order to address
questions relating to chemical and physical
changes to which sediment is subjected while trav-
eling through a valley, “one must attempt to define
the transit-time distribution” (Dietrich et al. 1982,
p. 20).

It is possible to derive the probability density
function of transit times for each reservoir using
the Chapman-Kolmogorov equations. Let Pt be the
t-step transition matrix for a system with only one
absorbing state, x; the one-step transition matrix is
arranged as in equation (9). The proportion of par-
ticles originating in transient state i that have a
transit time of t years is equivalent to the proba-
bility that any particular particle reaches the ab-
sorbing state in exactly t years. This probability is

t t�1g (t) p P � P , (13)i ix ix

where is the transit time probability density atg (t)i

time t for sediment in unit i at time 0 and de-tPix

notes the entry from the ith row and last column
of the matrix P raised to the tth power. Figure 4
shows the transit time distributions computed
from the transition probability matrix in table 3
using equation (13). The transit time distributions
in figure 4 account for repeated sediment storage
in transient states during particle trajectories and
can be interpreted as the probability density func-
tion of particle residence time in the valley floor.
All six probability distributions are strongly right
skewed.

The two plots have different timescales, reflect-
ing the much higher mobilization probabilities
(lower residence times) associated with channel-
stored sediment. In figure 4a, the modal transit
time for the channel-stored sediment is exactly 1
yr, whereas modal transit times for flood plain sed-
iment vary from 3 yr (reach C) to 9 yr (reach A; fig.
4b). Mean transit times for channel-stored sedi-
ment are much longer than they would appear from
figure 4a; this is because the tails of the distribu-
tions in figure 4 extend to infinity. The long tails,
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Table 3. One-Step Transition Probabilities for Hypothetical Valley Floor

Particle location at
time t (state i)

Particle location at time t � 1 (state j)

1. Reach A
channel

2. Reach A
flood plain

3. Reach B
channel

4. Reach B
flood plain

5. Reach C
channel

6. Reach C
flood plain

7 (x). Absorbing
state

1. Reach A channel .571 .143 .041 .082 .023 .047 .093
2. Reach A flood plain .0071 .964 .0041 .0082 .0023a .0047 .009
3. Reach B channel 0 0 .571 .143 .041 .082 .163
4. Reach B flood plain 0 0 .0071 .964 .0041 .0082 .16
5. Reach C channel 0 0 0 0 .571 .143 .286
6. Reach C flood plain 0 0 0 0 .0071 .964 .029
7 (x). Absorbing state 0 0 0 0 0 0 1

Note. Probabilities are that a particle starting in i will be in j after a single increment of time.
a Derivation of probability p25 is demonstrated by equation (11) in the text.

not visible in figure 4a, primarily reflect the par-
ticles initially stored in the channels that tempo-
rarily settle in flood plains, where they may remain
for hundreds or thousands of years before being re-
mobilized. In general, sediment has a low proba-
bility of being deposited farther from the channel,
where it is least likely to be remobilized. This leads
to long tails on such distributions and suggests a
generalizable hypothesis that strongly right-
skewed transit time distributions are characteristic
of sediment reservoirs in alluvial valleys.

Computing the transit time distributions from
equation (13) could be useful in many scientific and
management applications. These distributions
quantify the mechanisms by which the various geo-
morphic reservoirs regulate sediment delivery in
fluvial systems. Sensitivity analyses involving
transit time distributions could be used to predict
the influence of environmental conditions (which
control the transition probabilities) on the rate and
nature of sediment delivery from alluvial valley
floors. These results are applicable not only to the
flushing of contaminated sediment from an alluvial
valley but also to interpretations of other geomor-
phological records in alluvium, such as the suite of
fission-track ages in minerals released by erosion
after a pulse of mountain building, which may par-
tially reflect the distribution in particle transit
times from the source area to the location where
the sediments were sampled.

