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Abstract

A paradox of volcanology is that the most fundamental part of its knowledge ^ the observation of volcanic
processes and objects ^ is less strict and less well organized compared with experimental and theoretical approaches
determined by these observations. The object of this study is the knowledge resulting from volcanological
observations, and the objective is to give this knowledge strict form. For this, we elaborate the methodology of
assessment of observational knowledge by means of propositional logic. Two kinds of assessments are developed:
(1) assessment of individual statements and rationales for truth and satisfiability; and (2) assessment of a set of
statements for self-consistency and deducibility of a statement from the set. Propositional logic allows an analyst to
find controversies and contradictions, build self-consistent domains of observational knowledge, and obtain strict
inference within these domains by means of logical calculi. We believe that the results of reported work can be used in
field volcanological studies for optimization of data interpretation, in hazard assessment for evaluation of
recommendations of experts and in risk mitigation for improving communication between scientists and non-
professionals.
3 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Observations of eruptive processes and their
products are the primary, most valuable and reli-
able source of volcanological information. Mod-

eling and theoretical considerations are given a
basis by observations and make sense only in re-
lation to them. Moreover, in many cases the vol-
canologic reconstruction, forecast and hazard as-
sessment are based solely or almost solely on
observations, current and preceding, particular
and general. Simultaneously, the reasoning on ob-
servations remains pretty loose and ‘woolly’. As
was stated earlier, the tool for improving the sit-
uation is logic (Pshenichny and Moukhachov,
2001; Pshenichny, 2002). This paper aims to ex-
plore the opportunities of the simplest logical sys-
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tem ^ propositional logic ^ in assessment of rea-
soning on volcanological observations.
Theoretically, two kinds of assessments can be

made based on propositional logic. These are the
assessment of an individual statement for truth
and assessment for deducibility of a statement
from other statements (and/or self-consistency of
a set of statements). We consider the application
of these assessments to pieces of volcanological
knowledge and discuss the theoretical and practi-
cal bene¢ts of our approach.
The works on application of logic or related

approaches in Earth sciences are very scarce (Si-
rotinskaya (1986); Cagnoli (1998); Klir (2002))
and consider the logic solely as a means of data
interpretation but not as a tool to study the rea-
soning in a ¢eld of knowledge (Pshenichny and
Moukhachov, 2001). Meanwhile, those scientists
focusing on the structure of knowledge in partic-
ular domains of geology (e.g. in stratigraphy ^
Dienes, 1978 ^ or tectonics ^ Potts and Reddy,
1999) did not use logic in their work that re-
stricted their results solely to these domains.
However, there were attempts at constructing
(or revealing?) universal patterns of thinking by
means other than logic (see e.g. Gould, 1981;
Fedorov, 1989), which doubtless are of great in-
terest but, like any other knowledge except the
logic itself, require an assessment by means of
logic.

2. Propositional logic

Propositional logic in its modern form was ela-
borated in the second half of the 19th to the ¢rst
half of the 20th century by Frege (1896), White-
head and Russell (1910), Hilbert and Bernays
(1956), Kleene (1952) and other researchers. We
will give a brief account of it based dominantly on
Kleene (1952).
This logic describes the relations between state-

ments, or propositions. These are expressed by
narrative sentences of natural language (English,
Russian, Greek, etc.). A statement is the sense of
narrative sentence. It is either true or false. These
two characteristics are logical values, or truth val-
ues, of statements.

Verbal expressions like ‘not true that’, ‘and’,
‘or’, ‘if T then’, ‘if and only if T then’, ‘either T

or’ and some others have the sense of logical con-
nectives. Propositional logic studies the exact
sense of these expressions and general laws of
their usage.
Those statements that do not include logical

connectives are termed simple ; those that do are
compound statements, or compounds. Compounds
also are true or false. Their logical values are de-
termined, ¢rst, by the logical values of elementary
statements, and second, by the logical connectives
between them.
The language of propositional logic is an arti-

