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Abstract

A new approach to estimating of shear-wave attenuation is proposed. The method is based on an assumption that an

anisotropic attenuating geological medium possesses gyrotropic properties. Doing so allows to obtain attenuation constant

together with gyrotropic constant. Some examples of experimental determination of gyration and attenuation constants are

given. A presentation of the new way of determining shear-wave attenuation constant is proceeded by a brief elucidation of the

main aspects of the phenomenological theory of gyrotropy. The most interesting and important phenomenon inherent to

gyrotropy—rotation of shear-wave polarization plane—is illustrated.
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1. Introduction

Geological media have discrete structure and pos-

sess some elements of symmetry. Though discrete

elements are much less than wavelength, they influ-

ence elastic wave propagation in rocks. Seismic

anisotropy is the most prominent example of this

action. Anisotropic models are effective models, i.e.,

long-wave equivalents of rocks with such discrete

elements as thin layers and sets of fractures.

Recently it was found that rocks can possess not

only anisotropic properties but also gyrotropic ones

(Obolentseva, 1992, 1996). For seismic gyrotropy, the

discrete elements of the medium are the same as those

for seismic anisotropy, but they are situated in the
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other way in space; as for seismic anisotropy, these

elements are situated in the other way in space

(Chichinina, 1998, 2000; Chichinina and Obolent-

seva, 1998b). The necessary condition for the appear-

ance of gyrotropy is the absence of a symmetry center

in the medium; an additional requirement to the

arrangement of discrete elements is a prevalence in

the medium of right or left orientations of elements, in

this case the medium will be enantiomorphent (as, for

example, is a crystal of quartz). In ‘right’ or ‘left’

media the phenomenon of the rotation of shear-wave

polarization plane may occur, and it is the most

interesting and important phenomenon inherent to

gyrotropy, and to seismic gyrotropy in particular.

Seismic gyrotropy was introduced by analogy with

acoustical gyrotropy (Andronov, 1960; Portigal and

Burstein, 1968) and well known optical gyrotropy.

Anisotropic gyrotropic models of geological media

describe shear-wave polarizations in a most general
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way. The purely gyrotropic shear-wave polarization

should be discriminated from the effect of large- and

medium-scale heterogeneity and from azimuthal an-

isotropy produced by preferred orientation of vertical

and subvertical microcracks. The work by Chichinina

and Obolentseva (1998a) illustrates the main features

of the gyrotropic propagation in comparison with the

azimuthally anisotropic wave propagation.

The present paper is devoted to a new approach to

estimating of shear-wave attenuation constant. The

method is based on the assumption that a geological

medium is attenuating and possesses gyrotropic prop-

erties. This allows to obtain attenuation constant

together with gyration constant using two-component

records of shear waves at a given point. The way

differs from the commonly used when the attenuation

is determined from the wave amplitude decreasing

while it is passing a given distance.
2. What is gyrotropy about?

The most interesting and important phenomenon

inherent to gyrotropy is rotation of shear-wave po-

larization plane. Let us consider how it takes place

and why.

What is gyrotropy about? Gyrotropy is an exhi-

bition of the first-order spatial dispersion of elastic

properties (Portigal and Burstein, 1968). Spatial

dispersion means representation of the stiffness ten-

sor cijkl in the form of a series as a function of wave

vector k:

cijklðkÞ ¼ cijkl þ ibijklmkm þ dijklmnkmkn þ : : :: ð1Þ

Accounting of the two first terms cijkl + ibijklmkm of

the stiffness-tensor expansion (1) means consideration

of the first-order spatial dispersion. Let us take these

two terms and substitute them into the Hooke’s law

S(k) = c(k)E(k), where stresses S and strains E are

represented in the form of a plane harmonic wave

exp[ik(n�r�Vt)], r=(x1, x2, x3). Then making inverse

Fourier transform k! r and taking into account that

ikmekl(k)!Bekl/Bxm, one can obtain the following

expression for the Hooke’s law in gyrotropic media:

rij ¼ cijklekl þ bijklm
Bekl
Bxm

:

The modified Hooke’s law gets an additional term,

which includes a spatial derivative of strain multiplied

by the fifth-rank order gyration tensor bijklm.