Mean Time Spent in Transient States. In some ap-
plications, it may be useful to estimate how long
particles will spend in each of the downstream stor-
age reservoirs before entering the absorbing state.
Let sij denote the expected time that a particle start-
ing in i will spend within transient state j before
reaching the absorbing state. Let S denote the ma-
trix of values sij for all (i.e., a matrixi, j � B b # b

for all the transient states). Matrix S is called the
fundamental matrix and is computed from

�1S p (I � P ) , (14)B

where PB specifies the submatrix of P containing
only the transition probabilities from transient
states to transient states and I is the identity matrix
with the same dimensions as PB (Resnick 1992, p.
106). The expected length of time a particle starting
in i will spend in each of the transient states before
reaching the absorbing state is the ith row of matrix
S. The sum of the ith row of S is the expected
amount of time for a particle starting in i to reach
the absorbing state, as pointed out by Kelsey et al.
(1987). The fundamental matrix computed for the
hypothetical example is presented in table 4. The
matrix shows that, given the sediment budget in
table 2, particles spend most of their time in the
valley floor within flood plain deposits. This state-
ment is especially true for sediment that starts in
flood plain deposits, where, on average, particles
remain for approximately 30 yr before being mo-
bilized initially and less than 25 yr in subsequent
storage. In long reaches of large rivers (conditions
for which the sediment budget in this example is
not realistic), the probability of fine particles reach-
ing the outlet without interacting with the flood
plain would become smaller. In this case, both the
expected duration in the flood plain and the pro-
portion of the transit time spent in flood plain stor-
age would be even greater.

In applications where sediment-bound constitu-
ents decay via chemical, physical, or biological pro-
cesses, equation (14) can be used to evaluate the
time available for constituent processing. The fate
of such constituents is ultimately determined by
the relative timescales of the chemical decay pro-
cess and the residence time of particles in different
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Figure 4. Probability distributions of particle transit
time (i.e., particle residence time within the valley floor)
in the hypothetical example. a, Sediment initially stored
in the channel units (states 1, 3, and 5; fig. 3). Probability
distributions extend to infinity, and the low but finite
probability of very long transit times account for high
mean transit times relative to the modal value (1 yr for
all three distributions). b, Sediment initially stored in
flood plain units (states 2, 4, and 6).

deposits. The fundamental matrix estimates the
amount of time particles are expected to spend in
each reservoir. Quantifying such properties in riv-
ers could contribute to the analysis of problems
related to weathering or constituent processing,
particularly if the reservoirs have different oxidiz-
ing or pH conditions.

Another potential application of equation (14) re-
lates to the hypothesis that downstream fining of
bed sediment in some gravel rivers is controlled by
weathering during long periods of particle storage
in the flood plain (Jones and Humphrey 1997). Ac-
cording to this hypothesis, particles stored in flood
plains develop weathering rinds whose thicknesses
are a function of the duration of sediment storage
in the flood plain. During intermittent episodes of
particle transport along the channel bed, these rinds
are quickly removed but subsequent fining by abra-

sion is limited. Using equation (14), we find that it
is possible to compute the amount of time an av-
erage particle will spend in the flood plain per kil-
ometer of travel distance along the channel. A sim-
ple particle weathering function could be developed
by sampling sediment of varying age and measuring
the abrasion rate of each sample with tumbling mill
experiments (this was attempted by Jones and
Humphrey 1997). Then the fundamental matrix
could be used to determine the amount of time
available for weathering in the flood plains and,
thus, to quantify the role of flood plain weathering
in downstream fining in gravel rivers.

Time Required for Evacuation of the Valley Allu-
vium. Next, we evaluate the timing of cumulative
delivery of fluvial sediment from a valley floor in
steady state. Let be the mass of sediment en-h (t)i

tering the absorbing state at time t (mass/time) that
originated in transient state i at time 0. Then

h (t) p g (t) # m , (15)i i i

where mi is the mass of sediment in deposit i and
is the transit time probability density, com-g (t)i

puted from equation (13). The cumulative mass
flux of sediment into the absorbing state over time
is computed by adding the contributions from each
of the original deposits and integrating over time:

