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Abstract

In the case of propagation of plane elastic waves in anisotropic gyrotropic media, Christoffel tensor is complex; its real part
contains stiffnesses and an imaginary part includes components of the fifth-rank gyration tensor. Inequalities relating stiffnesses
and gyration constants are derived from the conditions for potential energy to be positive. The necessary and sufficient
conditions for the positive definiteness of the complex matrix of stiffnesses and gyration constants are used. Sets of inequalities
are obtained for two types of rocks belonging to acentric limit groups oo co and co. These inequalities provide a possibility to
carry out modelling of elastic wave propagation in the media considered, setting the values of gyration constants not arbitrarily

but in accordance with physical laws.
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1. Introduction

Gyrotropy is known as an exhibition of the first-
order spatial dispersion. Optical gyrotropy is known
since 1811 (F. Arago), acoustical gyrotropy since the
1960s (Andronov, 1960; Kluge, 1966; Portigal and
Burstein, 1968; Pine, 1970). Recently, the concept of
seismic gyrotropy was introduced (Obolentseva,
1992, 1996) and developed (Obolentseva and Chichi-
nina, 1997; Chichinina and Obolentseva, 1997, 1998;
Chichinina, 1998, 2000; Obolentseva et al., 2000).

In a gyrotropic elastic medium, Hooke’s law and
wave equation are (Sirotin and Shascolskaya, 1979)
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respectively.

For plane harmonic waves of circular frequency
u(r,t) = upAexp[i2n/A(nr — Vt)] 2n/2 = w/V),

propagating with phase velocity V in the direction of
the wave normal n and polarized along a unit vector
A, wave equations (2) become

i=1,2,3.

3)

(cypammi + i/ Vbygamninmg ) Ay = pV>4,,

These are Christoffel equations for an anisotropic
gyrotropic medium which show that tensor ¢ has
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become complex: c¢;; — c+ i(/V)bjjgmhym. Denote
it by a:

iy = Cijtg + kb, (4)

where k=w/V is a wave number.
Properties of inner symmetry of tensor a are

i = Autijy Akt = il = Aijie = jilk - (35)

The first equation in Eq. (5) implies that tensor a is
Hermitian. This property is due to the symmetry of
tensor ¢ and antisymmetry of tensor b to the permu-
tation of the first and the second pairs of indices. (For
more details, the symmetry of tensor b is covered in
Obolentseva, 1993, 1996.) The symmetry of tensor a
in permutations of indices in the first and the second
pairs (the rest of the equations in Eq. (5)) is apparent
from this property of tensors ¢ and b.

To study elastic-wave propagation in anisotropic
gyrotropic media by means of mathematical model-
ling, one needs to know both the values of elastic
moduli (c;z) and the values of gyration constants
(bjrim)- The present work represents the limitations
on constants (and, hence, gyration constants b,)
derived in the same way as limitations on stiffnesses
c;ju (e.g., Fedorov, 1968), i.c., from the requirement
for elastic energy to be positive. This reduces to the
requirement for quadratic form with respect to small
strains to be positive definite. The coefficients of this
form are, in the case considered, the moduli a;;;.

2. Lagrangian and potential energy in a gyrotropic
medium

Within the framework of continuum elastic theory,
the Lagrangian density for an anisotropic gyrotropic
medium is (Goldstein, 1950)

I 1 L. 1 8u,~ Suk au[ 82uk
= —pitgity — = Cijjt — —— — bijpim — .
2 P T M oy T D00

The second and the third terms are potential
energy, the last one therewith is due to gyrotropic
effects. The terms with b in L differ from the terms
with ¢ by one more differentiation in respect to spatial

coordinate. Therefore, the potential energy can be
presented as

. au,- 8uk aui auk
(Cykl +1 z]klmnm) axj axl Ajjkl a)Cj 8xl ( )

The potential energy W will be positive if the
quadratic form with the a;;, coefficients will be
positive definite. The necessary and sufficient con-
ditions for positive definiteness of the Hermitian form
in Eq. (6) and of the Hermitian matrix a,, (@< apq)
are the following inequalities for determinants of
orders 1, 2,..., 6 (Korn and Korn, 1968):

apn diz 43

apy  di
a11>0, >0, ary ax ax >0, (7)
az ax
asy dasy dass
aip dipp ... dia al ay ... aAys
dy; dyy ... dya an ap ... aAps
>0,
asy asy ... dz
ag dgy ... dig as an ... Qass
an an ... Ale
dazy dyp ... Ay
>0, >0, (8)
del de2 ... dee

which are formed from the initial matrix (a,,) of the
sixth order. Matrix presentation instead of tensor one
is made in keeping with the known rule for indices:
11—1,22—-2,33—-3,23 —-4,13 -5, 12—6.
The system of inequalities (Egs. (7) and (8)) looks
like in the case of an anisotropic medium without
gyration differing by complexity of elements a,,=
Ra,, + i Ja,,, where Ra,, = ¢,y 30,5 = kbl
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3. Limitations on gyration constants for
anisotropic gyrotropic media