¢cial language capable of disclosing the logical
structure of compound statements.
The alphabet of this language includes three

kinds of signs.
1. Propositional variables: p, q, r, s, t, p1, q1, r1,

s1, t1, p2, q2, T, expressing elementary statements.
2. Logical connectives : F negation, p conjunc-

tion, K disjunction, a implication, r equivalence
and, possibly, some others.
3. Technical signs: (, left bracket; ), right

bracket.
The basic concept in propositional logic is the

propositional formula. It is de¢ned as follows.
1. Propositional variable is propositional for-

mula (e.g. p is a formula).
2. If A is a propositional formula, then FA is a

formula too.
3. If A and B are propositional formulae, then

(ApB), (AKB), (AaB), (ArB) are formulae too.
A and B are called metaletters. This means that

FA, (ApB), (AKB), (AaB), (ArB) are not nec-
essarily Fp, (ppq), (pKq), (paq), (prq), corre-
spondingly, but just principal schemes of formu-
lae, in which another formulae of any length can
occupy the places of A and B.
The connective expressed in this scheme is

called the main connective of the propositional
formula. Any part of a given propositional for-
mula, which is a propositional formula itself, is
called a subformula of this formula.
By accepted convention, each connective, ex-

cept negation, requires a pair of left and right
brackets, though the entire formula may be not
taken into brackets.
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3. Methodology of logical assessments of
observational knowledge

3.1. Assessment of rationales for truth by truth
tables

The exact sense of the logical connectives is
de¢ned by the following truth table (see Table 1).
The truth value of a formula is that of its main

connective. There are formulae which can have
only one truth value (i.e. are always true or al-
ways false) with any values of variables ; e.g. the
formula (pKFp) is always true and (ppFp) is
always false (see Table 2).
If a formula is always true, it is called a logical

law, or tautology. If it is always false, it is a con-
troversy (not to be confused with the controversy
as the relation between any two statements, one
of which is the negation of the other; the conjunc-
tion of these statements gives the controversy in
the sense meant here; to avoid ambiguity, we will
call this relation a contradiction). Some basic tau-
tologies are listed in Appendix. All the rest of the
formulae may take both truth values and are
called neutral, or satis¢able.
For instance, the following rationale is tautol-

ogy. ‘If the lava is slowly ejecting, it piles up in a
dome and does not £ow, or, while ejecting, it
forms a short thick viscous £ow.’ Let us denote
every simple statement with a propositional vari-
able:

p ‘Lava is slowly ejecting’ ;
q ‘Lava piles up in a dome’;
r ‘There is lava £ow’.
Then we will have this rationale in the follow-

ing form:

ððpaqÞaFrÞÞKðparÞ ð1Þ

Its truth table (Table 3a) shows that it is always
true.
At the same time, the statement ‘Either slowly

ejecting lava piles up in a dome or forms a short
thick viscous £ow’ is satis¢able:

ðpaqÞKðparÞ ð2Þ

and the statement ‘Slowly ejecting lavas both pile
up in domes and behave in di¡erent mode’ is a
controversy:

ðprqÞpðprFqÞ ð3Þ

(see Tables 3b and c, respectively).
We should always keep in mind that statements

in the logical sense may have various expressions
in a natural language, such as English. A state-
ment may be expressed not by a sentence but by a
shorter phrase, and a compound or even several
compound statements can be ‘packed up’ in one
sentence of natural language. Simultaneously,
one, even simple, logical statement can appear
‘scattered’ in more than one sentence of natural
language. Logical connectives may be diversely
expressed in verbal form. Therefore, we should
be very careful when extracting the sense, always
aiming to ¢gure out what is actually meant in the
sentence, written, or said, or thought.
If formulae have similar truth values with the

same truth values of variables (e.g. see Table 4),
they are called equivalent and can be substituted
by one another, e.g. formulae (paq) and
(FpKq) :

Table 1
General truth table for basic logical connectives

A B FA ApB AKB AaB ArB

TRUE TRUE FALSE TRUE TRUE TRUE FALSE
FALSE TRUE TRUE FALSE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE TRUE FALSE

Table 2
Truth table for most simple tautology (pKFp) and contro-
versy (ppFp)

p Fp pKFp ppFp

TRUE FALSE TRUE FALSE
FALSE TRUE TRUE FALSE
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ðpaqÞrðFpKqÞ

This means, for instance, that the statement ‘If
there is a fallout of ¢ne ash, there will be lung
diseases in people living in the fallout area’ is
equivalent to the statement ‘Either there is no
fallout of ¢ne ash, or people have lung diseases’.
Again, this equivalence is not clearly seen in nat-
ural language but is obvious in the language of
propositional logic. Equivalent substitutions are
used to express one logical connective by others
and/or construct strict inference (see below).
Naturally, all tautologies are equivalent to each

other, and similarly all controversies are equiva-
lent to each other. Basic equivalences of proposi-
tional logic are listed in the Appendix.