t b

H(t) p h (t) dt, (16)�� i[ ]
ip10

where H(t) is the cumulative mass flux of valley-
stored sediment into the absorbing state. In this
context, valley-stored sediment refers to all the par-
ticles stored in the valley at time 0. Imagine paint-
ing all the particles in each transient state a dif-
ferent color at time 0. Equation (15) quantifies the
flux of sediment of each color into the absorbing
state over time, and equation (16) computes the
cumulative mass of painted particles entering the
absorbing state after time 0. The value H(t) is not
the same as the sediment flux into the absorbing
state because it does not account for future sources
of sediment from sources outside the valley floor
(i.e., unpainted particles entering from hillslopes
and tributaries). In a steady state valley, the total
sediment flux into the absorbing state will remain
constant through time, but the proportion of valley-
derived sediment relative to external sediment will
decrease.

Using equations (15) and (16), one can compute
the rate at which sediment in the valley floor is
evacuated and replaced with new sediment. For ex-
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Table 4. Expected Particle Transit Times for Particles Initially Stored within Hypothetical Valley Floor

Initial location of
particle

Expected duration in transient states (yr)

Expected transit time
through valley floor

1. Reach A
channel

2. Reach A
flood plain

3. Reach B
channel

4. Reach B
flood plain

5. Reach C
channel

6. Reach C
flood plain

1. Reach A channel 2.5 10 .5 10 .5 10 34
2. Reach A flood plain .5 30 .5 10 .5 10 52
3. Reach B channel 0 0 2.5 10 2.5 10 23
4. Reach B flood plain 0 0 .5 30 .5 10 41
5. Reach C channel 0 0 0 0 2.5 10 13
6. Reach C flood plain 0 0 0 0 .5 30 31

Note. Expected particle durations in transient states given by the fundamental matrix , where is the matrix�1S p (I � P ) P 6 # 6B B

of transition probabilities among transient states and is the identity matrix. Expected transit time through valley floor is the sumI
of expected durations in all transient states.

Figure 5. Modeled rate of evacuation of sediment from
the valley floor. Given the hypothetical sediment budget
in table 2, half the sediment stored in the valley at time
0 reaches the absorbing state within 29 yr, 90% within
91 yr, and 95% within 116 yr. Doubling the size of the
sediment storage reservoirs and halving the rates of each
geomorphic process (downstream sediment flux,
exchange with the channel, and exchange with the flood
plain) lead to a slower rate of sediment evacuation.

ample, the replacement time for half the sediment
in the valley can be computed by solving equations
(15) and (16) for . The rate ofH (t) /� m p 0.5ii�B

overturn of sediment for the hypothetical valley
system is plotted in figure 5. In this example, 50%
of the sediment initially stored in the valley floor
is evacuated within 21 yr, 90% in 91 yr, and 95%
in 116 yr. Experimentation using field data from
upper Los Alamos Canyon, New Mexico (Malmon
2002), showed that the time required to evacuate
90% of the sediment in the valley floor (denoted
T90) is useful as an index to compare the rel-
ative rates of sediment overturn under various
conditions.

The amount of time required for overturn of sed-
iment in an alluvial valley is scale dependent (i.e.,
evacuation rates are longer in a long reach than in
a short reach and longer for wide flood plains than
for narrow flood plains). The rate of sediment evac-
uation also depends on the rates of geomorphic pro-
cesses, with more rapid process rates in general
leading to more rapid sediment evacuation from the
valley floor. In the hypothetical valley floor, dou-
bling the size of the sediment reservoirs and re-
ducing the rates of geomorphic processes by 50%
leads to an increase in T90 from 91 yr to 365 yr (fig.
5).

In general, one would expect that particle transit
times and rates of sediment evacuation would be
longer for large, lowland rivers with wide flood
plains and relatively low rates of sediment
exchange with the flood plain. In contrast, particle
transit times and rates of sediment evacuation are
more rapid in steep, narrow valleys with relatively
small flood plains and rapid sediment exchange.

