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S U M M A R Y
The formation temperature below the sea or lake floor is frequently measured with a sensor
probe that is inserted into the unconsolidated sediment, and the thermal conductivity of sedi-
ment is measured in situ with an independent heating experiment. Friction during the insertion
raises the temperature of a probe. This paper presents the method and the test results of using
the cooling history of friction-heated probes for the determination of equilibrium formation
temperature and thermal conductivity. The inverse modelling (IM) for the desired parameters
is formulated together with the finite-element simulation of the cooling history. The starting
parameter values for IM are generated with a genetic algorithm (GA) that searches for them
in the likely parameter ranges. The IM is constrained in an objective function by a commonly
used asymptotic relation between the declining temperature and the inverse time. In addition
to satisfying the root-mean-square misfit, the results are assessed by the equality between the
model conductivity and the conductivity obtained through the asymptotic relation and by how
well the models can predict the cooling behaviour at time beyond the record period for IM. The
results of testing synthetic data with random noise up to ±0.005 K and twenty 8–11 min long
data sets from four sites in Lake Baikal indicate that the desired parameters can be determined
from the first 2.5 min of the cooling records. By comparison with independent measurements or
through repeated GA-IM, equilibrium temperatures can be consistently determined to within
0.002 K and thermal properties typically to ±5 per cent. The method has also been successfully
applied to seven sets of 5 min long data sets at one marine heat flow station.

Key words: formation temperature, heat flow, inverse modelling, Lake Baikal, thermal
conductivity.

I N T RO D U C T I O N

A determination of terrestrial heat flow requires measurements of
geothermal gradient and thermal conductivity of rocks or sediments.
In the ocean floor or lake bottom, the determination is often accom-
plished with a device that bears sensor probes for measuring temper-
ature and heater tubes as line sources for measuring conductivity.
The temperature–conductivity (TC) device is driven into the un-
consolidated sediments by freefall in the near-bottom water column
or by high-speed impact. Frictional heating during insertion raises
the temperature of a probe, which is usually but not always higher
than the ambient formation temperature in the sediment where a
probe finally rests. If the temperature of the probe is higher, it will
decay eventually to the ambient formation temperature. This study
explores the feasibility of using the cooling behaviour to determine
the formation temperature and thermal conductivity.

Ideally, to measure the formation temperature, the sensor probes
should stay stationary in the sediment until the friction-generated
heat has dissipated sufficiently. In practice, rather than waiting for

the complete heat dissipation at the rising cost of ship operational
time and at the risk of disturbing the probes through unintended
ship movement, a line-source-based asymptotic relation between
temperature decay and inverse time has often been used to obtain
the desired equilibrium temperature (Hyndman et al. 1979; Hutchi-
son & Owen 1989; Jemsek & von Herzen 1989). This relation can
be further utilized in the method presented here to constrain our in-
verse modelling for conductivity determination and to validate the
estimate of formation temperature.

Conductivity measurement can be made either on sediment cores
or in situ. Disturbance to the core, imperfect core recovery and mis-
match between the core and sensor positions can affect the accu-
racy of heat flow determination. Being cumbersome and requiring
extra time for coring preparation and core retrieval, coring can-
not allow multiple penetrations for measurements of geothermal
gradients at closely spaced stations. Based on a steady, continu-
ous line-source method and made only after frictional heat has
dissipated sufficiently or its residual heat can be confidently cor-
rected, in situ measurements require extra battery power supply and
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an additional 5–10 min to complete a heating experiment (Hynd-
man et al. 1979; Lister 1979; Jemsek & von Herzen 1989; Polyak
et al. 1996).

Because the cooling history of a friction-heated probe reflects
the heating event and physical properties, the idea of using a cool-
ing curve for deducing the thermal properties has been contem-
plated since the first marine heat flow measurement (Bullard 1954).
However, the idea could not be properly tested with the now anti-
quated analogue data. Using digital data, Lee & von Herzen (1994)
tested whether the equilibrium temperature and the thermal con-
ductivity are determinable from cooling curves at two marine heat-
flow stations. Recently, we have acquired high-quality data from
Lake Baikal. The much-improved quality of the data inspires us
to further develop and test the methodology for using friction as a
heat source for in situ determination of thermal conductivity and
diffusivity.

The new development includes the following. (1) An empirical
relation that links heat capacity with thermal conductivity as used
by Lee & von Herzen (1994) is now abandoned. This paves the way
at no extra cost for the determination of thermal diffusivity, which
is needed for imposing heat flow as an energy constraint in transient
heat-transfer modelling or for investigation of bottom water tem-
perature variations, the effect of which is recorded in the sediments.
(2) A genetic algorithm (GA) is employed to scan through reason-
able ranges of parameter values so that potential pitfalls of a model
converging towards a local minimum in the parameter space can be
spotted. (3) A conductivity constraint based on the above-mentioned
asymptotic relation for estimating equilibrium temperature is now
formally incorporated into an objective function for inverting the
parameters that define the cooling history of a probe. (4) The model
parameters are assessed additionally to see whether a model can
predict the cooling behaviour at a time beyond the record period
used for modelling.

Our lake data were sampled at 2.5 s intervals (10 times as fine
as the 26 s intervals used by Lee & von Herzen) and the recording
was approximately twice the duration (approximately 5 min) of a
typical measurement of geothermal gradient in the ocean floor. The
high sampling frequency allows a better determination of the origin
time when the sensor probe begins to act as an instantaneous line
source, and justifies the usage of an ad hoc energy spreading fac-
tor that was proposed to facilitate curve fitting. In the absence of
independent data for verification, the results of inverse modelling
are often met with cautious acceptance even for models that satisfy
certain model selection criteria. Provided with a long recording data
set at a high sampling rate, we can use the first 2.5 min of the records
for modelling and, on the basis of the resulted model parameters,
curve-match the cooling behaviour for periods three times beyond
the recording period (2.5 min) used for inverse modelling. Extrapo-
lation fitting is hereby recognized as a viable means to confirm the
modelling results if a method such as that presented herein is to be
practised for measuring terrestrial heat flow through a lake or ocean
floor.