3.2. Assessment of rationales for truth by reduction
to normal forms

If the formula is long enough, the truth table is
not useful. However, truth tables are not the only
way to assess formulae for truth. The structure of
a formula and the set of truth values it takes are
interrelated. Therefore, it is possible to say just by

the appearance of a formula, whether it is tautol-
ogy, controversy or satis¢able.
Using equivalent substitutions (see Appendix),

any formula can be brought to its conjunctive nor-
mal form (CNF). This is a form in which all im-
plication and equivalence signs are substituted by
combination of conjunction, disjunction and neg-
ation and the formula becomes a conjunction of
elementary disjunctions. ‘Elementary’ means that
disjunctions disjoin only individual variables and
the negation refers only to variables too. Simi-
larly, the formula can be brought to a disjunctive
normal form (DNF), which is the disjunction of
elementary conjunctions; the rule for negation is
the same.
It is easy to show that:
(1) every formula in propositional logic has at

least one (maybe more) CNF and DNF;
(2) the formula is a tautology if every elemen-

tary disjunction in its CNF includes at least one
elementary disjunction of a variable and its neg-
ation; and
(3) the formula is a controversy if its DNF in-

cludes at least one elementary conjunction of a
variable and its negation

Table 3a
Truth table for tautology ((paq)aFr))K(par), T ^ TRUE, F ^ FALSE

p q r paq Fr (paq)aFr par ((paq)aFr))K(par)

T T T T F F T T
F T T T F F T T
T F T F F T T T
F F T T F F T T
T T F T T T F T
F T F T T T T T
T F F F T T F T
F F F T T T T T

Table 3b
Truth table for satis¢able formula (paq)K(par)

p q r paq par (paqK(par)

TRUE TRUE TRUE TRUE TRUE TRUE
FALSE TRUE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE TRUE TRUE
FALSE FALSE TRUE TRUE TRUE TRUE
TRUE TRUE FALSE TRUE FALSE TRUE
FALSE TRUE FALSE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE TRUE TRUE TRUE
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(for a strict proof, see e.g. Hilbert and Bernays,
1956).
This can be illustrated by the corresponding

forms of formulae 1^3.
The CNF for formula 1, which is a tautology, is

(pKFrKFpKr)p(FqKFrKFpKr). The CNF
for a satis¢able formula (formula 2) is FpKqKr.
DNFs are longer. We will not give the DNF for
formula 2, for it is not illustrative, and a some-
what simpli¢ed DNF for a controversy (formula
3) is:

ðFppFqpqÞKðFppFqppÞKðFppppqÞK

ðFpppÞKðFppppFqpqÞKðFppppFqÞK

ðqpFqpFpÞKðqpFqpFpppÞ

Underlined symbols are variables, with their
negations occurring within elementary disjunc-
tions or conjunctions.

3.3. Assessment of rationales for deducibility and
consistency

If we want to know whether a standpoint or
decision is substantiated well enough and is ¢rmly
supported by data and general concepts, we need
to check it for deducibility from what we take for
premises (i.e. these very data and concepts). This
task is the same as strict proof and inference of
statements that is elaborated well in propositional

logic. If the given statement is deducible, or can
be inferred, from some set of statements, the ques-
tion arises whether it is possible to infer its neg-
ation from the same set. If not, then this set of
statements is called self-consistent and valid for
reasoning, if yes, it is inconsistent and requires
correction (adding, removal or re-formulation of
the statements it consists of).
Assessment for deducibility and self-consistency

can be made by logical calculi. Logical calculus is
a transformation or a succession of transforma-
tions of formulae in accordance with some rules of
inference, which reveals that formula B follows
from formulae A1, A2, T, An. (As before, A, B
and other capital letters are metaletters meaning
any kind of propositional formula.) This means
that B has the value TRUE if and only if each
of A1, A2, T, An has this value. Logical conse-
quence is denoted A1, A2, T, AnCB. Formulae
A1, A2, T, An are called premises, B consequence.
Reduction to normal forms is the simplest cal-