The corresponding wave equations acquire the

third partial derivative of a displacement with respect

to the spatial coordinates:

cijkl
B
2uk

BxjBxl
þ bijklm

B
3uk

BxjBxlBxm
¼ q

B
2ui

Bt2
;

i ¼ 1; 2; 3:

Substituting a displacement vector in the form of a

plane harmonic wave

Uðr; tÞ ¼ Aexp½ikðn � r � VtÞ	

yields the corresponding Christoffel equations

½cijklnjnl þ ixV�1bijklmnjnlnm	Ak ¼ qV 2Ai;

i ¼ 1; 2; 3: ð2Þ

The expression in the brackets is complex Christoffel

tensor. The notations are the following: V is phase

velocity, Ai (i = 1, 2, 3) are the components of a

polarization vector A, ni (i = 1, 2, 3) are the compo-

nents of a wave normal n.
3. Shear wave propagation along the symmetry

axis

Let us consider a solution of Christoffel equations

(Eq. (2)) in the case of wave propagation along the

vertical symmetry axis of a transversely isotropic

medium (VTI). Three eigenvalues of Christoffel ten-

sor are squared velocities of three waves. One of them

corresponds to the P-wave velocity and is the same as

in a non-gyrotropic VTI medium. The other two

eigenvalues represent two shear-wave velocities,

which are equal to each other in the symmetry-axis

direction of a nongyrotropic VTI medium. In a gyro-

tropic medium, symmetry-axis S-wave velocities dif-

fer, they are almost equal to the symmetry-axis

velocity V0 in a non-gyrotropic VTI medium:

V1 ¼ V0 þ a; V2 ¼ V0 � a; ð3Þ

where V0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
c44=q

p
, (c44 = c2323), a =xb543/(2c44)

and b543 = b13233 is a gyration constant (see Obolent-
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seva, 1992; Chichinina, 2000). In acoustical gyro-

tropy, abV0 (Sirotin and Shascolskaya, 1979). At

seismic frequencies, this inequality is also valid,

corresponding experimental estimates will be pre-

sented later.

In Fig. 1, phase velocity difference for a-quartz is

illustrated (Pine, 1970). The two shear-wave symme-

try-axis velocities are not equal to each other. The

velocity difference 2a is equal approximately to one

percent of the S-wave symmetry axis velocity in a

non-gyrotropic VTI medium, i.e., a = 0.005V0.

Polarization vectors A(r), r= 1, 2, 3 (1! S1, 2! S2
and 3!P) are three eigenvectors of Christoffel

complex matrix, and that is why polarization becomes

complex. In the general case of wave propagation,

polarizations are elliptical. In the case of propagation

along the symmetry-axis, the polarization is circular

for shear waves:

Að1Þ ¼
ffiffiffi
2

p

2
ðex þ ieyÞ; Að2Þ ¼

ffiffiffi
2

p

2
ðex � ieyÞ ð4Þ

and linear for P-wave: A(3) = ez (where ex, ey, and ez
are unit vectors oriented along corresponding coordi-

nate axes). Note, that y-components of the two shear-

wave polarizations (Eq. (4)) are of the opposite sign,

i.e., polarizations A(1) and A(2) become counter-clock-

wise and clockwise, accordingly.

The differences of symmetry-axis wave propaga-

tion in a non-gyrotropic anisotropic medium and in

gyrotropic one are the following. The first difference.
Fig. 1. Shear-wave phase velocities via wave-normal direction for a-
quartz. hj is an angle of a wave normal, degrees.
In a nongyrotropic anisotropic medium, polarizations

of the two shear waves are linear, but in a gyrotropic

medium they are circular (along a direction of

threefold or higher symmetry). And the second

difference. There are two shear waves with different

velocities propagating along the symmetry axis in

gyrotropic media, while in anisotropic case is only

one shear wave.
4. Non-gyrotropic VTI medium

It is well known that along the VTI-symmetry

axis only one S-wave can propagate. Let it be a

plane harmonic S-wave propagating along the sym-

metry axis z with a linear polarization A= ex and

amplitude U:

UðtÞ ¼ Uexp½ixðt � z=V Þ	ex:

The idea of superposition of the two oppositely

circular-polarized plane shear waves (U1 and U2)

does not contradict it, because the sum of them

U1 +U2 is the compound shear wave with linear

polarization A=A(1) +A(2), where A(1) and A(2) are

given by Eq. (4). Let it be shown, following, e.g.,

Crawford (1970).

