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Abstract

In the case of propagation of plane elastic waves in anisotropic gyrotropic media, Christoffel tensor is complex; its real part

contains stiffnesses and an imaginary part includes components of the fifth-rank gyration tensor. Inequalities relating stiffnesses

and gyration constants are derived from the conditions for potential energy to be positive. The necessary and sufficient

conditions for the positive definiteness of the complex matrix of stiffnesses and gyration constants are used. Sets of inequalities

are obtained for two types of rocks belonging to acentric limit groups ll and l. These inequalities provide a possibility to

carry out modelling of elastic wave propagation in the media considered, setting the values of gyration constants not arbitrarily

but in accordance with physical laws.
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1. Introduction

Gyrotropy is known as an exhibition of the first-

order spatial dispersion. Optical gyrotropy is known

since 1811 (F. Arago), acoustical gyrotropy since the

1960s (Andronov, 1960; Kluge, 1966; Portigal and

Burstein, 1968; Pine, 1970). Recently, the concept of

seismic gyrotropy was introduced (Obolentseva,

1992, 1996) and developed (Obolentseva and Chichi-

nina, 1997; Chichinina and Obolentseva, 1997, 1998;

Chichinina, 1998, 2000; Obolentseva et al., 2000).

In a gyrotropic elastic medium, Hooke’s law and

wave equation are (Sirotin and Shascolskaya, 1979)

rij ¼ cijklekl þ bijklm
Bekl
Bxm

; ð1Þ
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¼ q

B
2ui

Bt2
; i ¼ 1; 2; 3;

ð2Þ
respectively.

For plane harmonic waves of circular frequency x

uðr; tÞ ¼ u0Aexp½i2p=kðnr � VtÞ� ð2p=k ¼ x=V Þ;
propagating with phase velocity V in the direction of

the wave normal n and polarized along a unit vector

A, wave equations (2) become

ðcijklnjnl þ ix=VbijklmnjnlnmÞAk ¼ qV 2Ai; i ¼ 1; 2; 3:

ð3Þ

These are Christoffel equations for an anisotropic

gyrotropic medium which show that tensor c has
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become complex: cijkl! cijkl + i(x/V)bijklmnm. Denote

it by a:

aijkl ¼ cijkl þ ikbijklmnm; ð4Þ

where k =x/V is a wave number.

Properties of inner symmetry of tensor a are

aijkl ¼ āklij; aijkl ¼ ajikl ¼ aijlk ¼ ajilk : ð5Þ

The first equation in Eq. (5) implies that tensor a is

Hermitian. This property is due to the symmetry of

tensor c and antisymmetry of tensor b to the permu-

tation of the first and the second pairs of indices. (For

more details, the symmetry of tensor b is covered in

Obolentseva, 1993, 1996.) The symmetry of tensor a

in permutations of indices in the first and the second

pairs (the rest of the equations in Eq. (5)) is apparent

from this property of tensors c and b.

To study elastic-wave propagation in anisotropic

gyrotropic media by means of mathematical model-

ling, one needs to know both the values of elastic

moduli (cijkl) and the values of gyration constants

(bijklm). The present work represents the limitations

on constants (and, hence, gyration constants bijklm)

derived in the same way as limitations on stiffnesses

cijkl (e.g., Fedorov, 1968), i.e., from the requirement

for elastic energy to be positive. This reduces to the

requirement for quadratic form with respect to small

strains to be positive definite. The coefficients of this

form are, in the case considered, the moduli aijkl.
2. Lagrangian and potential energy in a gyrotropic

medium

Within the framework of continuum elastic theory,

the Lagrangian density for an anisotropic gyrotropic

medium is (Goldstein, 1950)

L ¼ 1

2
qu̇t u̇t �

1

2
cijkl

Bui

Bxj

Buk

Bxl
� bijklm

Bui

Bxj

B
2uk

BxlBxm
:

The second and the third terms are potential

energy, the last one therewith is due to gyrotropic

effects. The terms with b in L differ from the terms

with c by one more differentiation in respect to spatial
coordinate. Therefore, the potential energy can be

presented as

W ¼ ðcijkl þ ikbijklmnmÞ
Bui

Bxj

Buk

Bxl
¼ aijkl

Bui

Bxj

Buk

Bxl
: ð6Þ

The potential energy W will be positive if the

quadratic form with the aijkl coefficients will be

positive definite. The necessary and sufficient con-

ditions for positive definiteness of the Hermitian form

in Eq. (6) and of the Hermitian matrix apq (aijkl X apq)

are the following inequalities for determinants of

orders 1, 2,. . ., 6 (Korn and Korn, 1968):

a11 > 0;
a11 a12

a21 a22

������

������
> 0;

a11 a12 a13

a21 a22 a23

a31 a32 a33

����������

����������

> 0; ð7Þ

a11 a12 . . . a14

a21 a22 . . . a24

a31 a32 . . . a34

a41 a42 . . . a44

�����������������

�����������������

> 0;

a11 a2 . . . a15

a21 a2 . . . a25

. . . . . . . . . . . .

a51 a2 . . . a55

�����������������

�����������������

> 0;

a11 a12 . . . a16

a21 a22 . . . a26

. . . . . . . . . . . .

a61 a62 . . . a66

�����������������

�����������������

> 0; ð8Þ

which are formed from the initial matrix (apq) of the

sixth order. Matrix presentation instead of tensor one

is made in keeping with the known rule for indices:

11!1, 22! 2, 33! 3, 23! 4, 13! 5, 12! 6.

The system of inequalities (Eqs. (7) and (8)) looks

like in the case of an anisotropic medium without

gyration differing by complexity of elements apq =

RRRapq+ i JJJapq, where RRRapq= cpq, JJJapq= kbpqmnm.
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3. Limitations on gyration constants for

anisotropic gyrotropic media

3.1. On acentric limit groups

To derive inequalities relating gyration constants

bpqmnm and stiffnesses cpq, it is necessary to develop

the determinants in inequalities (7) and (8). In a

general case (36 elastic moduli cpq and 90 gyration

constants bpqmnm), when developing the determinants,

one obtains cumbersome expressions resisting any

analysis. Therefore, generally, conditions (7) and (8)

ought to be checked numerically for given sets of

constants cpq, bpqmnm. Such a means is inconvenient to

apply; however, in practice, it is of no importance,

because seismic models of the lowest symmetry (tri-

clinic system) are not usually in use.

In this work, the inequalities of the form fi(cij,

bijm)>0 for propagation in the directions n = (1, 0, 0),

(0, 1, 0), (0, 0, 1) are derived for two limit acentric

groups (gyrotropy may exist only for acentric

groups): ll and l. Limit groups, or Curie groups,

are those point groups which include symmetry axes of

order l (on these groups, see, e.g., Sirotin and Shas-

colskaya, 1979). The groupsll andl describemore

often the symmetry properties of geological media.

A medium ll has an infinite number of axes l;

it is called a rotation group. A geometrical figure

symbolizing this group is a rotating sphere, left and

right. The non-gyrotropic analog of a medium ll
is a medium llm. It has an infinite number of axes

land an infinite number of planes m passing through

these axes. A geometrical symbol of this group is a

sphere at rest. A medium of the group symmetry ll
is called gyrotropic, whereas a medium of the group

symmetry llm is called isotropic. The media ll
are acoustically active: they rotate polarization

plane of shear waves in all directions of wave

propagation.

A medium l has one symmetry axis of infinite

order. A geometrical image of the group l is a

rotating cone, left and right. An example of non-

gyrotropic medium with an axis of infinite order is a

medium of group symmetryl/m having an axisl and

a symmetry plane normal to this axis. A geomet-

rical image of the group l/m is a cylinder at rest.

Three groups (out of five) with an axis l are

acentric: l, l2, lm, the two groups have a sym-
metry center: l/m, l/mm. Hence, only the media of

symmetry groups l, l2, lm may be gyrotropic.

The causes for a geological medium with an axisl
to be gyrotropic lie in the dissymmetry of its

microstructure (Obolentseva and Chichinina, 1997;

Chichinina and Obolentseva, 1997, 1998; Chichi-

nina, 1998, 2000). Rotation of shear-wave polariza-

tion plane occurs only during propagation along

symmetry axis, for all other directions polarizations

of the two shear waves are elliptical, clockwise and

counter-clockwise.