Better depth and lateral resolution in heat flow measurements is
desirable in areas of significant inhomogeneity in thermal properties
and for investigation of advective heat flux (e.g. hydrothermal circu-
lation) or of climate changes as imprinted in the sediments through
bottom-water temperature variations (Davis et al. 1999; Barker &
Lawver 2000). Many factors can affect the accuracy of heat flow
determination and consequently the interpretation of data for geo-
dynamic modelling (e.g. von Herzen et al. 2001). Those factors will
not be dealt with in this paper. Interested readers can find the subject
matter through recent correspondence by Geli et al. (2001), Davis

et al. (2002) and Fisher et al. (2002). This paper illustrates a method
that does not require an active heating experiment for conductivity
measurements and that can extract the formation temperature from
a short-duration recording. Such a method can save ship operation
time, reduce the chance of disturbance to data recording caused by
sensor movement, and allow for the design of finer spatial resolu-
tion in data acquisition. It is hoped that high spatial resolution in the
determination of formation temperature and thermal properties can
permit better evaluation of temperature–depth profiles that may have
been affected by bottom-water temperature variation or advection
of interstitial fluid.

In the following, we will briefly describe the cooling model,
and then document the inverse modelling in detail. For bridg-
ing with previous work, we will also revisit seven test exam-
ples of Lee & von Herzen at one site at the Atlantic–continental
margin.

C O O L I N G M O D E L

After frictional heating during the insertion, the probe and its sur-
rounding sediment are assumed to cool conductively to the ambient
equilibrium formation temperature θ∞. With axial heat transfer ne-
glected, heat conduction for an axisymmetric system in a homoge-
neous medium follows

∂2θ

∂r 2
+ 1

r

∂θ

∂r
= ρc

k

∂θ

∂t
, (1)

where θ (r , t) is the temperature, r is the radial distance, t is the time,
k is the thermal conductivity and ρc is the heat capacity at constant
volume (see Appendix A for notation).

The thermal regime of interest consists of two media with distinc-
tive thermal properties k and ρc, one representing the sensor probe
(medium 1) and the other the sediments. The initial temperature is
defined by

θ1(r, 0) = θ0, r ≤ a;

θ2(r, 0) = θ0 + r − a

b − a
(θb − θ0) , a ≤ r ≤ b;

θ2(r, 0) = θ∞, b ≤ r ≤ c, (2)

where a is the radius of the probe, b is the outer radius of a thin,
disturbed sediment sheath around the probe, c is the proxy of infinite
radial distance, θ0 is the initial temperature in the probe, θ∞ is the
equilibrium formation temperature and θb is the initial temperature
at r = b,

θb = θ2(b, 0) = wθ0 + (1 − w)θ∞, 0 < w < 1 (3)

and w is a weighting factor between θ 0 and θ∞, herein called the
‘energy spreading factor’. The factor w represents the extent of
spreading frictional heat energy into the sediments before the heat
is assumed to be instantaneously released from a friction-heated
probe. Being a parameter to be determined by inverse modelling, w
was introduced by Lee & von Herzen (1994) for the convenience
of compensating the mass disturbance and associated heat transfer
during probe insertion.

The boundary conditions are(
∂θ1

∂r

)
r=0

= 0, θ2(∞, t) = θ2(c, t) = θ∞, 0 ≤ t < ∞. (4)

The conditions at the interface r = a are

θ1(a, t) = θ2(a, t),

(
k1

∂θ1

∂r

)
r=a

=
(

k2
∂θ2

∂r

)
r=a

. (5)
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The origin time of ‘instantaneous heating’ needs to be defined
for modelling because the temperature at the instant when a probe
stops descending in the sediment may not be recorded. A delay
time tD is introduced here as an additional parameter to represent
the first recording time after the frictional heating. The effect of
an uncertain tD increases with increasing recording interval. Our
cooling model is now fully described by the governing differential
equation and the initial and the boundary conditions provided that
eight model-defining parameters k1, (ρc)1, k2, (ρc)2, θ 0, θ∞, w and
tD are given.

M E T H O D

Beginning with parameter searching using a genetic algorithm, the
parameters are determined by inverse modelling (IM) through an
iterative comparison of the simulated and observed cooling history.
The simulation is made by a finite-element analysis (FE) for a given
set of model parameters.

Finite-element analysis

Our simulation of the cooling history of a probe as forward model-
ling is based on 1-D axisymmetric finite-element analysis, for which
the theoretical development is available in several textbooks. Our
application follows those described in Lee & von Herzen (1994). A
summary is presented below for documenting the method.

The region of interest between r = 0 and c is discretized into
N r ring (shell) elements with their ring thicknesses 	r increas-
ing outward radially. The radius of the innermost ring (a cylinder)
coincides with the probe radius a. The outermost ring radius c is
approximately four times the diffusion distance D = √

κtend, where
κ is the thermal diffusivity and t end is the final observation time. The
number of rings N r and ring thicknesses are estimated empirically.
As an example for the test cases in Lake Baikal, a = 3, b = 5, c =
63 mm (for κ ≈ 0.35 × 10−6 m2 s−1, t end = 700 s), N r = 24 and
	r = 2–3 mm.

The temperature inside each element is linearly interpolated be-
tween the bounding nodal temperatures of the element. The initial
temperature in excess above the equilibrium temperature is used to
estimate the amount of energy released from a heated probe.

After minimizing the Galerkin weighted residual and using linear
interpolation between two consecutive time steps, the governing
eq. (1) and the initial and boundary conditions become a set of
simultaneous equations for the nodal temperature vector θ i at the
end of time step i in terms of θ i−1 at the beginning,(
C + 2	t

3
K

)
θ i =

(
C − 	t

3
K

)
θ i−1, i = 1, 2, 3, . . . , (6)

where the bold sans serif uppercase and bold lowercase letters denote
matrices and column vectors, respectively, and 	t is the time span
at step i. The global capacitance matrix C with a dimension of
(N r + 1) × (N r + 1) is assembled from individual 2 × 2 elementary
matrices

Ce = ρc r̄	r

6

[
2 1
1 2

]
, (7)

where r̄ is the mean of the outer and inner radii for element e and 	r
is its ring thickness. The global conductance matrix K is assembled
similarly from individual elementary matrices

Ke = k r̄

	r

[
1 −1

−1 1

]
. (8)

Within time step i, the (N r + 1) × 1 column vector θ i−1 represents
the initial condition and θ i is the final nodal temperature. This θ i in
time step i becomes θ i−1 in the next time step i + 1 for obtaining
a set of new nodal temperatures θ i . The process repeats for every
time step. The step size 	t is either one-half or one-quarter of the
sampling time interval for the FE modelling (the sampling interval
for modelling can be less than the recording interval) except that 	t
is made smaller in the first time step from time zero to time tD.