Disposition of Particles Entering from outside the
Valley. The preceding discussion concerned the
fate of particles residing within the valley floor at
time 0. However, the framework presented earlier
can also be used to analyze the disposition of par-
ticles entering the system from upstream or from

lateral hillslope or tributary sources. If we assume
the externally derived sediment is physically sim-
ilar to the sediment already stored in the valley
floor (the chemistry may be different, as illustrated
in the next section), the only additional calculation
required is to partition the externally derived sed-
iment among the transient states and the absorbing
state during the first increment of time. The sub-
sequent fate of those particles is the same as that
of the sediment initially stored in the valley floor.

The disposition of the externally derived sedi-
ment in the first time increment can be computed
by partitioning the influx according to the distri-
bution of deposition probabilities downstream of
the source area of interest, using equations (5)–(8)
(in this case, the probabilities are conditioned on
the fact that the particle entered the system from



Journal of Geology P A R T I C L E T R A J E C T O R I E S T H R O U G H V A L L E Y S 537

an external source rather than eroded from a de-
posit within the system). For example, let be aPext

row vector containing the probabilities of1 # b
deposition into the b transient states, computed
using equations (5)–(8) for the hypothetical valley
floor. The fourth entry in Pext is the probability that
a particle entering the system from upstream im-
mediately enters the flood plain in reach B (state
4, fig. 3):

P (4) p P(O Fparticle entered fromext A

upstream) # P(D FO )4 A

62 # 10
p (17)6 6 6( )2 # 10 � 0.5 # 10 � 10

610
# 6 6 6( )2 # 10 � 0.5 # 10 � 10

p 0.16.

Note that Pext will sum to less than 1, with 1 �
being the proportion of sediment enteringSPext

from upstream that reaches the absorbing state in
the first year.

Suppose we want to compute the expected transit
time of a particle that enters the valley floor from
upstream, ttupst. This is the weighted average of the
expected transit times for all the deposits, weighted
according to the proportion of the influx that ini-
tially enters in each of the six transient states and
the absorbing state:

tt p P S � 1 � P , (18)( )�upst ext sum ext

where Ssum is a column vector containing theb # 1
row sums of the fundamental matrix (eq. [14], or
the last column in table 4) and is computedP Sext sum

according to the rules of vector multiplication. The
second term on the right side of equation (18) will
always be small (less than 1 yr) and accounts for
the proportion of the sediment that immediately
enters the absorbing state. In the hypothetical val-
ley, ttupst is 31.7 yr, with approximately 19% of the
upstream sediment reaching the downstream
boundary in less than 1 yr. Computing the dispo-
sition of externally derived particles can be partic-
ularly useful when the chemical quality of sedi-
ment changes because of some natural or
anthropogenic perturbation, as is illustrated with
an example in the following section.

Fate and Decomposition of Particle-Bound Constitu-
ents. Even if a valley floor can be considered to
be in steady state with respect to sediment storage,

the constituent load of this sediment can vary over
time. The probabilistic approach for routing sedi-
ment through valley floors is useful for tracking
the redistribution and decay of sediment-bound
constituents such as tracers and contaminants. Let

be the inventory of a stable constituent in stor-w (t)i

age reservoir i at time t. Then

w (t) p m c (t), (19)i i i

where is the concentration of the constituentc (t)i

on sediment in i at time t. If denotes theW(t)
vector containing the values for all1 # (b � a) w (t)i

the transient and absorbing states, then the inven-
tory over time can be computed by iteratively ap-
plying the transition probability matrix to andW(t)
adding the external contribution of the constituent
to each reservoir:

W(t) p W(t � 1)P � L(t), (20)

where the ith entry in the vector is the amountL(t)
of the constituent that entered reservoir i from up-
stream and lateral (i.e., nonvalley floor) sources dur-
ing the time increment between and t. Thet � 1
entries in can be computed by partitioning theL(t)
influx of constituents according to the distribution
of deposition probabilities downstream of the
source area, using equations (5)–(8) as described ear-
lier (see eq. [17] for an example):

L (t) p P (i) # k(t), (21)i ext

where is the ith entry in , is the ithL (t) L(t) P (i)i ext

entry in Pext, and is the time-varying influx ofk(t)
the constituent into the reach from the external
source.