The media of the group symmetry ll are char-

acterized by the two elastic moduli (Lame constants k,
l) and one gyration constant (denote it m). The media

of the group symmetry ll are described by the five

elastic moduli (transversely isotropic media) and nine

gyration constants.

3.2. Inequalities for symmetry group ll

In this group, nonzero are nine components of

tensor c:

c11 ¼ c22 ¼ c33 ¼ k þ 2l;

c44 ¼ c55 ¼ c66 ¼ l;

c12 ¼ c13 ¼ c23 ¼ k;

ð9Þ

and their isomers c21 = c31 = c32 = k. The rest, 24

components out of 36, are equal to zero.

The b tensor has the following nonzero compo-

nents (Obolentseva, 1993):

b12131 ¼ b23212 ¼ b31323 ¼ m;

b11123 ¼ b22231 ¼ b33312 ¼ 2m;

b11132 ¼ b22213 ¼ b33321 ¼ �2m;

or, in matrix presentation,

b651 ¼ b462 ¼ b543 ¼ m;

b163 ¼ b241 ¼ b352 ¼ 2m;

b152 ¼ b263 ¼ b341 ¼ �2m;

ð10Þ

and their isomers, in all 18 components; m is a

pseudoscalar.
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Matrices (cpq) and (bpqm), m = 1, 2, 3, are of the

following form:

c33 c13 c13 0 0 0

c13 c33 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

����������������������

����������������������

;

c13 = c33� 2c44,

0 0 0 0 0 0

0 0 0 b241 0 0

0 0 0 b341 0 0

0 �b241 �b341 0 0 0

0 0 0 0 0 �b651

0 0 0 0 b651 0

���������������������������

���������������������������

;

0 0 0 0 b152 0

0 0 0 0 0 0

0 0 0 0 b352 0

0 0 0 0 0 b462

�b152 0 �b352 0 0 0

0 0 0 �b462 0 0

����������������������

����������������������

;

0 0 0 0 0 b163

0 0 0 0 0 b263

0 0 0 0 0 0

0 0 0 0 �b543 0

0 0 0 b543 0 0

�b163 �b263 0 0 0 0

����������������������

����������������������

:

Their components, cpq and bpqm, are equal to the

constants from Eqs. (9) and (10).

Substitution of apq = cpq + ikbpqm in the determi-

nants (Eqs. (7) and (8)) gives a set of inequalities.

The inequalities for determinants of orders 1, 2, 3 are

free from gyration constants and relate stiffnesses c33,

c44 to each other:

c33 > 0; 4c44ðc33 þ c44Þ > 0; 4c244ð3c33 � 4c44Þ > 0:

Development of the determinants of orders 4, 5, 6

furnishes the desired inequalities relating components

of tensors c and b.

The inequalities for the determinant of the fourth

order written for propagation along directions n=(1,

0, 0), (0, 1, 0), (0, 0, 1) are as follows:

4ð3c33 � 4c44Þc44ðc244 � 4k2m2Þ > 0;

4ð3c33 � 4c44Þc344 > 0; 4ð3c33 � 4c44Þc344 > 0:

The second and third inequalities contain only

stiffnesses and give the relation c44/c33 < 3/4. An

inequality with gyration constant is the first, it con-

tains as a factor the inequality (c44
2 � 4k2 m2) > 0 relat-

ing the c44 constant with the gyration constant m.
Thus, the limitation on the m constant is very simple:

k2m2 <
1

4
c244: ð11Þ

It follows also from this inequality that m may be

positive as well as negative; since m is a pseudosca-



I.R. Obolentseva / Journal of Applied Geophysics 54 (2003) 437–444 441
lar, its sign indicates the direction of rotation of

shear-wave polarization plane (clockwise or counter-

clockwise).

Development of the determinant of the fifth order

yields the following inequalities for n = (1, 0, 0), (0, 1,

0), (0, 0, 1):

4ð3c33 � 4c44Þc244ðc244 � 4k2m2Þ > 0;

4ð3c33 � 4c44Þc244ðc244 � 4k2m2Þ > 0;

ð3c33 � 4c44Þc244ð4c244 � 4k2m2Þ > 0:

The first two inequalities repeat expression (11)

and the third inequality gives m2 < 1/(k2c44
2 ). Then the

solution of inequalities (c44
2 � 4k2m2)>0, (4c44

2 �
4k2m2)>0 is again inequality (11).