Assume that polarizations A(1), A(2) of the two

harmonic shear waves U1;2ðtÞ ¼
ffiffiffi
2

p
U/2A(1),(2)

exp[ix(t� z/V)] are circular of opposite sign (counter-

clockwise and clockwise), see formulae (4). It yields

U1 ¼ U=2ðex þ ieyÞðcosxðt � z=V Þ
þ isinxðt � z=V ÞÞ;

U2 ¼ U=2ðex � ieyÞðcosxðt � z=V Þ
þ isinxðt � z=V ÞÞ:

Taking the real parts of the waves U1 and U2 one can

obtain the following circular oscillations:

u1 ¼ U=2ðcosxðt � z=V Þex � sinxðt � z=V ÞeyÞ

u2 ¼ U=2ðcosxðt � z=V Þex þ sinxðt � z=V ÞeyÞ
g;

ð5Þ

where u1 = Re(U1) and u2 = Re(U2).



T. Chichinina, I. Obolentseva / Journal of Applied Geophysics 54 (2003) 427–435430
As one can see from Eq. (5), x-component of the

compound oscillation u = u1 + u2 is equal to the sum

of the two identical cosines, and y-component is equal

to the difference of the two identical sines, and so y-

component is zero. Then the compound oscillation has

to be with linear polarization:

u ¼ Ucosxðt � z=V Þex:

The superposition of the circular oscillations u =

u1 + u2 for a fixed time t is shown in Fig. 2.

The same could be done with the imaginary parts

ũ1 and ũ2 of the waves U1 and U2, so one can obtain

ũ ¼ ũ1 þ ũ2 ¼ Usinxðt � z=V Þex:

And it means that the shear wave U =Re(U) +

iIm(U) is

U ¼ uþ ũ ¼ U ½cosxðt � z=V Þ þ isinxðt � z=V Þ	ex

¼ Uexp½ixðt � z=V Þ	ex:

Thus, the result of summing up of the two shear

waves with the opposite circular polarizations and

equal phase velocities V is the S-wave with linear

polarization ex.When t = z/V = 0, u = u1 + u2 = (U/

2)ex+ (U/2)ex =Uex.
Fig. 2. For a fixed time t, two oscillations u1(t) and u2(t) with

opposite circular polarizations and equal phase velocities. The

resulting compound oscillation u is represented as a vector–sum

u1 +u2. Amplitudes of the oscillations u1 and u2 are equal to the

circle radius, i.e., to U/2. The angles denoted by w are the phases w1

and w2 (w1 =w2 =w) of the oscillations u1 and u2, given by Eq. (5),

i.e. w=x(t� z/V).
5. Gyrotropic VTI medium

In the gyrotropic VTI medium, symmetry-axis

shear-wave velocities V1 and V2 are not equal to each

other, as we have already shown. In this case, one can

modify the expressions (Eq. (5)) for the circular

oscillations u1 and u2 as the following:

u1 ¼ U=2ðcosxðt�z=V1Þex � sinxðt�z=V1ÞeyÞ

u2 ¼ U=2ðcosxðt�z=V2Þex þ sinxðt�z=V2ÞeyÞ
g:

The expressions become more complicated now,

and y-component of the compound wave u = u1 +

u2 is not equal to zero now, i.e., u = uxex + uyey,

where

ux ¼ U=2½cosxðt � z=V1Þ þ cosxðt � z=V2Þ	;

uy ¼ U=2½sinxðt � z=V2Þ � sinxðt � z=V1Þ	:

The last expressions can be simplified using

the trigonometric transforms and the following

denotations:

u1 ¼ xz=V1; u2 ¼ xz=V2; ð6Þ

where u1 and u2 are phases of displacements u1 and

u2. It yields

ux ¼ Ucos½ðu2 � u1Þ=2	cos½xt � ðu1 þ u2Þ=2	;
ð7Þ

uy ¼ Usin½ðu2 � u1Þ=2	cos½xt � ðu1 þ u2Þ=2	:
ð8Þ

Let us analyze expressions (7) and (8). Con-

sider wave propagation from z= 0 to z= h (see

Fig. 3). At the beginning of the wave path z = 0,

therefore u1 =u2u 0 and uy = 0, see Eqs. (6) and

(8). So, at the wave-path beginning the compound

wave has only x-component, as it is illustrated in

Fig. 3.

Imagine the compound wave propagating along

the vertical symmetry axis z. From expressions (7)

and (8), it is clear that if z= h, the compound wave

gets not only x-, but also the additional y-component.

It is illustrated in Figs. 3 and 4.



Fig. 3. The displacement vector u of the compound shear wave in the beginning of the wave path z= 0 and on propagating to a point z = h. j is

rotation angle. u1 and u2 are shear waves with the opposite circular polarizations (counter-clockwise (dashed line) and clockwise (solid line))

and different phase velocities.
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One can compare left and right pictures in Fig. 3 and

notice that the displacement vector of the compound

wave u = u1 + u2 ‘‘rotates’’ and that the tangent of the

rotation angle j can be expressed by the ratio of uy to ux:

tanj ¼ uy=ux: ð9Þ
If we divide expression (8) for uy by expression (7) for

ux, we obtain

uy=ux ¼ tan½ðu2 � u1Þ=2	: ð10Þ

From the last two formulae, one can infer that the

rotation angle j is equal to the half of phase difference

j ¼ ðu2 � u1Þ=2:
Fig. 4. For a fixed time t, two oscillations u1(t) and u2(t) with opposite c

oscillation u =u1 + u2 has ux and uy components. Displacement vector of th

by w1 and w2 are the arguments of the oscillations u1 and u2, i.e., w1 =x
If the wave path is equal to h, we can express rotation

angle j in the terms of the wave path using the

expressions (Eq. (6)) for the phases:

j ¼ 1=2ð1=V2 � 1=V1Þxh: ð11Þ

Thus, it was shown that the more wave path, the

more rotation angle. The compound displacement

vector u rotates while wave is travelling along the

symmetry axis of VTI medium. This is so-called

phenomenon of the rotation of shear wave polari-

zation plane.
ircular polarizations and different phase velocities. The compound

e compound wave u has turned by the angle j. The angles denoted
(t� z/V1) and w2 =x(t� z/V2).
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6. Gyrotropic anisotropic attenuating medium

In the attenuating medium, phase velocities get an

imaginary part. We can write a plane harmonic wave

in terms of complex slowness S� i s= 1/V:

uðtÞ ¼ UAexpð�x s zÞexpi½xSz� xt	:

The amplitude E = exp(�xsz) contains the imag-

inary part of slowness s, and the attenuation coeffi-

cient is a =xs, where x is frequency. The real part of

the slowness S is included in the wave phase:

u ¼ xSz:

In the case of the wave propagation along

the symmetry-axis of the VTI attenuating gyro-

tropic medium, complex shear-wave velocities are

different:

V1;2 ¼ V0Fa� ib ð12Þ

due to the difference (F a) of the real parts of

the symmetry-axis velocities V1 and V2, see

formula (3).