The computed temperatures inside the probe at different times
constitute the temperature vector d used in inverse modelling. For
the purpose of modelling, the temperature of a probe is the weighted
average of the temperatures at nodes 1 and 2.

Inverse modelling

For inverse modelling to determine the model-defining parameters,
we apply an iterative Newton–Gauss method to a scalar objective
function,

S = SI + SII, (9)

where

SI = (dobs − d)TC−1
d (dobs − d) + (ptrial − p)TC−1

p (ptrial − p),

SII = (ks/k2 − 1)2. (10)

The first part SI (Tarantola 1987; Lee & von Herzen 1994; Lee 1999)
measures the misfits between the N × 1 observed temperature vector
dobs and the computed temperature vector d and the misfits between
the M × 1 trial parameter vector ptrial and the iteratively determined
parameter vector p. CD and Cp are the N × N covariance matrix
of the data and the M × M covariance matrix of the parameters,
respectively, with N being the number of the observed temperature
data and M the number of parameters. The superscript T denotes
the transpose of a matrix. The diagonal entries of Cd and Cp are the
variances of the data and parameters, respectively. The differences
between dobs and d and between ptrial and p are assumed to have
Gaussian distributions. The data are assumed to have no systematic
error and the parameters are uncorrelated to one another such that
the off-diagonal entries for the two covariance matrices are set to
zero initially. As described in Tarantola (1987), the ptrial represents
prior knowledge but it is only a set of trial values as used here.

The second part SII imposes the constraint of an asymptotic cool-
ing behaviour. The temperature distribution arising from an instan-
taneous line sources in an infinite medium of conductivity ks and
thermal diffusivity κ is

θ (r, t) = θ∞s + Q

4πkst
exp(−r 2/4κt), (11)

where Q is the energy production per unit line length and θ∞s is the
equilibrium temperature. At large times (t � r 2/4κ), the tempera-
ture behaves as

θ (r, t) ≈ θ∞s + Q

4πkst
. (12)

A linear regression of θ versus 1/t yields an intercept of θ∞s and
a slope of η = Q/4πks. This relation has been used frequently to
estimate the equilibrium temperature from data recording that is
short of reaching a thermal steady state (e.g. Hutchison & Owen
1989). The conductivity ks can be estimated from the slope η if the
frictional heat generation Q is determinable from curve fitting. Here
we define a function

f 2 =
(

Q

4πk2η
− 1

)2

= SII (13)
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as an additional constraint. This constraint is essentially equivalent
to minimizing (ks/k2 − 1)2. Hereafter k instead of k2 will denote
the conductivity of sediments.

The two parts, SI and SII, are equally weighted here for contri-
butions to the overall S. They can be weighted differently, but the
consequence of different weighting is immaterial at the global min-
imum when SI and SII are both at their minima. It is noted that
(θ∞s/θ∞ − 1)2 can also serve as an alternative to SII or additionally
as the third component of the objective function. This constraint is
not implemented so that the difference between θ∞s and θ∞ can be
used as a criterion to assess the modelling results because the deter-
mination of ks depends on the IM results but θ∞s is independently
determinable.

Minimization of S with respect to p (i.e. setting ∂S/∂p = 0) and
solving for the resulted p iteratively yields at iteration step n,

pn+1 = ptrial + Cp′nG
T
nC

−1
D

[(
dobs − dn

)

−Gn

(
ptrial − pn

)] − Cp′n

(
f
∂ f

∂p

)
n

. (14)

Except for the final term, which bears the function f , this relation
has been derived earlier (Tarantola 1987; Lee 1999, eq. 10.75). The
entries of the N × M sensitivity matrix Gn are defined by

Gi j = ∂di

∂p j

∣∣∣∣
pn

, i = 1, 2, . . . N ; j = 1, 2, . . . M. (15)

This partial derivative is evaluated numerically at the ith compu-
tational point (time i) at iteration step n. Matrix Cp′n is the post-
processing covariance matrix, which is reciprocal to the Hessian,

C−1
p′n = C−1

p + GT
nC

−1
D Gn . (16)

The term associated with function f in eq. (14) can be derived
analytically from the heat release, as computed from the initial tem-
perature rise

Q = 2πρc1

∫ a

0
[θ1(r, 0) − θ∞]rdr + 2πρc2

∫ c

a
[θ2(r, 0) − θ∞]rdr.

(17)

This Q and ρc1, ρc2, θ1 and θ 2 are understood to be evaluated at
iteration step n. The slope η depends on the delay time tD but this
dependency becomes insignificant as some of the early-time data are
excluded one by one from the linear regression in order to maximize
the linear correlation coefficient. Consequently, η is treated as a
constant for a given set of cooling data. The derivation for the M ×
1 vector Cp′n( f ∂ f/∂p)n is straightforward and the lengthy listing is
available from the first author of this paper.

Criteria of model assessment

The results of IM are assessed by three criteria. First, the root-mean-
squares (rms) associated with the chosen set of parameters,

rms =
√√√√ 1

N − M

N∑
i=1

(
dobs

i − di

)2
(18)

should be as small as possible. A suite of rms values can be obtained
by running IM with various choices of ptrial. However, our test exam-
ples indicate that rms alone is not a definitive discriminator because
some values of p may differ from the least to the greatest values by
more than 20 per cent, while their rms values are all less than the
likely standard error of data. (Here we use the term standard error

to mean a measure of the likely error in each individual tem-
perature measurement, not the standard deviation of all the tem-
perature data.) The choice of a final p becomes murky in such
cases.

Hence the distribution of misfits, dobs − d, is examined as the
second criterion, which mandates the misfit distribution for the cho-
sen p be random around the computed d. Usually good distributions
are associated with low rms values. The choices are therefore not
sufficiently definitive and need to be narrowed further by imposing
the third criterion that the conductivity ratio ks/k should be as close
to one as possible.

A set of p that meets the conductivity ratio criterion and an rms
value of less than the standard error may not always be affiliated
with the least rms. In the dilemma of choosing a set of parameters
with either the close-to-one ratio or the least rms, we opt for the
former because a model with a close-to-one conductivity ratio is
almost always associated with an rms that is the least or nearly the
least among the models obtained with various ptrial. However, the
opposite is not necessarily true in the sense that a p associated with
the minimal rms or with an rms less than the standard error of the
data may be associated with a ratio that deviates by 20 per cent or
more from unity.