At last, development of the determinant of the sixth

order produces for all directions n=(1, 0, 0), (0, 1, 0),

(0, 0, 1) the inequality with biquadratic polynomial in

its left-hand side:

4ð3c33 � 4c44Þc44ð4k4m4 � 5c244k
2m2 þ c444Þ > 0:

The equation 4k4m4� 5c44
2 k2m2 + c44

4 = 0 has the

roots m1
2 = c44

2 /(4k2), m2
2 = c44

2 /k2. In the interval (m1
2, m2

2)

the polynomial has a minimum at the point mmin
2 =

(5/8)c44
2 /k2 equal to (� 9/4)(3c33� 4c44)c44

5 . This

means that positive values of the polynomial are in

the intervals (0, m1
2), (m2

2, l). Because the gyration

constant ought to be less than the stiffness, i.e.,

k2m2bc44
2 , we choose for m2 the interval (0, m1

2). Hence,

again we can write for m2 the former inequality (11):

k2m2 < 1 4= c44
2 .

3.3. Inequalities for symmetry group l

Nonzero are nine components of tensor c:

c11 ¼ c22; c33; c44 ¼ c55; c66

c12 ¼ c11 � 2c66; c13; c23 ¼ c13;
ð12Þ

and their isomers c21 = c12, c31 = c13, c32 = c23. Inde-

pendent components are five. As in the case of group

symmetryll, the rest, 24 components out of 36, are

equal to zero.
Nonzero components of tensor b are

b11123 ¼ a2; b22123 ¼ �a2; b13332 ¼ �b2;

b23331 ¼ b2; b13233 ¼ �c2; b12131 ¼ �d2;

b12232 ¼ d2; b11231 ¼ g2; b22132 ¼ �g2;

b11132 ¼ 2d2 � g2; b22231 ¼ g2 � 2d2;

b11333 ¼ am; b22323 ¼ am; b13331 ¼ �bm;

b23332 ¼ �bm; b12132 ¼ �dm; b12231 ¼ �dm;

b11232 ¼ gm; b22131 ¼ gm; b11131 ¼ gm � 2dm;

b22232 ¼ gm � 2dm

and isomers in accordance with the symmetry prop-

erties (Eq. (5)) of tensor a and, hence, b. The above

components of the b tensor are valid for the point

group symmetry 6 (Kumaraswamy and Krishnamur-

thy, 1980). According to Hermann’s theorem, they are

also valid for the fifth rank b tensor of the symmetry

group l.

In matrix presentation the above expressions are

written as follows

b163 ¼ a2 b263 ¼ �a2

b532 ¼ �b2 b431 ¼ b2

b543 ¼ �c2

b651 ¼ �d2 b642 ¼ d2

b141 ¼ g2 b252 ¼ �g2

b152 ¼ 2d2 � g2 b241 ¼ g2 � 2d2

b133 ¼ am b233 ¼ am

b531 ¼ �bm b432 ¼ �bm

b652 ¼ �dm b641 ¼ �dm

b142 ¼ gm b251 ¼ gm

b151 ¼ gm � 2dm b242 ¼ gm � 2dm:

ð13Þ



I.R. Obolentseva / Journal of Applied Geophysics 54 (2003) 437–444442
Correspondingly, matrices (cpq) and(bpqm), m = 1,

2, 3, appear as

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

����������������������

����������������������

;

c12 = c11� 2c66,

0 0 0 b141 b151 0

0 0 0 b241 b251 0

0 0 0 �b431 �b531 0

�b141 �b241 b431 0 0 �b641

�b151 b521 b531 0 0 �b651

0 0 0 b641 b651 0

���������������������������

���������������������������

;

0 0 0 b142 b152 0

0 0 0 b242 b252 0

0 0 0 �b432 �b532 0

�b142 �b242 b432 0 0 �b642

�b152 �b252 b532 0 0 �b652

0 0 0 b642 b652 0

����������������������

����������������������

;

0 0 b133 0 0 b163

0 0 b233 0 0 b263

�b133 �b233 0 0 0 0

0 0 0 0 �b543 0

0 0 0 b543 0 0

�b163 �b263 0 0 0 0

����������������������

����������������������

:

The components cpq and bpqm are equal to the

constants from Eqs. (12) and (13).