3.1. On acentric limit groups

To derive inequalities relating gyration constants
bpgmhy, and stiffnesses c,,, it is necessary to develop
the determinants in inequalities (7) and (8). In a
general case (36 elastic moduli ¢,, and 90 gyration
constants b,,,,,71,,), when developing the determinants,
one obtains cumbersome expressions resisting any
analysis. Therefore, generally, conditions (7) and (8)
ought to be checked numerically for given sets of
constants ¢,g, bpgmm,. Such a means is inconvenient to
apply; however, in practice, it is of no importance,
because seismic models of the lowest symmetry (tri-
clinic system) are not usually in use.

In this work, the inequalities of the form fi(c;,
bj;m)>0 for propagation in the directions n=(1, 0, 0),
(0, 1, 0), (0, 0, 1) are derived for two limit acentric
groups (gyrotropy may exist only for acentric
groups): oo oo and oo. Limit groups, or Curie groups,
are those point groups which include symmetry axes of
order oo (on these groups, see, e.g., Sirotin and Shas-
colskaya, 1979). The groups co co and ~ describe more
often the symmetry properties of geological media.

A medium oo 0o has an infinite number of axes ~o;
it is called a rotation group. A geometrical figure
symbolizing this group is a rotating sphere, left and
right. The non-gyrotropic analog of a medium oo oo
is a medium oco com. It has an infinite number of axes
oo and an infinite number of planes m passing through
these axes. A geometrical symbol of this group is a
sphere at rest. A medium of the group symmetry oo co
is called gyrotropic, whereas a medium of the group
symmetry oo com is called isotropic. The media co co
are acoustically active: they rotate polarization
plane of shear waves in all directions of wave
propagation.

A medium oo has one symmetry axis of infinite
order. A geometrical image of the group oo is a
rotating cone, left and right. An example of non-
gyrotropic medium with an axis of infinite order is a
medium of group symmetry co/m having an axis ~o and
a symmetry plane normal to this axis. A geomet-
rical image of the group oo/m is a cylinder at rest.
Three groups (out of five) with an axis oo are
acentric: oo, 002, com, the two groups have a sym-

metry center: co/m, co/mm. Hence, only the media of
symmetry groups oo, 02, com may be gyrotropic.

The causes for a geological medium with an axis oo
to be gyrotropic lie in the dissymmetry of its
microstructure (Obolentseva and Chichinina, 1997,
Chichinina and Obolentseva, 1997, 1998; Chichi-
nina, 1998, 2000). Rotation of shear-wave polariza-
tion plane occurs only during propagation along
symmetry axis, for all other directions polarizations
of the two shear waves are elliptical, clockwise and
counter-clockwise.

The media of the group symmetry oo co are char-
acterized by the two elastic moduli (Lame constants 4,
w) and one gyration constant (denote it v). The media
of the group symmetry oo co are described by the five
elastic moduli (transversely isotropic media) and nine
gyration constants.

3.2. Inequalities for symmetry group oo co

In this group, nonzero are nine components of
tensor c:

ci= = cp=AL+2
Ci = C55= Ce6 = [y )
cp= ci3= cn3=1414,

and their isomers cp;=c3;=c3>=A. The rest, 24
components out of 36, are equal to zero.

The b tensor has the following nonzero compo-
nents (Obolentseva, 1993):

bioizi = bapin = b33z =,
bitizz = bopz1 = b3z = 2v,
binz = bz = bz = —2v,

or, in matrix presentation,

besi = bagr = bsgz =,
bigz3 = bau = bzsy =2v, (10)
biss = baes = bz = —2v,

and their isomers, in all 18 components; v is a
pseudoscalar.
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Matrices (c,q) and (b,gn), m=1, 2, 3, are of the

following form:

C33 C13
Ci3 €33
€13 €13
0 0
0 0
0 0

C13 0
C13 0
C33 0
0
0

C13=C33 — 2C4a,

0 0
0 0
0 0
0 —b
0 0
0 0
0 0
0 0
0 0
0 0
—bisx 0
0 0

—b3a

—bss;

Ca4

by

b3a1

(=)

(=]

—bser
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Ca4

(=]

(=]

besi

bisz

bssy

0

—besi

0

0

0

bag>

0

0 0 0 0 0 bi63
0 0 0 0 0 bae3
0 0 0 0 0 0
0 0 0 0 —bsq3 0
0 0 0 bsg3 O 0
—biez —bxs 0 0 0 0

Their components, c,, and b,,,, are equal to the
constants from Egs. (9) and (10).