culus, in which there is one premise and the only
kind of rules of inference is equivalent substitu-
tion. In trivial cases, so-called principal and short-
ened conjunctive and disjunctive normal forms
help ¢nd all consequences (conjunctive forms)
and hypotheses (disjunctive forms) of given for-
mulae. However, if the case is more than one
assumption (that is, actually, the case in most
cases), more powerful calculi (sequential, natu-
ral-sequential and others) with speci¢c rules of
inference apply.
We will demonstrate strict inference from vol-

canological observations by the example of natu-
ral-sequential calculus elaborated by Gentzen
(1934). It is described below.
1.1. Sequence is expression A1, A2, T, AmCB,

where A1, A2, T, Am, B are propositional formu-
lae. Formulae A1, A2, T, Am are front members of

Table 3c
Truth table for controversy (prq)p(prFq)

p q Fq prq prFq (prq)p(prFq)

TRUE TRUE FALSE TRUE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE
TRUE FALSE TRUE FALSE TRUE FALSE
FALSE FALSE TRUE TRUE FALSE FALSE

Table 4
Truth table for the formulae (paq) and (FpKq)

p q Fp paq FpKq

TRUE TRUE FALSE TRUE TRUE
FALSE TRUE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE
FALSE FALSE TRUE TRUE TRUE
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the sequence, and B is the back member. There
may be no front members at all, but the back one
must always be present: CB.
1.2. Inference in natural-sequential calculus con-

sists of a number of sequences. Each of these
either is ‘main sequence’ (see below) or is derived
from a previous one by a structural transforma-
tion (see below) or a rule of inference (see below).
The last sequence of an inference has no front
members and its back member is a ¢nite formula.
1.3. There are two types of main sequences,

called ‘logical’ and ‘mathematical’ ones. A logical
main sequence is a sequence of general form
CCC, where C is a propositional formula (this
sequence arises if the inference is based on as-
sumption expressed by C). A mathematical main
sequence is a sequence of general form CD,
where C is an axiom of mathematics.
1.4. Allowed structural transformations (for

propositional logic; a horizontal line means that
the below sequence follows from the above se-
quences).
1.4.1. Transposition of two front members:

C; D; y ! v

D; C; y ! v

1.4.2. Withdrawal of a front member, which is
the same as another front member:

C; C; y ! v

C; y ! v

1.4.3. Addition of any propositional formula to
front members:

y ! v

C; y ! v

There is a speci¢c rule for predicate logic,
which we do not cite here.
1.5. Rules of inference (for propositional logic).
Let A, B and C denote any propositional for-

mulae and y, v and 3 any (possibly empty) lists
of formulae divided by commas. The formulae of
these lists are front members of some sequences.
The following rules of inference of natural-se-

quential calculus are applicable to propositional
logic.
Introduction of conjunction (henceforth Rule

IC):

y ! A

v ! B

y; v ! ðApBÞ

Elimination of conjunction (henceforth Rule
EC):

y ! ApB
y ! A

y ! ApB
y ! B

Introduction of disjunction (henceforth Rule
ID):

y ! A
y ! AKB

y ! B
y ! AKB

Elimination of disjunction (henceforth Rule
ED):

y ! AKB
A;v ! C
B; 3 ! C

y; v; 3 ! C

Introduction of implication (henceforth Rule
II):

A; y ! B

y ! AaB

Elimination of implication (henceforth Rule
EI) :

y ! A
v ! AaB

y; v ! B

Introduction of negation (henceforth Rule IN):

A; y ! B
A;v ! FB
y; v ! FA

Elimination of double negation (henceforth
Rule EN):

y ! FFA
y ! A

In the above expressions, the symbols put to
the left of the arrow can be regarded as the ‘mem-
ory’ of the inference, and those to the right are its
‘working part’.
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4. Application

We apply this calculus to a fragment of paper
by Fisher (1990) on turbulent pyroclastic £ow de-
posits of the Mt. St. Helens May 1980 eruption.
The fragment consists of a paragraph of text (see
below) and a ¢gure (see Fig. 1), which gives in-
formation also involved in reasoning.
‘The contact relationship between layer A2 and