Now let the matrices c, b be substituted in con-

ditions (7) and (8) for the positiveness of the potential

energy of the medium to be considered. Unlike the

case of the medium ll, relations between stiff-

nesses cij result only from the determinants of orders

1, 2. They are

c11 > 0; c211 � c212 > 0:

The determinants of the orders 3,. . .,6 relate stiff-

nesses and gyration constants.

The requirement for the determinant of the third

order to be positive gives in the case n=(0, 0, 1) the

inequality

4c66½�k2a2m � c213 þ c33ðc11 � c66Þ� > 0;

from which it follows the inequality for the gyration

constant am:

k2a2m < c33ðc11 � c66Þ � c213: ð14Þ

The inequalities for the determinant of the fourth

order provide the relations between the gyration

constants b2, d2, g2, bm, dm, gm, am and stiffnesses cij.

If n=(1, 0, 0) then

4½k2b2
2c66ðc66�c11Þþk2d22ðc213�c11c33Þ�k2g22c33c66

þ 2k2b2d2c13c66 � 2k2b2g2c13c66 þ 2k2d2g2c33c66

þ c44c66ðc11c33 � c33c66 � c213Þ� > 0: ð15Þ



	 ð�k a2 þ c66Þ > 0:
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If n=(0, 1, 0), the inequality looks like in the case

n=(1, 0, 0) with replacement b2, d2, g2 by�bm, dm, gm:

4½k2b2
mc66ðc66�c11Þþk2d2mðc213�c11c33Þ�k2g2mc33c66

�2k2bmdmc13c66þ2k2bmgmc13c66þ2k2dmgmc33c66

þ c44c66ðc11c33 � c33c66 � c213Þ� > 0: ð16Þ

The left-hand side of the inequality for the direc-

tion n=(1, 0, 0) is a quadratic form with respect to

variables kb2, kd2, kg2; correspondingly, the left-hand
side of the inequality for n=(0, 1, 0) is a quadratic

form with respect to variables kbm, kdm, kgm.
For the direction of the symmetry axis n=(0, 0, 1),

the inequality for am arises which is the same as for

the determinant of the third order.

Development of the determinant of the fifth order

for n=(1, 0, 0) and n=(0, 1, 0) gives the following

inequality:

4ðk4b2
md22c11 � 2k4b2bmd2dmc11 þ 4k4b2bmd2dmc66

þ 4k4bmd22dmc13 þ k4b2
2d

2
mc11 � 4k4b2d2d

2
mc13

þ 4k4d22d
2
mc33 � 2k4b2

md2g2c66 � 2k4b2bmdmg2c66

�2k4bmd2dmg2c13þ2k4b2d
2
mg2c13�4k4d2d

2
mg2c33

þ k4b2
mg22c66 þ k4d2mg22c33 � 2k4b2bmd2gmc66

�2k4bmd22gmc13�2k4b2
2dmgmc66þ2k4b2d2dmgmc13

� 4k4d22dmgmc33 þ 2k4b2bmg2gmc66

þ 2k4d2dmg2gmc33 þ k4b2
2g

2
mc66 þ k4d22g

2
mc33

� k2b2
2c11c44c66 � k2b2

mc11c44c66 þ k2b2
2c44c

2
66

þ k2b2
mc44c

2
66 þ 2k2b2d2c13c44c66 þ k2d22c

2
13c44

� k2d22c11c33c44 � 2k2bmdmc13c44c66 þ k2d2mc
2
13c44

� k2d2mc11c33c44 � 2k2b2g2c13c44c66

þ 2k2d2g2c33c44c66 � k2g22c33c44c66

þ 2k2bmgmc13c44c66 þ 2k2dmgmc33c44c66

� k2g2mc33c44c66 � c213c
2
44c66 þ c11c33c

2
44c66

� c33c
2
44c

2
66Þ > 0: ð17Þ

For propagation along the symmetry axis n=(0, 0,

1), the inequality is very simple:

4c66½�k2a2m � c213 þ c33ðc11 � c66Þ�ðc244 � k2c22Þ > 0:

ð18Þ
The new inequality c44
2 � k2c2

2>0 gives for the

gyration constant c2 the limitation

k2c22 < c244: ð19Þ
Similar expressions appear in the result of devel-

oping the determinants of the sixth order. The inequal-

ities for directions n=(1, 0, 0) and n=(0, 1, 0) are again

the same, i.e.,

4
�
k4b2

2d
2
2c11c66 þ k4b2

md22c11c66 � k4b2
2d

2
2c

2
66

� 2k4b2d
3
2c13c66 � k4d42c

2
13 þ k4d42c11c33

þ 2k4b2bmd2dmc
2
66 þ 2k4bmd22dmc13c66

þ k4b2
2d

2
mc11c66 þ k4b2

md2mc11c66 � k4b2
md2mc

2
66

� 2k4b2d2d
2
mc13c66 � 2k4d22d

2
mc

2
13 þ 2k4d22d

2
mc11c33

þ 2k4bmd3mc13c66 � k4d4mc
2
13 þ k4d4mc11c33

� 2k4b2
md2g2c

2
66 þ 2k4b2d

2
2g2c13c66

� 2k4d32g2c33c66 � 2k4b2bmdmg2c
2
66

þ 2k4b2d
2
mg2c13c66 � 2k4d2d

2
mg2c33c66

þ k4b2
mg22c

2
66 þ k4d22g

2
2c33c66 þ k4d2mg22c33c66

� 2k4b2bmd2gmc
2
66 � 2k4bmd22gmc13c66

� 2k4b2
2dmgmc

2
66 � 2k4d22dmgmc33c66

� 2k4bmd2mgmc13c66 � 2k4d3mgmc33c66

þ 2k4b2bmg2gmc
2
66 þ k4b2

2g
2
mc

2 þ k4d22g
2
mc33c66

þ k4d2mg2mc33c66 � k2b2
2c11c44c

2
66 � k2b2

mc11c44c
2
66

þ k2b2
2c44c

3
66 þ k2b2

mc44c
3
66 þ 2k2b2d2c13c44c

2
66

þ 2k2d22c
2
13c44c66 � 2k2d22c11c33c44c66

þ k2d22c33c44c
2
66 � 2k2bmdmc13c44c

2
66

þ 2k2d2mc
2
13c44c66 � 2k2d2mc11c33c44c66

þ k2d2mc33c44c
2
66 � 2k2b2g2c13c44c

2
66

þ 2k2d2g2c33c44c
2
66 � k2g22c33c44c

2
66

þ 2k2bmgmc13c44c
2
66 þ 2k2dmgmc33c44c

2
66

� k2g2mc33c44c
2
66 � c213c

2
44c

2
66 þ c11c33c

2
44c

2
66

� c33c
2
44c

3
66

�
> 0: ð20Þ

The inequality for n=(0, 0, 1) direction adds one

more inequality to Eq. (18):

4½�k2a2m þ c33ðc11 � c66Þ � c213�ð�k2c22 þ c244Þ
2 2 2
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It contains the limitation for gyration constant a2:

k2a22 < c266: ð21Þ

Thus, the limitations sought are given by the

inequalities (14), (21) and (19) for gyration constants

am, a2, c2, (15) for the gyration constants b2, d2, g2,
(16) for the gyration constants bm, dm, gm, and (17) and
(20) for the gyration constants b2, d2, g2, bm, dm, gm.
4. Conclusions

The derived inequalities for relations between

stiffnesses and gyration constants are supposed to

provide a more appropriate way to carry out compu-

tations for anisotropic gyrotropic media than to

choose these constants arbitrarily in the belief that

gyration constants, by analogy with optics and acous-

tics, ought to be a hundred and a thousand times less

than stiffnesses. The inequality for a gyrotropic me-

dium with identical properties in all directions (sym-

metry group ll) and the inequality for n=(0, 0, 1)

direction in a gyrotropic medium of the symmetry

group l are simple. The inequalities for n=(1, 0, 0)

and n=(0, 1, 0) directions in a medium of the

symmetry group l need to be investigated and, if

possible, transformed.
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