The complex slownesses 1/V1 = S1� is1 and

1/V2 = S2� is2 are different, too. The real parts

and the imaginary parts of the complex slownesses

of the two shear waves may be written in the

terms of gyration parameter a and attenuation

parameter b as

S1;2 ¼ ðV0FaÞ=½ðV0FaÞ2 � b2	; ð13Þ

s1;2 ¼ b=½ðV0FaÞ2 � b2	: ð14Þ

Therefore, amplitudes and phases of the two shear

waves are different, too:

E1;2 ¼ expð�xs1;2zÞ; ð15Þ

u1;2 ¼ xS1;2z: ð16Þ

Let us consider the superposition of the two

circularly (oppositely) polarized waves with the dif-
ferent amplitudes E1 and E2 and different real phase

velocities V1 =V0� a and V2 =V0 + a:

u1¼E1U=2ðcosxðt�z=V1Þex�sinxðt�z=V1ÞeyÞ;

u2¼E2U=2ðcosxðt�z=V2Þexþsinxðt�z=V2ÞeyÞ:
g! u ð17Þ

The compound wave (Eq. (17)) may be presented as

uðtÞ ¼ uxðtÞex þ uyðtÞey; ð18Þ

uxðtÞ ¼ A1cosðxt þ d1Þ; uyðtÞ ¼ A2cosðxt þ d2Þ;
ð19Þ

and curve (18) and (19) represents an ellipse. Ellipse

parameters A, B (large axis length, small axis length)

and the turn angle j (the angle between the large

axis of an ellipse and the x-axis) are the functions of

the amplitudes A1, A2 and phase difference d= d2�
d1 of the oscillations (Eq. (19)).

It is illustrated in Fig. 5 that the sum of the

oscillations (Eq. (19)) represents the ellipse, which

rotates, as the compound wave propagates. The large

axis length A and the small axis length B are

A ¼ E1 þ E2; B ¼ E1 � E2; ð20Þ

where E1 and E2 are given by formula (15).

Rotation angle is equal to the half of phase differ-

ences, as it was shown in the previous case of a non-

attenuating gyrotropic medium:

j ¼ ðu2 � u1Þ=2;

but here u1 and u2 are given by formula (16).

Ratio of amplitudes E1/E2 and phase difference

u1�u2 provide the following system of equations:

exp½�xzðs1 � s2Þ	 ¼ ð1þ B=AÞ=ð1� B=AÞ;

xzðS2 � S1Þ ¼ 2AjA;
ð21Þ

8><
>:

where s1,2 and S1,2 are given by expressions (13) and

(14) as functions of gyration parameter a and attenu-

ation parameter b. Knowing ellipse parameters—the



Fig. 5. Elliptical polarization of the compound wave u at the beginning of the wave path (z= 0) and while propagating to a point (z = h). A is the

large axis length, B is the small axis length, j is the turn angle. E1 and E2 are the amplitudes of the two circularly polarized shear waves

(clockwise (solid line) and counter-clockwise (dashed)).
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turn angle j and the ratio of axis B length to axis A

length—one can find from the system of Eq. (21)

parameters a and b characterizing gyrotropic rotation

and attenuation.
7. Methodology for estimation gyration and

attenuation constants

In experiments, the polarization of shear waves

was studied for vibro-seismic oscillations directly

and for impulse records by using the parameters of

harmonics Sx(x) and Sy(x) spectra of x and y

components of shear-wave displacements.

Harmonic oscillations (Eq. (19)) may be presented

in a complex form:

KðxÞ ¼ rðxÞexp½idðxÞ	; ð22Þ

for impulse oscillations r(x) =ASy(x)A/ASx(x)A, d(x)

= arg tSy(x)b� arg[Sx(x)], where Sx, Sy are spectra of

ux(t) and uy(t) displacements.

Knowing amplitude ratio r and phase difference

d from spectra Sx and Sy, one can determine at

every frequency x ellipse parameters B/A and j:

B

A
¼ 1þ r2 � ½ð1þ r2Þ2 � 4r2sin2d	1=2

2rsind
;

tan2j ¼ 2rcosd=ð1� r2Þ:
To determine the angle j uniquely, one needs to

account for the following formulae:

sin2j ¼ 2rcosd

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ2 þ 4r2cos2d;

q

cos2j ¼ ð1� r2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ2 þ 4r2cos2d:
q

After determining ellipse parameters B/A and j,
gyration parameter a and attenuation parameter b can

be found from the system of Eq. (21). The solution

of the system of equations is given by

b ¼ ½ðM 2 þ 4V 2
0PÞ

1=2 �M 	=ð2PÞ;

a ¼ ðV 2
0 � b2 �MbÞ1=2;

where M ¼ 4AjAV0=L; L ¼ ln
1þ B=A

1� B=A
;

P ¼ 1þ ½ðM 2 þ 4V 2
0 ÞL=ð4xhV0Þ	2:

8. Experimental data

Here are some examples of experimental determi-

nation of turn angle and gyration and attenuation

constants.