A1 suggests that layer A1 was gas-rich during
transport, but because it lacked abundant ¢nes
it was permeable, gases were usually expelled
quickly during transport. Except in a few places,
gas loss occurred before layer A2 was fully in
place, allowing development of a sharp contact
by movement of A2 after A1 had come to rest.
At a few localities, however, layer A2 was em-
placed fast enough to seal o¡ the gas within
layer A1 before it completely escaped, and the
gas pressure was great enough to cause continued
upward movement of gas into layer A2, resulting
in preservation of the gas pipes’ (Fisher, 1990,
p. 1042).
Let us denote relevant statements of this frag-

ment.
p ‘Gas escapes from the layer A1’ (or, in terms

of Fisher, ‘gases escaped quickly during trans-
port’) ;

q ‘Layer A2 is less permeable than the layer A1’
(this is not explicitly said but shown in the ¢gure
(see Fig. 1) as ¢ner grain size of layer A2 than A1

and can be expressed as the equivalence of the
following statements: ‘Layer A2 has ¢ner grain
size’r‘Layer A2 is less permeable’, but for sim-
plicity of proof we omit this equivalence;

r ‘Gas pipes form’ (we may also add, ‘T form
distinctly enough to be preserved by the moment
of observation’) ;

s ‘Material of layer A1 was gas-rich’ (again,
here we actually have the equivalence, ‘ Material
of layer A1 was gas-rich’r‘The gas pressure in
layer 1 was high’) ;

t ‘Material of layer A2 was in place’ (by the
moment of formation of layer A1 in a given
place);

u ‘There is a sharp top of layer A1’ (speaking
about formation of the sharp contact, Fisher says
that, in his view, it is sharp exactly because ¢rst it
was not a contact between two layers but just the
top of one of them).
Having introduced such statements, we can for-

mulate the assumptions that led Richard Fisher to
the conclusions he made.

sap ! sap ðassumption 1Þ

‘If the layer A1 was gas-rich, gas had to be
escaping from it’. Fisher obviously means this,
though he does not put this explicitly (perhaps
because he considers this notion obvious):

ðppqÞar ! ðppqÞar: ðassumption 2Þ

‘If gas was escaping from layer A1 and layer A2

Fig. 1. (Figure 6 in Fisher (1990).) Locality N33.3, 9.5 km from the source. Upper contact of layer A1 shows innumerable tiny
gas pipes extending upward into layer A2.
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is less permeable than A1, gas pipes must form’.
The third assumption is :

ðppFtÞau ! ðppFtÞau ðassumption 3Þ

‘If gas was escaping from layer A1 and layer A2
was not yet in place, A1 will form a sharp top.’
In addition, we can make some obvious as-

sumptions in the form accepted in natural-sequen-
tial calculus:

p ! p ðassumption 4Þ

q ! q ðassumption 5Þ

s ! s ðassumption 6Þ

Ft ! Ft ðassumption 7Þ

Then the conclusions of Fisher will look like:

sar ðconclusion 1Þ

(‘if layer A1 was gas-rich, then there will form
gas pipes’), and

sau ðconclusion 2Þ

(‘if layer A1 was gas-rich, then this layer will
have a sharp top’).
The ¢rst one can be proved based on assump-

tions 1, 2, 5 and 6, using structural transforma-
tions where necessary. The inference is below.
1. sapCsap (assumption 1)
2. (ppq)arC(ppq)ar (assumption 2)
3. qCq (assumption 5)
4. sCs (assumption 6)
5. sap, sCp (Rule EI for lines 1, 4)
6. sap, s, qCppq (Rule IC for lines 3, 5)
7. sap, s, q, (ppq)arCr (Rule EI for lines 6, 2)
8. sap, q, (ppq)arCsar (Rule II for line 7)
9. sap, qC((ppq)ar)a(sar) (Rule II for line 8)
10. sapC(qa(((ppq)ar)a(sar))) (Rule II for

line 9)
11. C((sap)a(qa(((ppq)ar)a(sar)))) (Rule II

for line 10)
The back member of the ¢nal sequence is a

tautology. Conclusion 1 is proved.
The second conclusion is also deducible, from

assumptions 1, 3, 6 and 7 (with appropriate struc-
tural transformations).
1. sapCsap (assumption 1)