A fourth criterion, applicable only for data with long recording
duration, is based on extrapolation fitting and will be addressed
in the next section. Chi-squared and chi-squared probability were
monitored during modelling but the two were not used for model
selection because their values are sensitive to the chosen standard
data error, which in general is poorly known.

R E S U LT S A N D D I S C U S S I O N

Based on the Newton–Gauss quasi-linear method, the IM algorithm
is applicable where ptrial is close to the true but unknown ptrue. Our
Fortran-coded inverse program can crash at run time for a poor as-
signment of ptrial. The selection of ptrial is thus crucial for a success-
ful determination of parameters. To facilitate the choices of ptrial,
two procedures are adopted. The first procedure is based on a GA
that yields a p (a set of parameters) from likely parameter ranges.
The GA output satisfies the survival constraint of near-minimal S
through a random combination of parameter retention, exchange,
perturbation and recombination as described by Lee et al. (2002)
for a hydrogeological application except that the random selection
of parameters here is based on linear scales instead of logarithmic
scales. The GA-produced ptrial typically yields acceptable rms but
may also produce a biased misfit distribution or a far-from-one con-
ductivity ratio. The second procedure requires minor adjustments
of the GA-produced ptrial prior to inputting it to IM in order to yield
a p that satisfies the model selection criteria. The GA, which ex-
penses more computation time, can be bypassed during the stage of
fine-tuning ptrial for IM.

The method is tested with three types of temperature data: three
sets of synthetic data, 20 sets of measurements from four heat
flow stations in Lake Baikal and seven sets from one station at the
Atlantic continental margin off the Carolinas. The Atlantic data set
was recorded at intervals of 26 s for approximately 5.5 min, while
the data from Lake Baikal were collected at intervals of 2.5 s for
8–11 min. Fine recording intervals avail the details of curve-fitting
at early time for a better understanding of the heating and cool-
ing processes. Long recording permits partitioning of a data set for
both parameter determination by modelling and parameter valida-
tion by extrapolation fitting. Validation by extrapolation serves as
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Table 1. Modelling results of synthetic data for station GST3-5.

ρc1 k1 ρc2 k2 θ0 θ∞ td w rms-m rms-e

True 2.786 0.334 2.959 1.062 3.902 3.601 1.20 0.25
±0.000 3.175 0.387 3.037 1.097 3.902 3.600 1.03 0.21 0.0015 0.0010
±0.002 3.323 0.373 2.911 1.097 3.905 3.600 1.39 0.16 0.0027 0.0017
±0.005 3.440 0.412 2.824 1.089 3.905 3.600 1.24 0.16 0.0035 0.0032
	0.000 14 per cent 16 per cent 2.6 per cent 3.3 per cent 0.000 −0.001 −0.17 −16 per cent
	0.002 19 per cent 12 per cent −1.7 per cent 3.3 per cent 0.003 −0.001 0.19 36 per cent
	0.005 23 per cent 13 per cent −4.6 per cent 2.5 per cent 0.003 −0.001 0.04 36 per cent

Row ‘true’ represents the parameter values used to generate the synthetic cooling data. See Appendix A for symbols. The ‘±numbers’
are the maxima of random noises (◦C) added to the cooling data and the numbers in the cells of these rows are the mean values for four
GA-IM runs, with each satisfying |ks/k − 1| ≤ 0.005. The values in the cells of the 	 rows denote the model errors in either 100
(mean—true)/true (per cent) or (mean—true) values. θ0 and θ∞ are in units of ◦C and td in s.

the fourth criterion for assessing the modelling results of the Lake
Baikal data.

Synthetic data

The GA-IM method had been tested with synthetic data before it
was applied to the observed data. The results listed in Table 1 are
recast for realistic parameter values (the details in modelling are de-
ferred to the next section). Three sets of synthetic data were prepared
by adding random noise (with magnitudes up to ±0.000, ±0.002
and ±0.005 K, respectively) to the cooling data synthesized from
a set of model parameters for the deepest probe at station GST3 in
Lake Baikal. The tabulated values represent arithmetic means for
four GA-IM runs. Each run used for the averaging has a conductiv-
ity ratio within ±0.005 from the ideal unity value. As indicated in
Table 1, the misfit rms increases with increasing levels of random
noise in the data. The errors in the determinations of thermal con-
ductivity and heat capacity are within ±5 per cent. The initial and
formation temperatures are determined to within 0.002 K of their
respective true temperatures for all cases. However, the estimates for
the properties of a probe are highly uncertain. The properties and
the misfit distributions will be addressed later during the discussion
on model uncertainty.

Lake data

25 heat flow stations were successfully completed, using a variant
of the violin-bow device (Hyndman et al. 1979) in the northern
basin of Lake Baikal during a Russian–Belgium expedition during
1997 August. The temperature–conductivity device (Khutortskoy
et al. 1990; Polyak et al. 1996) consists of a 2 m long central support
rod and two attached tubes. At 40 mm from the centre rod, the
‘temperature tube’ (3 mm in outer radius) houses five thermistor
sensors spaced at 0.5 m apart vertically. The temperature at the
bottom sensor is measured absolutely to an accuracy of 0.005 K
while the temperatures at other four sensors are measured relative
to the bottom sensor. The temperature resolution is approximately
one-half of the accuracy, ∼0.002 K. Each sensor is hereafter referred
to as a temperature probe or probe.

Used for in situ conductivity measurement, the ‘conductivity
tube’ (2 mm in outer radius) stands diametrically from the tem-
perature tube. It houses four independent 0.5 m long heating wires
and four thermistors, each of which is located at the mid-point of its
respective heating wire. Each heating wire lies at an equivalent depth
between two adjacent thermistors. Conductivity measurements were
made for 6 min, starting at 40 s after the penetration of the TC de-

vice. The residual effect of frictional heating along the conductivity
tube was filtered out with an exponentially decaying time function.
Polyak et al. (1996) estimated the error of the in situ conductivity
measurement to be 5 per cent.

The thermal conductivity was measured in situ at four of the 25
stations, providing 16 independently measured conductivity values
for comparison with the IM-derived values. We used 20 sets of
temperature data at those four stations for inverse modelling of the
equilibrium temperature and thermal properties. A full report on the
heat flow distribution and its tectonic implication will be published
elsewhere after the conductivity estimates are completed using the
method described herein. Previous studies on heat flow in the lake
and in Siberia can be found in Duchkov (1991) and Duchkov et al.
(1999).