The experiments were performed in wells drilled

in the upper part of the subsurface, in sandy–clayey

sediments of Tomsk region, Russia (Obolentseva,

1992, 1996). The shear waves were excited by X-



Table 1

Attenuation coefficient a via frequency f determined from the

experimental data

f (Hz) 60 90 120 150

a (m� 1) 0.57 1.23 1.83 2.13

Fig. 6. Scheme of the field experiment and of the rotation of

polarization vector.
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vibrator and by impulse X-source at the head of the

well and were registered by the two-component (x,y)

receivers at the different depths in the well, as it is

illustrated in Fig. 6. At the depth equal to 6 m, turn

angle is equal to 10j, and at the depth of 12 m it has

become 17j, that is, it increases directly with path of

the compound wave, as it follows from the theory (see

Eq. (11)), i.e., turn angle j is in direct ratio to a wave

path z.

The results of determining gyration and attenua-

tion constants are presented in Fig. 7. The gyration

constant a, that is a real part of the addition to the
Fig. 7. Gyration (A) and attenuation (B) parameters as a f
velocity V0, is small—in the average, it makes up to

3% from the velocity V0:

ac5 m=s; V0 ¼ 155� 175 m=s:

The imaginary part of the velocity, characterizing

the attenuation, is equal, in the average, to 35%

from V0:

bc60 m=s:

The function a( f ) is decreasing.

One can find attenuation coefficient as

a ¼ xs;

where sc b/[V0
2� b2], see formula (14). The follow-

ing values of the attenuation coefficient a were found

for frequencies of 60–150 Hz in the depth interval 0–

12 m, see Table 1. These data are fairly realistic for

the considered medium and are similar to those

calculated using the decreasing of main component

amplitudes in the corresponding depth intervals.

The sandy–clayey sediments also have been in-

vestigated by the acoustic measurements at frequen-
unction of frequency in the depth interval 0–12 m.



Fig. 8. Scheme of the field experiment and of the special contact

sonde.
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cies of about 400 Hz in the wells up to 18 m deep

(Obolentseva et al., 2000). A special contact sonde

with piezoelectric transducers was used (see Fig. 8).

The source and receiver piezoelements were oriented

radially, the distance between the source circle and the

circle with six receivers was equal to 1.4 m.

The polarization processing of the obtained oscil-

lation spectra allowed to estimate both the azimuthal

frequency characteristics of the symmetrical wave-

field part and the parameters of the ellipses character-

izing the dissymmetric part of the wave-field due to

gyrotropy. There were determined the following gy-

ration and attenuation constants a and b:

ac3:5 m=s; bc75 m=s; ðV0c350 m=sÞ:

A comparison of the obtained parameters with

those determined for similar deposits at seismic fre-

quencies (shown at the previous example) shows that

gyration constants at frequencies of about 400 Hz are

somewhat smaller (a/V0 = 0.01) than those at the

frequencies of 10–180 Hz, but ellipse rotation angles

are greater, being proportional to frequency. The

attenuation constant (b/V0 = 0.21) changes in the same

limits as in the previous experiments.
9. Conclusions

A new way of estimating of shear-wave attenuation

is proposed. The method is based on the assumption
View publication statsView publication stats
that a geological medium possesses gyrotropic prop-

erties. The gyration and attenuation constants are

determined from ellipse rotation angles (relative to

source direction) and ellipticity, that is to say, ellipse

axes ratio.

Due to the presence of gyrotropy, we have the

opportunity to determine the attenuation of shear

waves. This way differs from the commonly used when

the attenuation is determined by decreasing of wave

amplitude at the given path.
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