2. (ppFt)auC(ppFt)au (assumption 3)
3. sCs (assumption 6)
4. FtCFt (assumption 7)
5. sap, sCp (Rule EI for lines 1, 3)
6. sap, s, FtCppFt (Rule IC for lines 4, 5)
7. sap, s, Ft, (ppFt)auCu (Rule EI for lines

3, 6)
8. sap, Ft, (ppFt)auCsau (Rule II for

line 7)
9. sap, FtC((ppFt)au)a(sau) (Rule II for

line 8)
10. sapC(Fta((ppFt)au)a(sau)) (Rule II

for line 9)
11. C(sap)a(Fta((ppFt)au)a(sau)) (Rule

II for line 10)
The back member of the ¢nal sequence is a

tautology. Conclusion 2 is proved. This means
that the conclusions of Fisher on the relationship
between the two tu¡ layers are strictly proved.
However, this does not mean that they have

become an absolute truth. Let us widen the set
of assumptions by adding few new statements
(propositional variables) re£ecting some obvious
facts of volcanology.
The variables are:
f ^ pyroclastic material £ows,
g ^ pyroclastic material degasses quickly.
(Following Fisher, herewith we consider pyro-

clastic £ows only, not tephra, hence the negation
of f, Ff, would mean that pyroclastic material
becomes a layer.) Then we can make the following
assumptions:

f ! f ðassumption 8Þ

g ! g ðassumption 9Þ

gaFs ! gaFs ðassumption 10Þ

ðfpgÞaFs ! ðfpgÞaFs ðassumption 11Þ

Assumption 10 means that a natural measure of
‘quickness’ is that every next time the material is
notably poorer in gas than before. Assumption 11
means that if pyroclastic material £ows and de-
gasses quickly, the material of the resulting layer
(A1 in our case) is not gas-rich (otherwise the
degassing cannot be considered quick indeed ^
see above).
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With these assumptions, the following can be
proved (keeping in mind the structural transfor-
mations) :
1. fCf (assumption 8)
2. gCg (assumption 9)
3. f, gCfpg (Rule IC for lines 1, 2)
4. (fpg)aFsC(fpg)aFs (assumption 11)
5. f, g, (fpg)aFsCFs (Rule EI for lines 3, 4)
6. gaFsCgaFs (assumption 10)
7. f, (fpg)aFsCFg (Rule IN for lines 5, 6)
8. f, g, (fpg)aFsCFgpFs (Rule IC for lines

5, 7)
9. f, g, (fpg)aFsCfpFgpFs (Rule IC for

lines 1, 8)
10. f, gC((fpg)aFs)a(fpFgpFs) (Rule II

for line 9)
11. fCga(((fpg)aFs)a(fpFgpFs)) (Rule II

for line 10)
12. Cfa(ga(((fpg)aFs)a(fpFgpFs)))

(Rule II for line 11)
Based on the main tautologies of propositional

logic (see Appendix), it can be shown that the
inferred formula f and Fg and Fs is equivalent
to F((f and Fg)as). Literally, it means that ‘it is
not true that if pyroclastic material £ows and not
degasses quickly, the material of the resulting
layer will be gas-rich’ or, in simpler words, if py-
roclastic £ow degasses quickly, the resulting de-
posit will not be gas-rich. This contradicts the idea
taken for assumption 1, thus exposing a hidden
contradiction between the two premises formu-
lated verbally as: (1) ‘gases escaped quickly dur-
ing transport’, and (2) ‘layer A1 was gas-rich
upon deposition’. To avoid it, a statement was
required that gases had not escaped during trans-
port, which could invoke a special consideration
why this had not happened, and so forth, until
new self-consistency is achieved.
Other calculi than natural-sequential can also

be applied in volcanology. There are theorems
proved in propositional logic that no contradic-
tive results can be deduced by two di¡erent calcu-
li, hence, their choice is solely a matter of conven-
ience. Their detailed consideration is outside the
scope of this work. Special software is being ela-
borated for automatic inference of formulae for
deducibility and processing of big sets of formulae
by various calculi. First results of this work were

reported by Moukhachov and Netchitailov
(2001).