Substitution of a,,=c,,+ikb,,, in the determi-
nants (Egs. (7) and (8)) gives a set of inequalities.
The inequalities for determinants of orders 1, 2, 3 are
free from gyration constants and relate stiffnesses ¢33,
C44 to each other:

c33 > 0, 4C44(C33 -+ C44) >0, 4034(3633 — 4044) > 0.

Development of the determinants of orders 4, 5, 6
furnishes the desired inequalities relating components
of tensors ¢ and b.

The inequalities for the determinant of the fourth
order written for propagation along directions n=(1,
0, 0), (0, 1, 0), (0, 0, 1) are as follows:

4(3033 — 4C44)C44(64214 — 4k2V2) > 0,
4(3033 — 4C44)Ci4 >0, 4(3033 — 4C44)Ci4 > 0.

The second and third inequalities contain only
stiffnesses and give the relation cy4/c33<3/4. An
inequality with gyration constant is the first, it con-
tains as a factor the inequality (ci; — 4k* v*) >0 relat-
ing the c44 constant with the gyration constant v.
Thus, the limitation on the v constant is very simple:

1
kv <Zcﬁ4. (11)

It follows also from this inequality that v may be
positive as well as negative; since v is a pseudosca-



LR. Obolentseva / Journal of Applied Geophysics 54 (2003) 437—444 441

lar, its sign indicates the direction of rotation of
shear-wave polarization plane (clockwise or counter-
clockwise).

Development of the determinant of the fifth order
yields the following inequalities for n=(1, 0, 0), (0, 1,
0), (0, 0, 1):

4(3c33 — degs)cay(chy — 4K2v7) > 0,
4(3c33 — deag)chy(c2y — 42V > 0,
(3c33 — deas)chy (dch, — 4K3V) > 0.

The first two inequalities repeat expression (11)
and the third inequality gives v? < 1/(k*c34). Then the
solution of inequalities (cha—4K*v*)>0, (4ciq—
41v*)>0 is again inequality (11).

At last, development of the determinant of the sixth
order produces for all directions n=(1, 0, 0), (0, 1, 0),
(0, 0, 1) the inequality with biquadratic polynomial in
its left-hand side:

4(3033 — 4044)044(4k4v4 — 5642‘4](2\)2 + Ci4) > 0.

The equation 4k — 5¢3,k°v? + ¢4, =0 has the
roots vi=ci/(4k?), v3=cis/k*. In the interval (v, v3)
the polynomial has a minimum at the point vy,=
(5/8)ciu/i* equal to (—9/4)(3¢s3 —4cas)cis. This
means that positive values of the polynomial are in
the intervals (0, vi), (v3, ). Because the gyration
constant ought to be less than the stiffness, i.e.,
K2 <<cf4, we choose for v? the interval (O, vf). Hence,
again we can write for v* the former inequality (11):
v <1/4cis.

3.3. Inequalities for symmetry group oo

Nonzero are nine components of tensor c¢:

C11 = €22, C33, C44 = C55, Ce6
(12)

ci2 =ci1 — 266, €13, €23 = C13,

and their isomers Cy1 =C12, C31 =C13, C32=C23. Inde-
pendent components are five. As in the case of group
symmetry oo oo, the rest, 24 components out of 36, are
equal to zero.

Nonzero components of tensor b are

bz = g, bz = —0a, b3z = —f,,
b2331 = B, bi323z = =75, bi2iz1 = 02,
bi2z2 = 02, brizz1 = My, b2 = — 1,
bi1132 = 26 — 1y, bpan3zi = 1y — 203,

b11333 = iy, 2323 = 0, D133z = —f,,
by333o = =P, b12132 = —0m, b12231 = =0,
br1232 = Ny, b22131 = Ny b11131 = 1M,y — 20,

bypzy =1, — 20y,

and isomers in accordance with the symmetry prop-
erties (Eq. (5)) of tensor a and, hence, b. The above
components of the b tensor are valid for the point
group symmetry 6 (Kumaraswamy and Krishnamur-
thy, 1980). According to Hermann’s theorem, they are
also valid for the fifth rank b tensor of the symmetry
group oco.