The recording was made at intervals of 2.5 s but only every other
data point was included for modelling in order to reduce the compu-
tation time. For each probe, 26 data points totalling 130 s in recording
duration were modelled. The resulting model parameters were then
used to predict the temperatures at every tenth point (or at inter-
vals of 25 s) beyond 130 s. The time step used in the finite-element
simulation was 2.5 s for modelling and 6.25 s for extrapolation. The
arithmetic mean of nodal temperatures at the centre F1 and the edge
of a probe F2 is taken as the calculated probe temperature d, i.e.
d = (F1 + F2)/2.

Time <40 s

Fig. 1 depicts the first 130 s of the cooling history of five temperature
probes at station GST3, which was chosen to show the crossover of
the cooling curves for probes 1 and 2. Also shown are the frictional
heating events and lake-bottom water temperatures (negative time).
According to the heating curves, the penetration took approximately
10–15 s to complete. We assume the heating to have occurred in-
stantaneously but understand that during the course of insertion,
frictional heat energy is both being accumulated in the probes and
dissipated into the surrounding sediments. In other words, a thin
sheath of sediments around each resting probe is pre-heated before
the frictional heat energy in the probe begins to dissipate into the
formation. The actual heat transfer is further compounded by mass
movement (including pore fluid driven to flow by heating-induced
fluid pressurization) as a probe squeezes its way into the sediments
and by subsequent property changes in the sheath of the disturbed
sediments. Generally, a deeper probe is heated to a higher tempera-
ture than the shallower one, but as demonstrated by the crossover of
cooling curves for probes 1 and 2, the probes can respond distinctly
at different sites.

C© 2003 RAS, GJI, 152, 433–442

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/2/433/653499 by guest on 02 February 2022



438 T.-C. Lee et al.

Lake Baikal GST3

3.3

3.6

3.9

4.2

-30 0 30 60 90 120 150

TIME,  s

T
E

M
P

E
R

A
T

U
R

E
,  

C

1
2

3
4

5

r = 0.001 m

r = 0.002 m

Figure 1. Lake bottom temperature and heating data (time <0) and cooling
data and model curves (time >0) at station GST3 in Lake Baikal. Circles
denote model equilibrium temperatures. Also depicted are cooling curves at
r = 0.001 and 0.002 m for an instantaneous line source (located at r = 0)
that uses parameters derived from probe GST3-5. Note that the temperature
at r = 0.002 m rises and then cools, signalling the arrival and passing of a
heat pulse.

Line sources. Also depicted in Fig. 1 are the cooling curves com-
puted through eq. (11) at r = 0.001 and 0.002 m for an instantaneous
line source that uses the source parameters and sediment properties
derived from probe GST3-5 (Table 1). Note that the time delay in
the appearance of peak temperature at r = 0.002 m is conspicuous,
signalling the approaching and departing heat pulse. For times of
less than 40 s, the line-source temperatures are higher than the ob-
served temperatures. This difference suggests that it is inappropriate
to model the cooling history as a response to an instantaneous line
source.

Beyond 40 s, the two curves merge with the observed and simu-
lated cooling curves at GST3-5. As demonstrated by linear correla-
tion coefficients that exceed 0.99, the asymptotic linearity between
the temperature and inverse time also prevails beyond 40 s. The
criterion of the conductivity ratio was therefore based on the slope
obtained for time periods greater than 40 s. The linear regression
was done by removing the early data one by one until the correlation
coefficient for the remaining data (≤130 s) exceeds 0.99.

The difference between the line-source curves and the observed
cooling curve for times below 40 s at GST3-5 (Fig. 1) reflects the
effects of the finite diameter of a probe, the off-axis position of a
thermistor and the pre-heating of a sediment sheath around a probe.
The energy spreading factor w was introduced by Lee & von Herzen
(1994) to account for the pre-heated sheath but its effect was not
observable because their recording intervals (26 s) were too coarse
to record the imprint in a time of less than 10 s.

Properties of probes. A temperature probe is made of steel
casing, thermistor, electric wire and cavity filler. The thermal prop-
erties of a probe are difficult to estimate; otherwise the properties of
a probe can be fixed to reduce the number of parameters for mod-
elling. The five probes are expected to behave differently. However,
the model values for each individual probe also vary from location
to location. Overall the heat capacity values range from 2.9 to 4.2 ×
106 J m−3 K−1 and the conductivity values range from 0.22 to 0.50 W
m−1 K−1. Most of the 20 determinations for the five probes scatter
around their respective mean values (ρc1 ≈ 3.5 × 106 J m−3 K−1 and
k1 ≈ 0.35 W m−1 K−1). Such large uncertainties could be caused
by two factors. First, because the thermal properties of an ideal line

source are indefinable, the properties of a probe are only estimable
with a great uncertainty if most of the data used are of late time when
the probe responds as a line source. Secondly, the sediment sheath
was disturbed differently to exert a varying influence on the deter-
mination. In view of the test results for the synthetic data (Table 1),
we conclude that the property of a probe cannot be satisfactorily
determined by our method.

Potentially the properties of a probe can be determined with re-
duced uncertainty if the heating data are also used. Inclusion of the
heating data necessitates a thermal model that is more sophisticated
than the present one. This idea has not yet been tested. Regard-
less, the uncertainty in the properties of a probe is not necessarily
translated into an equal or greater uncertainty in the estimates of
sediment properties, as demonstrated by the results for the syn-
thetic and lake data. As more heat dissipates into a greater sed-
iment volume, the influence of the properties of a probe on the
determination of sediment properties diminishes and the accuracy
in the determination of thermal properties is attainable to within
±5 per cent.

Model uncertainty

For each probe, four runs of GA were performed within fixed param-
eter ranges (sediment conductivity from 0.8 to 1.2 W m−1 K−1 and
heat capacity from 2.8 to 3.2 × 106 J m−3 K−1). The first recorded
and the last modelled cooling data are taken as the lower bounds of
initial and equilibrium temperatures, respectively. The delay time
lies between 0 and the recording interval (2.5 s) and the energy
spreading factor is set between 0 and 1. The outputs from GA are
modified iteratively as the input trial parameters ptrial to IM, for
which the parameter ranges are not imposed. The uncertainty in
the modelling results are addressed in the categories of conduc-
tivity, equilibrium formation temperature, rms and extrapolation
misfits.