5. Discussion: practical bene¢ts and future
research

Assessment of individual statements for truth, if
it were to become practice of ¢eld volcanological
studies, would ensure a check on thinking and
instant correction. As was shown here by a trivial
example of formulae 1^3 (see Section 3.1), similar
information may be given in many di¡erent ways,
and recording it in terms of propositional logic
helps us understand what we actually mean and
whether what we mean is correct (i.e. expressed by
satis¢able formulae or tautologies). It is unlikely
that we will be able to formulate many of our
ideas as tautologies. What is more probable is
that a combination of di¡erent standpoints, or
even the thoughts of similar scientists at di¡erent
stages of research, can lead to controversy, which
may pass unnoticed if not revealed by truth tables
or normal forms.
However, even more important is the assess-

ment for deducibility and self-consistency by the
procedure of strict inference. It allows us to ex-
plicitly formulate premises of reasoning, follow
the pathway of thought and discern thinking
from intuition. This is especially important in haz-
ard assessment, where recommendations of di¡er-
ent experts (often made by intuition) require ob-
jective and unbiased trial. Even formalized expert
judgement procedures so far have been based on
consensus or poll, possibly with statistical weigh-
ing of opinions (Aspinall and Cooke, 1998; Aspi-
nall and Woo, 1994; Ross, 1989). However, an
opinion, both individual and collective, may be
in£uenced by purely psychological factors, and
weighing demands a supreme ‘experienced techni-
cal facilitator T to supervise elicitations’ of experts
(Aspinall and Cooke, 1998, p. 2115), who would
unavoidably rely on his/her own intuition, which
cannot be veri¢ed. Raising no objection to scien-
ti¢c intuition, we think that it should be accom-
panied by strict assessment, especially for insur-
ance and judicial items. ‘Scienti¢c uncertainty’
pinned down by these authors or, to put it more
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explicitly, conceptual uncertainty (Pshenichny,
2002) underlies even quantitative methods of haz-
ard and risk assessment (see below).
However, the revealing of ‘illogical’, contradic-

tive concepts may enlighten not the fallacies of
thinking but peculiarities of the studied object.
In such cases, scientists should seek to eliminate
the contradiction by re-examination of their views
in a wider context; e.g. in the fragment of text
analyzed above two incompatible pieces of evi-
dence (sharp contact and gas pipes at the contact
of similar layers) were interpreted jointly and did
not lead to contradiction, although, as was shown
in the same example, widening the context may
readily lead to contradiction.
If no contradictions are encountered, the logical

calculi allow us to build long chains of inference
incorporating any kind of relevant knowledge,
e.g. from seismic signals to social disorder. The
more diverse knowledge is involved, the more
the ultimate consequences of observed events
can be quickly predicted. Logic may appear espe-
cially useful in predicting the hazards with long
return periods, unique disasters, or catastrophes
which have never happened in human history.
When the data are scarce or absent, we can oper-
ate with our concepts. Even our fantasy, if given
strict form, may become a tool for hazard assess-
ment. For this, the following rationale can be
suggested.
Any application of a logical calculus to the nat-

ural world is its interpretation by the latter, i.e.
every propositional formula is an event or a
group of related events, and each step of inference
is a succession of events in time. But logic de-
scribes our reasoning about these events, not the
events themselves and, contrary to mathematics,
does not mean that the thought events must take
place in reality. Therefore, in application to the
natural world, every step of inference, which is
100% reliable in terms of logic, acquires a proba-
bilistic sense. An inference of the form ACA is
absolutely reliable, because it denotes an event
that actually takes place (i.e. ‘we think what we
see’). However, the more steps are required to
‘reach’ the deduced formula, the less probable it
becomes that a succession of events takes place in
reality exactly as inferred. Hence, we can intro-

duce a conceptual probability of a statement as a
measure of conceptual uncertainty in application to
the natural world. Its ¢rst and rough estimation
can be de¢ned as (minimum required number of
steps of inference)31. For instance, in the example
given above (see Section 4), each of the conclu-
sions of Fisher was deduced from the correspond-
ing assumptions by 11 steps, so their conceptual
probability can be estimated as 1/11, or 0.09. Fur-
ther development of logical assessments would
lead to better evaluation of conceptual probabil-
ity. However, even in its present form, in the au-
thors’ view, this probability can be used in the
Bayes formula as the probability of hypothesis
and in the event trees as the probability of each
branch. We do admit that this is not the best
possible solution but, hopefully, it is a better op-
tion than ascribing numerical values of probabil-
ity by intuition, which is what scientists are forced
to do at present (Aspinall and Cooke, 1998; New-
hall and Hoblitt, 2002).
It should be noted that the chains of inference