If the constituent decomposes appreciably with
time as a result of physical, chemical, or biological
processes, this decomposition can be accounted for
after each time increment. For example, in the case
of radioactive decay, the rate of decay is propor-
tional to the amount of the substance present. Then
the concentration of an unstable constituentx (t)i

in state i at time t is

′ �ltx (t) p x (t)e , (22)i i

where l is the radioactive decay constant for the
substance, is its concentration on sediment at′x (t)i

time t before accounting for decay, and t is the
length of the time increment. For other types of
decomposition processes, appropriate relationships
must be substituted for equation (22). The inven-
tory at time t is computed by substituting forx (t)i
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in equation (19), and its redistribution in timec (t)i

increment is given by equation (20). Then de-t � 1
cay can be recomputed after the next time incre-
ment with equation (22) or an appropriate decay
function.

To illustrate how equations (19) and (20) can be
used to track the redistribution of sediment-bound
constituents, assume for simplicity that a chemi-
cally stable contaminant enters the valley bound
to sediment over a period of 30 yr (fig. 6a); examples
of such contaminants could be heavy metals, long-
lived radionuclides such as plutonium, or organic
pollutants such as polychlorinated biphenyls. In
this example, the concentration of the contaminant
on sediment entering from upstream changes over
time, but the sediment budget is not affected.

Figure 6a, computed iteratively using equation
(20), shows how flood plain storage can moderate
the downstream delivery of a contaminant intro-
duced into a river reach from upstream. Equation
(20) can also be used to track the amount of the
hypothetical contaminant stored in each of the six
transient states over time (fig. 6b, 6c). In the case
of the hypothetical valley floor with the sediment
budget in table 2, the flood plains are expected to
store a much greater proportion of the contaminant
than the channel deposits because (1) the rate of
sediment exchange with the flood plain is greater
than the rate of exchange with the channel (table
2), leading to a larger amount of the contaminant
entering the flood plain, and (2) the residence time
of sediment in the flood plain is greater than that
for channel-stored sediment. The model also pre-
dicts the spatial distribution of contaminant stor-
age over time: given the sediment budget, the flood
plain in reach A should contain nearly 75% more
contaminant than the flood plain in reach C at peak
inventory but almost 50% less after 100 yr. Such
a capability could be useful for predicting potential
risks to riparian ecosystems posed by contaminated
sediment introduced from anthropogenic sources
or environmental disasters, for identifying poten-
tial problem areas, and for estimating the time-
scales required for natural decontamination of flu-
vial systems.

Even after contaminated sediment releases cease,
active fluvial deposits can continue to pose down-
stream risks to human health and ecosystems as
they erode. The framework presented here can be
used to assess the magnitude and relative influence
of different sediment sources on the downstream
contaminant flux. If there is only one absorbing
state, at the downstream boundary of the model,
the flux over time (mass/time) of a constituentf (t)i

into the absorbing state from each transient state
i is

f (t) p h (t) # x (t), (23)i i i

while the total flux of the constituent past the
downstream model boundary is

b

F(t) p L (t) � f (t), (24)�x i
ip1

where is the last entry in , the mass of theL (t) L(t)x

constituent supplied to the system from external
sources during time t that immediately enters the
absorbing state (obtained from eq. [21]).

Figure 7 demonstrates how the theory can be
used to compare the relative and absolute magni-
tudes of future sources of downstream contami-
nation. The calculations in figure 7 begin in year
30, when the influx of the contaminant from ex-
ternal sources has ceased, after which valley-stored
sediment is the only source of contamination at
the downstream boundary. The initial condition for
the calculations in figure 7 is the distribution of
contaminant inventory in the transient states in
year 30 (fig. 6b, 6c). The subsequent contaminant
flux into the absorbing state, which originated from
each of the six transient states in year 30, was com-
puted using equations (15) and (23). The heavy solid
lines in figure 7 show the total flux of the contam-
inant at the downstream boundary after year 30
(computed using eq. [24], with ). Figure 7aL p 0x