Conductivity. The results of IM are summarized under the column
of k ± σ per cent in Table 2, where k is the arithmetic mean of four
conductivity determinations for each set of cooling data and σ is
the standard deviation from the mean, expressed as a percentage
of the mean. Each individual value chosen for the averaging has a
ks/k ratio that is better than ±0.8 per cent from unity. This σ serves
as a measure of internal consistency for those conductivity values
that, along with other parameter values, satisfy the model selection
criteria. The σ ranges from 2.2 to 12 per cent. A large σ can be
reduced by excluding outliers in the k determinations and repeating
the GA-IM or by increasing the number of modelling runs. However,
the outliers are retained here and the number of runs is capped at
four in order to illustrate the reliability or repeatability of the GA-IM
if only a single run is conducted.

The km column in Table 2 lists the in situ measured conductivity
values. Each km value was measured mid-way between two adja-
cent temperature sensors where k ± σ per cent are determined;
hence strictly speaking, a one-to-one comparison is inappropriate
unless the conductivity is homogeneous. Nevertheless, a compari-
son is made between km and the arithmetic mean (column k ′) of two
adjacent model values. The discrepancies 	k (=km − k ′) are less
than 0.07 W m−1 K−1 for 12 of the 16 pairs of comparison. These
differences are less than 3.0 per cent from the respective mean val-
ues, (k ′ + km)/2, and these are within the estimated 5 per cent error
for the in situ method. A difference of 8–10 per cent appears at the
bottom three of the four depth positions at GST2. The cause of such
large discrepancies at GST2 is not clear. It is noted that model k
at GST2 is associated with low σ . The repeatability of the in situ
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Table 2. Modelling results for four stations in Lake Baikal.

Probe k ± σ per cent km k′ 	k 	θ∞ rms-m rms-e

1-1 0.957 ± 9.6 1.00 1.00 0.00 0.0020 0.0007 0.0017
1-2 1.043 ± 7.1 1.07 1.02 0.05 0.0020 0.0006 0.0017
1-3 0.987 ± 8.6 1.10 1.04 0.06 0.0006 0.0006 0.0004
1-4 1.094 ± 5.6 1.14 1.08 0.06 0.0028 0.0006 0.0006
1-5 1.073 ± 5.3 0.0002 0.0018 0.0010
2-1 0.947 ± 6.2 0.96 1.03 −0.07 0.0003 0.0006 0.0006
2-2 1.110 ± 3.3 0.91 1.11 −0.20 0.0034 0.0009 0.0014
2-3 1.100 ± 3.5 0.96 1.12 −0.16 0.0043 0.0007 0.0018
2-4 1.132 ± 5.5 0.92 1.11 −0.19 0.0019 0.0009 0.0006
2-5 1.093 ± 3.8 0.0039 0.0010 0.0006
3-1 0.904 ± 7.7 0.99 1.06 −0.07 0.0029 0.0006 0.0024
3-2 1.213 ± 4.5 1.04 1.11 −0.07 0.0028 0.0005 0.0023
3-3 1.000 ± 12. 1.01 1.07 −0.06 0.0014 0.0006 0.0026
3-4 1.136 ± 4.0 1.04 1.11 −0.07 0.0020 0.0008 0.0017
3-5 1.085 ± 2.2 0.0005 0.0015 0.0011
4-1 0.777 ± 5.7 0.80 0.82 −0.02 −0.0007 0.0006 0.0035
4-2 0.861 ± 6.9 0.91 0.94 −0.05 −0.0015 0.0006 0.0011
4-3 1.014 ± 4.8 1.04 1.02 0.02 0.0032 0.0006 0.0018
4-4 1.024 ± 7.2 0.96 1.05 −0.09 0.0044 0.0015 0.0033
4-5 1.070 ± 5.3 0.0036 0.0016 0.0039

Symbol k ± σ per cent denotes the mean conductivity of four
determinations (n = 4) with each satisfying |ks/k − 1| ≤ 0.008 and

standard deviation σ =
√∑

i=1,n(ki − k)2/(n − 1) expressed as a

percentage of the mean, km is the conductivity measured in situ at mid-way
between two adjacent temperature sensors, and k′ is the corresponding
mean of two adjacent values in column k ± σ per cent. 	k = km − k′,
	θ∞ = θ∞s − θ∞. Columns 	θ∞, rms-m, and rms-e represent three of
the four criteria used in assessing the modelling results for the curves
shown in Fig. 2.

measurements is indeterminable and it is uncertain how effective the
residual frictional heat can be removed with an exponential filter for
the in situ conductivity measurements.

Formation temperature. The model equilibrium temperature θ∞
is less than their respective last recorded temperatures θ last, stressing
the need for a means to obtain the equilibrium temperature even for
the unusually long recording time presented here. The asymptotic
relation also yields a set of equilibrium temperature θ∞s, which
are higher than θ∞ in 18 of the 20 case examples (column 	θ∞).
In a few cases, θ∞s is higher than θ last. As judged by the cooling
trend, the equilibrium temperature should be less than θ last for each
depth location. Accordingly, the asymptotic linear regression may
not always yield a correct θ∞s unless the data beyond 130 s are also
included in the regression. In short, through repeated modelling,
the equilibrium formation temperatures for the Lake Baikal data are
believed to have been well determined to 0.001–0.002 K, which is
compatible with the results for the synthetic data.

rms. Fig. 2 depicts the results of curve fitting at the four heat
flow stations. Each curve represents a set of model parameters that
meets the model selection criteria, as mentioned above. Based on
modelling of the first 130 s of the cooling records, the misfits for
the individual curves are listed in Table 2 under column rms-m.
(The model duration is reported as 2.5 min in the Summary and
Conclusion sections for the convenience of expression.) Each set
of model parameters is used to predict the cooling behaviour in the
period from 130 s to the last recording time (≤11 min). The extrap-
olation misfits are listed under column rms-e. rms-m and rms-e are
less than 0.002 and 0.004 K, respectively (the fourth decimal place
listed in Table 2 is insignificant and is shown for resolution compar-
ison only). All rms values, including those used to obtain the mean
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Figure 2. Cooling data and model and extrapolation curves, as demarcated
at 130 s by the vertical bar lines, at stations GST1–GST4 in Lake Baikal.
Probe positions are spaced at 0.50 m apart vertically. Circles denote model
equilibrium temperatures, which are slightly lower than their respective last-
recorded temperatures. Note the differences in the cooling responses, espe-
cially the crossover between GST3-1 and -2. Some extrapolation curves fit
above while others fit below the data systematically even though the misfit
rms are less than the measurement errors. (See rms-e in Table 2 and the
amplification of misfits in Fig. 3.) A minor perturbation (0.001–0.002 K) to
temperature recording appears around 70 s at GST1-5; instability also occurs
at GST3-2, -3 and -4 between 350 and 600 s during which the temperature
readings creep up, then down relative to the extrapolation curves.