may be based solely on observational evidence,
which, contrary to concepts arising from theoret-
ical considerations and modeling, is : (1) abso-
lutely reliable; (2) independent of premises ac-
cepted by one and not accepted by another
scientist ; and (3) easily understandable by non-
professionals. Hence, not only the application of
logic to observational knowledge would optimize
the research work and evaluation of the work of
the experts, but also help scientists communicate
with civil authorities, journalists and population.
At the same time, compact domains of knowl-

edge, which describe particular eruptive phenom-
ena (extrusive dome growth and collapse, pyro-
clastic £ows, lahars, etc.) and have proved self-
consistent, can be subject to logical modeling, i.e.
thorough application of logical calculi to any of
its statements. Any question formulated in terms
of these domains (or ¢nite worlds, as logicians
say) will make sense and have a correct answer.
These will be the ¢rst self-consistent ‘islands’ of
strict knowledge, the ¢rst ‘crystallized’ fragments
in the ‘hot and viscous stu¡’ of volcanological
observations. Maybe some commonly accepted
statements will require re-formulation to become
deducible formulae. Widening of these domains
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would eventually lead to an increased formaliza-
tion of volcanology.

6. Conclusions

Propositional logic may be used as an assess-
ment tool and thus have wide application to the
knowledge derived from volcanological observa-
tions. The assessments of individual statements
and rationales for truth and satis¢ability can be
done by truth tables and reduction to normal
forms. Assessments of a set of statements for
self-consistency and deducibility of a statement
from the set are accomplished by various logical
calculi, the simplest of which is reduction to nor-
mal forms. These procedures allow us to ¢nd con-
tradictions, build self-consistent domains of ob-
servational knowledge and obtain strict inference
within these domains. The latter will eventually
lead to the logical modeling of volcanic objects.
Logical processing of knowledge may be useful

in ¢eld volcanological studies and in hazard assess-
ment for optimization of research work, of recom-
mendations by experts and of communication with
non-professionals. It would especially bene¢t for-
malized expert judgement procedures and may be
useful for optimization of event trees and Bayesian
approach. The results of this study show that strict
reasoning is possible in the area of volcanology
that has been considered least certain and most
intuitive ^ its observational knowledge.
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Appendix. Basic tautologies and equivalences of
propositional logic

Basic tautologies

1. Aa(BaA))
2. (Aa(BaC))a((AaB)a(AaC))
3. Aa(Ba(ApB))
4. (ApB)aA
5. (ApB)aB
6. Aa(AKB)
7. Ba(AKB)
8. (AaC)a((BaC)a((AKB)aC))
9. (AaB)a((AaFB)aFA)
10. Aa(FAaB)
11. FFAaA
Basic equivalences
1. ApB is equivalent to F(FAKFB)
2. ApB is equivalent to F(AaFB)
3. AKB is equivalent to F(FApFB)
4. AaB is equivalent to FAKB
5. ArB is equivalent to (AaB)p(BaA)
6. ArB is equivalent to (FAKB)p(FBKA)
7. FFA is equivalent to A
8. ApB is equivalent to BpA
9. Ap(BpC) is equivalent to (ApB)pC
10. AKB is equivalent to BKA
11. AK(BKC) is equivalent to (AKB)KC
12. AK(BpC) is equivalent to (AKB)p(AKC)
13. Ap(BKC) is equivalent to (ApB)K(ApC)
14. ApA is equivalent to A
15. AKA is equivalent to A
16. F(ApB) is equivalent to FAKFB
17. F(AKB) is equivalent to FApFB
18. (AKB)p(FAKB) is equivalent to B
19. Ap(AKB) is equivalent to A
20. AK(ApB) is equivalent to A
21. (AKC)p(BKFC) is equivalent to (AKC)p

(BKFC)p(AKB)
22. (ApC)K(BpFC) is equivalent to (ApC)K

(BpFC)K(ApB)
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