compares channel sources with flood plain sources
over time and predicts that the contribution of the
contaminant from initially channel-stored sedi-
ment will decrease rapidly after the releases from
upstream stop; the contaminant flux at the down-
stream boundary after year 30 will be dominated
by sediment stored in the flood plain in year 30.
This is probably a reasonable statement for many
contaminated rivers, making the estimate of the
amount initially stored in the flood plain critical,
whether it is accomplished through computation,
as in equations (19)–(22), or by direct field inventory
(e.g., Marron 1992). Figure 7b compares future con-
taminant sources spatially, showing that the
greatest source of the downstream contaminant
flux will initially be reach C (the downstream
reach). As this reservoir is depleted, upstream
sources (reaches A and B) become more important,
and by year 50, the dominant source of contami-
nation will be sediment that was stored in reach A
on cessation of the releases.
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Figure 6. Fate of sediment-bound contaminants in the
hypothetical valley floor. a, Flux of hypothetical contam-
inant over time into and out of modeled reaches. Con-
taminant concentration on sediment entering reach A
assumed to increase to a maximum of 5 mg/g sediment
(i.e., 10,000 T/yr) after 5 yr and then decrease to 0 after
30 yr. Modeled efflux at the downstream boundary (trans-
port into the absorbing state) accounts for exchanges
with sediment deposits in the valley floor and demon-
strates the role of sediment storage in moderating the
flux of contamination downstream. b, Inventory of hy-
pothetical contaminant over time within the three chan-
nel reservoirs, given the influx indicated in a. c, Inven-
tory of hypothetical contaminant over time within the
three flood plain reservoirs.

The calculations illustrated in figure 7 can pro-
vide guidance in designing mitigation for contam-
inated sediment. For example, if a mitigation strat-
egy entailed excavating contaminated sediment
from the flood plain beginning in year 30, when the

releases ended, it would be possible to compare the
relative effects over time of excavating in different
reaches by changing the initial distribution of con-
tamination. Traditional sediment routing models,
which compute changes in storage along channel
reaches, cannot predict the fate of sediment in flood
plains. Since much of the contaminated sediment
along the world’s rivers resides in flood plain de-
posits, the stochastic model of sediment trajecto-
ries provides a tool for supporting management de-
cisions in an increasingly important area of
environmental concern.

Discussion

In this article, we have presented a theoretical
framework for analyzing the trajectories of sedi-
ment and associated chemical constituents in al-
luvial valley floors in steady state. The approach
incorporates the stochastic nature of sediment
movement through alluvial valleys, which contain
fluvial deposits of varying mobility. The model can
provide useful information for some valleys over
appropriate timescales. However, the current ver-
sion of the theory simplifies or ignores aspects of
sediment routing that are important in many valley
floors, including (1) selective transport and depo-
sition as a result of particle size sorting; (2) tran-
sient conditions, in which significant changes in
sediment storage over decades or longer cause sys-
tematic changes in the transition probabilities; and
(3) the stochastic nature of forcing mechanisms
that govern the sediment budget of the valley floor.
We elaborate on each of these limitations and dis-
cuss ideas for adapting probability theory to valleys
where these factors are significant.

Multiple Particle Size Classes. In many rivers, the
fate of sediment delivered to streams is largely de-
termined by particle size. This effect is particularly
important in gravel-bed rivers, where particle size
determines the mechanism by which sediment is
transported and the types of the deposits in which
it can be stored. Coarse particles such as gravel are
usually only exchanged with the channel bed. Fine
particles, including sand, silt, and clay, generally
travel in suspension in the water column and are
more likely to interact with the flood plain. Treat-
ing all particles equally fails to capture mecha-
nisms that are dominant in some rivers. Further-
more, many important environmental issues in
rivers relate to the particle size–dependent behavior
of sediment and its influence on fluvial and riparian
ecosystems. For example, deposition of fine sedi-
ment in gravel-bed channels can smother spawning
gravel (Cordone and Kelly 1961; Lisle 1989) and
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Figure 7. Comparison of modeled “future” contami-
nant sources at the downstream boundary (into the ab-
sorbing state). Initial condition is contaminant distri-
bution in year 30, when contaminant influx from
upstream ceases. Heavier lines in a and b indicate total
computed flux of contaminant into the absorbing state.
a, Comparison of contaminant contributions from sedi-
ment stored in reaches A, B, and C in year 30. b, Com-
parison of contaminant contributions from sediment lo-
cated in the channel and in the flood plain in year 30.

rearing habitat in pools and inhibit food production
from riffles. Also, particle-bound contaminants
preferentially adhere to fine-grained sediment,
which is stored in large quantities within flood
plain deposits (e.g., Marron 1992).