conductivity but not tabulated here, are less than the estimated ac-
curacy of the temperature measurements (0.005 K). Hence, in terms
of the rms criterion alone, all of those sets of model parameters are
acceptable and the discrepancies among them represent the uncer-
tainties as measured by σ for an individual GA-IM determination.
However, it is worth noting that instability in recording could cause
local perturbation in the data trend, as exemplified around 70 s at
GST1-5 (Fig. 2), and that the rms for the deepest probe at each
station is greater than the shallower ones for all four stations.

The misfit distributions are graphically amplified in Fig. 3 for the
best, intermediate and worst fitting in terms of the rms-e tabulated
in Table 2. Also depicted are the misfits for the synthetic data. Sys-
tematic variations in extrapolation misfits appear in some curves of
the former but not the latter.

Extrapolation. Extrapolation fitting cannot be indefinitely ex-
tended because the late-time records may be tainted by instrument
drift or other uncontrollable physical causes. A combination of plau-
sible causes can produce the systematic misfits: (1) drifting in in-
strument recording becomes apparent at long recording time. A
suspicious symptom of data drift could be seen at GST3-2, -3 and
-4 (Fig. 2) where the observed temperatures rise above the simu-
lated cooling curves between 380 and 600 s but retrack those curves
henceforth (misfits at GST3-2 are amplified in Fig. 3). (2) A probe
could sink slowly in the soft sediments under the weight of the whole
TC device; it could also be pulled up slowly if the holding cable of
the device is under tension as incurred by a drifting ship; and the
entire set of probes could be slowly tilting during long recording.
(3) The temperature of a probe could be affected by the frictional
heat dissipated from the supporting central rod, which has a greater
surface area and hence a greater frictional heating and it lies away at
an axis-to-axis distance of 40 mm (less than our FE domain size of
63 mm). The temperature of a probe could creep upward relative to
a model curve if scenarios (2) and (3) are significant. (4) Insertion
of the central rod drives the pore fluid to flow radially outward while
the sediments are being squeezed. This mechanically displaced fluid
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Figure 3. Upper: misfits for the best (•, GST1-3), intermediate (+, GST3-
2), and worst (	, GST4-5) examples in terms of rms-e (Table 2). Located at
130 s, the vertical bar demarcates modelling and extrapolation misfits. All
misfits are plotted after rounding off to the nearest 0.001 K. In the worst
case, systematic variations in misfit appear and the first two points have
equal misfits but different signs. For the intermediate case, the extrapolation
misfits increase with time but decrease toward the end of recording. Lower,
misfits for synthetic cooling curves based on parameters for GST3-5: •,
noise-free; +, with random noise up to ±0.002 K and 	, with random noise
up to ±0.005 K. Note that misfits increase with the level of data noise but
there are no systematic variations.

flow could be enhanced further by fluid pressurization as originated
from the differences in thermal expansivity and compressibility be-
tween the sediment and the pore fluid (Lee 1996). The front of such
a moving fluid may raise the cooling rate of a cooling probe at late
times. (5) The model parameters are inaccurately determined. (6)
The physical model of cooling of a probe is incorrect, for example,
by neglecting the axial (vertical) heat flux.

The misfit distributions for the synthetic data (Table 1, Fig. 3) in-
dicate that the misfits increase with increasing level of data noise but
there is no systematic variation in the extrapolation misfits, suggest-
ing that some unknown causes, other than a defective methodology,
may affect the late-time field observations. The test on synthetic data
cannot assess the significance of axial heat transfer nor the validity
of our cooling model but it does extract the conductivity values to
within ±5 per cent errors—comparable to the level of uncertainty
for the real data.

These six plausible causes of systematic extrapolation misfits can-
not be easily assessed or resolved because the rms-e are below the
accuracy of temperature measurements and the model rms-m are

on a par with the recording resolution. At such low rms values, the
set of parameters with the least rms-m or rms-e is not necessarily
the best choice. There is no coherent pattern in the distribution of
extrapolation misfits (Fig. 2): some curves fit above the data while
others fit under it. For a given data set, slight changes in model pa-
rameters can revert a fit-above curve to a fit-under curve, or to a
perfect matching (e.g. GST1-3 in Fig. 3). The GA in some sense
represents a stochastic process and the variations in GA-IM results
are indicative of model uncertainty. We prefer the mean values ob-
tained from several GA-IM models, for example, the conductivity
values under the column of k ± σ per cent.

The first four of the six plausible causes for systematic extrapo-
lation misfits, if effective, could also affect the in situ conductivity
measurements. The effect could be too subtle to be perceived and a
systematic error in km could ensue.

Marine data

Instead of using one long tube that houses five sensors for the lake
measurements, the data for our test case of marine heat flow mea-
surements were obtained from seven outrigged probes. The heat
flow station was located at the Atlantic continental margin off the
Carolinas. The data had been modelled by deleting its first cooling
data point and using a built-in empirical relation that links the heat
capacity with the thermal conductivity (Lee & von Herzen 1994,
station HF2P4). That empirical relation has been abandoned here.
Attempts to use all data were successful at five of the seven probes,
but failed at probes 4 and 5. As depicted in Fig. 4, the first data
point for probe 5 (×) was out of the anticipated cooling trend and
therefore was excluded from modelling, although the second point
could be the alternative culprit. For probe 4 (	), the lack of data to
define the course of rapid cooling from the first point to the second
would probably have caused numerous run-time crashes if the first
point were included. As other interprobe spacings, probes 5 (×) and
6 (+) were spaced 0.6 m apart in depth but the close tracking of
their cooling curves are perplexing, possibly as a result of probe
displacement.