One relatively simple way to incorporate this ef-
fect would be to subdivide sediment storage res-
ervoirs by particle size. Each particle size fraction
could be treated as a distinct transient state, with
characteristic probabilities for erosion and subse-
quent deposition. In this way, one could account
for differential transport in mixed-load river chan-
nels. This approach could also be used to simulate
particle abrasion, where it is significant, by allow-
ing sediment transfer among transient states that
represent particle size classes.

Another approach for simulating particle size
sorting in rivers is to compute separate sediment

budgets and transition matrices for at least two par-
ticle size classes. The classes could be the bed ma-
terial load, which interacts with the bed, and the
wash load, which is generally not found in the bed
but can interact with the flood plain. By estimating
sediment budgets for each of these two classes, one
could compute separate transition matrices for bed
material load and for wash load. Then the analyses
presented could be performed for both classes. This
approach was adopted for simulating two particle
size fractions in upper Los Alamos Canyon, New
Mexico (Malmon 2002).

Transient Case. The steady state model pre-
sented here incorporates an important assumption,
namely that the transition probability matrix re-
mains constant over time. The basic calculations
in equations (4)–(8) assume that sediment fluxes
and the amount of sediment in storage (mi) are con-
stant when averaged over multiyear time incre-
ments. Fortunately, the masses of most alluvial de-
posits are so large that they change only slowly
with imbalances in their sediment budgets. How-
ever, non–steady state conditions affect the erosion
probabilities in at least three ways: (1) changing
masses of sediment reservoirs lead to time-varying
erosion probabilities (through the denominator in
eq. [4]); (2) storage changes may alter channel ge-
ometry (e.g., changes in channel conveyance ca-
pacity or bank height, transitions from single-
thread to braided) sufficiently to affect rates of
sediment exchange processes such as flood plain
sedimentation and erosion, thereby affecting the
deposition probabilities (eqq. [5]–[8]); and (3) tem-
poral and spatial variations in downstream sedi-
ment flux also affect deposition probabilities (eqq.
[5]–[8]).

There are many applications in which it would
be useful to route sediment through valley floors
containing reservoirs that dynamically adjust to
sediment supply and transport capacity. Some large
changes in the sediment budgets of valley floors
appear to be related to climate and flow changes
(e.g., Schumm and Lichty 1961). Fluctuations in the
amount of sediment stored in some alluvial valleys
might be an inherent property of fluvial systems in
semiarid regions (e.g., Schumm and Hadley 1957).
In upland catchments in both humid and arid
regions, transient sediment storage is driven by spa-
tial and temporal variability in sediment supply
(e.g., Benda and Dunne 1997b). Anthropogenic per-
turbations such as dam construction (Williams and
Wolman 1984) and removal can produce transient
conditions in large river valleys. Non–steady state
conditions can also be instigated by natural but in-
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frequent events, such as extreme climatic events
or fires.

In the case in which a large, discrete sediment
input influences the sediment budget temporarily,
the fate of the input might be determined with an
offline calculation and the subsequent state of the
valley floor treated as a steady state using the equa-
tions presented. For example, it may be of interest
to estimate the fate and residence time of particles
introduced to the fluvial system from a large land-
slide or anthropogenic input (e.g., a spill from a
mine tailings pond or dam). Such a perturbation
could temporarily affect sediment fluxes or rates of
exchange, but after the perturbation the fluvial sys-
tem might be considered to be in an approximate
steady state with respect to sediment storage.