The time intervals for modelling were fixed at 6.5 s (one quar-
ter of the recording interval). Unlike the lake data recorded at 2.5
s intervals, the history of frictional heating and cooling around
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Figure 4. Cooling data and curves for heat flow station HF2P4 at the con-
tinental margin off Carolinas (data from Lee & von Herzen 1994). Circles
represent equilibrium temperatures with numerals arranged in order of in-
creasing depth, except that probes 3 and 4 are reversed in position. First data
points for probes 4 and 5 are excluded from the modelling.

C© 2003 RAS, GJI, 152, 433–442

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/152/2/433/653499 by guest on 02 February 2022



Cooling history of friction-heated probes 441

Table 3. Modelling results for station HF2P4 at the Atlantic continental
margin off the Carolinas.

Probe k ± σ per cent km L&v 	k 	θ∞ rms

1 0.994 ± 4.7 1.048 0.999 0.054 −0.0011 0.0024
2 0.995 ± 4.7 1.069 1.042 0.074 −0.0018 0.0015
3 1.114 ± 7.6 1.114 1.170 0.000 −0.0003 0.0010
4 0.986 ± 6.0 1.002 1.047 0.016 0.0001 0.0007
5 1.106 ± 5.2 1.000 1.079 −0.106 −0.0001 0.0008
6 0.983 ± 10. 1.208 1.140 0.215 −0.0001 0.0011
7 1.129 ± 9.0 1.222 1.202 0.093 0.0002 0.0011

Columns L&v and km are from Lee & von Herzen (1994). km denotes in
situ measured conductivity. See Table 2 for other symbols. 	k = km − k.

time zero was poorly observed at Station HF2P4 where the record-
ing interval of 26 s does not provide the required time resolu-
tion. As a result, the probe falsely appears to cool in accordance
with the expectation of an instantaneous heat release from a line
source.

The inclusion of the first data point often led to a run-time crash for
deeper penetration probes. The crash can be prevented if the simu-
lated probe temperature is properly represented by the finite-element
nodal temperatures at the centre (F1) and the edge (F2) of the probe.
Weighted more towards the edge temperature for deeper penetra-
tion probes, the probe temperature is (2F1 + F2)/3 for probes 1–4,
(F1 + F2)/2 for probe 5, and F2 for probes 6 and 7. Table 3 summa-
rizes the modelling results (column k ± σ per cent) for four differ-
ent runs of GA-IM. All mean conductivities are within one model
σ from the km as measured with an in situ line-source method,
except probe 6 where the discrepancy km − k is unusually large,
0.215 W m−1 K−1. Column L&v represents values from Lee & von
Herzen (1994). Column rms represents only the misfits for the cool-
ing curves shown in Fig. 4. All model rms are less than 0.002 K,
insignificantly greater than the rms-m for the lake data.

The data trend near the end of recording (Fig. 4) suggests that
equilibrium temperatures are attainable only at times much beyond
the recording time (∼5 min) at this station unless asymptotic ex-
trapolation or modelling such as that presented here is employed.
The two estimates of equilibrium temperature differ by less than
±0.002 K. Since heat flow measurements utilize temperature differ-
ences between two adjacent sensors to obtain a geothermal gradient,
the absolute values of equilibrium temperatures are inconsequential
if the cooling curves (or cooling time constants) are sufficiently sim-
ilar. However, if temperature data are to be used as records for infer-
ring the history of bottom-water temperature variations or advective
fluid seepage, reliable determination of equilibrium temperature is
crucial for quality assurance. Fortunately, various sets of ptrial for
each sensor led essentially to the same estimate of equilibrium tem-
perature (<0.002 K) even for those that did not meet the selection
criteria.

C O N C L U S I O N

Test results of field data indicate that equilibrium temperature, ther-
mal properties, and hence interval heat flow can be determined
from the cooling history of friction-heated probes by means of a
finite-element-based, quasi-linear inversion scheme that is also con-
strained by the asymptotic temperature response to an instantaneous
line source. The results of GA need to be refined by an iterative IM
because GA misfit distributions are typically biased and the criterion
of a close-to-one conductivity ratio is rarely satisfied. As practised
here, the GA supplies ptrial to IM and it is useful for spotting poten-

tial local minima of an objective function in the parameter space.
The GA results may be acceptable if the ranges of parameters are
narrowly defined or the pool of parameter selection is filled with
finely discretized parameter values. The restriction on parameter
ranges defeats the advantage of using a GA over large ranges of
parameter values; and using fine discretization increases the mod-
elling run time. The GA-IM method is a practical combination, with
GA scouting the ranges or uncertainty of answers and IM providing
model parameters that meet four selection criteria: low rms, un-
biased misfit distribution, close-to-one conductivity ratio and low
extrapolation misfit.

A 130 s (round up to 2.5 min) long segment of records was brack-
eted for modelling the data from Lake Baikal but no attempt has
been made to determine the shortest duration that is still viable
for making an acceptable cooling model. The optimal duration is
a function of probe design, frictional heating and sediment proper-
ties. We intended to see whether data of short recording duration
(approximately half of a typical 5 min duration in marine heat flow
measurements) at high recording rates (less than 5 s per reading)
are useful. The short duration of recording can save the cost of ship
operation time and reduce potential mechanical disturbance arising
from keeping the equipmen on the ocean floor for longer. However,
recording for over 5 min at high recording rates is still desirable, at
some stations interposed among the short-duration stations, for con-
firmation of the modelling results by extrapolation fitting. Sampling
at intervals of 5 s or smaller can facilitate the modelling, especially
the cooling behaviour at early times. However, it is cautioned that
extrapolation fitting should not be carried too far beyond the range of
time used in the GA-IM modelling because several plausible causes
(e.g. recording drift, incidental probe movement, heat dissipated and
fluid driven from a centrally located supporting rod or core bearer)
can subtly influence the late-time data.

Our tests indicated that the equilibrium temperature can be de-
termined within ±0.002 K from 130 s of recording, even for some
models that do not satisfy the criteria of a close-to-one conductivity
ratio and an rms on par with the standard error of data. The un-
certainty in the determination of conductivity and diffusivity (heat
capacity is used in modelling) is probably around 5 per cent but it
can reach 10 per cent for one individual set of model parameters,
as assessed by comparing the model conductivity with the inde-
pendently measured conductivity and by making multimodel runs
of GA-IM. The high uncertainty can be reduced by excluding out-
liers or, as done here, by using the mean values of the results from
multimodelling runs.
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