In some valleys, transient conditions can persist,
causing feedbacks between sediment storage and
valley geometry, which would cause components
of the sediment budget to continue to change over
time. In this situation, the transient case can be
modeled by changing the entries in the transition
matrix according to observed or predicted changes
in the sediment budget. The Chapman-Kolmogorov
equation (eq. [12]) does not apply in this case, but
the same results can be achieved numerically using
a time-varying transition matrix. Thus, the main
task is to improve the scientific basis for quanti-
fying changes in erosion and deposition rates in
response to changes in sediment storage.

This topic has recently attracted research inter-
est. Lisle and Church (2000) proposed that the sed-
iment transport capacity of alluvial sediment stor-
age reservoirs is a unique positive function of
storage volume. For example, the transport rate of
sediment through the channel bed is significantly
affected by channel gradient and particle size, both
of which can adjust to changes in sediment storage
(e.g., Dietrich et al. 1989). Transport storage func-
tions for alluvial reservoirs, constrained in field set-
tings, could be used to model how the erosion prob-
ability in equation (4) would change over time in
non–steady state river valleys.

Quantitative relationships between sediment
transport, storage, and deposition in alluvial res-
ervoirs are needed to route particles through valley
floors undergoing geomorphic changes. An impor-
tant area of research is to constrain such relation-
ships in field settings. It will be relatively easy to
incorporate these relationships into the probabilis-
tic context proposed here.

Stochastic Nature of Forcing Mechanisms. Even in
the absence of long-term trends, the forcing mech-
anisms of fluvial systems are characterized by sig-
nificant temporal variability (Benda and Dunne

1997a). The off-diagonal transition probabilities in
equation (9) are likely to be larger during wet years
than during dry years. The model presented sim-
ulates sediment trajectories using a long-term av-
erage sediment budget. This neglects the role of
interannual variability and extreme events or of hy-
drologic persistence, all of which may be significant
factors controlling sediment redistribution in
valleys.

Statistical methods referred to as hidden Markov
models (Baum and Petrie 1966; Baum and Egon
1967; Rabiner 1989) may offer a theoretical frame-
work for incorporating this sort of variability into
probabilistic modeling of particle trajectories. Hid-
den Markov models (HMMs) are probabilistic func-
tions of Markov chains, in other words, models in
which the transition probabilities themselves are
random variables. These models have been used
primarily for applications relating to computer
speech recognition, but they could potentially be
useful for generating random particle trajectories
in valleys driven by stochastic external forcings.
Rabiner (1989) provides an excellent overview of
the theory intended for researchers outside the field
of mathematics.

To apply HMMs to model particle trajectories in
an alluvial valley floor, the model would be spec-
ified by the following: (1) a finite number of hidden
or unknown states, corresponding to different
event magnitudes (e.g., wet or dry years or small
and large events); (2) the number of observation
symbols in each state, corresponding to the number
of sediment storage reservoirs accessible during
each flow event; (3) the transition probabilities
among hidden states (i.e., the probability of each
event occurring); and (4) the transition probabilities
among observation symbols or sediment storage
reservoirs, given each event has occurred (equiva-
lent to those derived from eqq. [1]–[8] using the
sediment budget). Given these four pieces of infor-
mation, the HMM can be used to generate random
particle trajectories through the valley following
the steps outlined by Rabiner (1989). The statistical
properties of the trajectories generated in this way
could be analyzed to compute sediment residence
times, the locus and duration of intermediate sed-
iment storage, and the timing of delivery of sedi-
ment from alluvial valley floors. The probabilities
of the hidden states could be adjusted to reflect
longer-term changes in climatic or watershed char-
acteristics. Such applications could be useful for
examining the role of events of different magni-
tudes in the long-term migration of sediment
through valleys. Also, the transition probabilities
among observation symbols could vary through
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time to simulate valley floors undergoing major
changes in sediment storage or channel geometry.

The primary limitation to applying more sophis-
ticated and realistic probability models to land-
scapes is the lack of sufficient field data or geo-
morphic process models with which to estimate
the terms in the sediment budget. Advances in both
theory and measurement technology are making
both of these more available for many field sites.
As the basis for modeling and measuring the sed-
iment budget improves, it should be relatively sim-
ple to incorporate them into this stochastic
framework.
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