In matrix presentation the above expressions are
written as follows

bigz = o bz = —z

bs3» = —p, baz1 = B,

bsaz = =7,

besi = —6, bear = 03

by =, basy = =1,

bisy =20, =1y by =1y — 202 (13)
bi33 = ay b3z = oy

bs31 = =B, byza = =B,

besy = —0m bear = —0m

bian = 1y, basy =1,

bisi =1y — 20, bar =1, — 20m.
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Correspondingly, matrices (c,;) and(b,gn), m=1,

2, 3, appear as

Ci1 €12
Ci2 C11
Ci3 Ci13
0 0
0 0
0 0

Cla=C11 — 2Ce65

_b141

—bis

—bip

_b152

C13
Ci13

€33

_b241

bsy

—bos

_b252

byzi

bs3y

bazp

bs3,

Ca4

bia

boa
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Co6

—b431

=)

(=]

bear

bia

by

_b432

[=]

(=]

bear

bis

basi

—bs3

besi

bisy
bysy

—bs3;

besa

—be41

—bssi

—bsar

—bes2

0 0 biz; 0 0 bi3
0 0 b33 0 0 bag3
—bi33 —buz 0 0 0 0
0 0 0 0 —bsg3 0
0 0 0 bsgz3 0 0
—bies —bxz 0 0 0 0

The components c,, and b,,, are equal to the
constants from Egs. (12) and (13).

Now let the matrices ¢, b be substituted in con-
ditions (7) and (8) for the positiveness of the potential
energy of the medium to be considered. Unlike the
case of the medium oo, relations between stiff-
nesses c;; result only from the determinants of orders
1, 2. They are

cyp >0, c%l —0%2 > 0.

The determinants of the orders 3,...,6 relate stiff-
nesses and gyration constants.

The requirement for the determinant of the third
order to be positive gives in the case n=(0, 0, 1) the
inequality

4066[—]620(3” — C% + C33(C11 — C66)] > 0,

from which it follows the inequality for the gyration
constant o,,:

kzoti7 < 6‘33(011 — C66) — C%. (14)

The inequalities for the determinant of the fourth
order provide the relations between the gyration
constants 5, 62, #2, B> Oms N> % and stiffnesses c;;.

If n=(1, 0, 0) then

4k Brees(cos — c11) +K205(c33 — erieas) — K2 iessces
+ 2k Brdac1366 — 2k Pomycizces + 2k 2115¢33¢66

+ caaces(cr1633 — 33066 — €13)] > 0. (15)
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If n=(0, 1, 0), the inequality looks like in the case
n=(1, 0, 0) with replacement f35, 5, 712 by — ., S > N
4[k2ﬁi1066 (066 —C11 ) —|—k253n (6%3 —C11 C33) —k211,2nC33C(,(,

— 2> B,,6mC13C66+2k> By, C13Co6+2k 01 C33Ce6

+ caaces(Cr1033 — €33C66 — 013)] > 0. (16)

The left-hand side of the inequality for the direc-
tion n=(1, 0, 0) is a quadratic form with respect to
variables kf3,, ko, kn,; correspondingly, the left-hand
side of the inequality for n=(0, 1, 0) is a quadratic
form with respect to variables kf3,,, kd,,, kn,,.

For the direction of the symmetry axis n=(0, 0, 1),
the inequality for o, arises which is the same as for
the determinant of the third order.

Development of the determinant of the fifth order
for n=(1, 0, 0) and n=(0, 1, 0) gives the following
inequality:
4(k*B2.03¢11 — 2k* By Bu020mert + 4k By 020 mces

+ 4K B, 030mc13 + KA B30,c11 — 4k* Br020,,015

+ 4k} 535,033 — 2k* B, 02m5¢66 — 2k* BB Omiaces

—2](4[3”152 mN2C13 +2k4ﬁ2 Eni’]2C13 —4k4525,2nl72033

+k*Brnsces + K Spn3css — 2k By Brudaml,Cos

— 2Kk B, 051mC13 — 2k B30,1,Co6 + 2k B2 02O i 13

- 4k4525mnmc33 + 2k4ﬁ2ﬁ MaMmCe6

=+ Zk 025,,,1’]211,"6’33 + k anmc“ + k45211m6’33

— K2 B3ericascss — k2B ciicaacss + K Brcaac

+ k2ﬁ§1044026 + 2k2ﬂ25201364406(, + k2556‘%3044

— k2536‘110336’44 — 2k2ﬁm5m013044c66 + k25i0%3644

— 2% cr1¢33¢40 — 2K Banacizcasces

+ 2k* 8215 ¢33¢44C66 — KPN5C33Ca1¢C66

+ 22 B,y C13C44Co6 ~+ 2k2 Ot C33CaaC06

— kP 1%,C33CaaCo6 — C13C34C66 + C11€33C44C66

— e33¢4c5) > 0. (17)

For propagation along the symmetry axis n=(0, 0,

1), the inequality is very simple:

4eeo| ko, — iy + es3(en — o) (cay — K293) >

(18)

The new inequality ciy —k*y3>0 gives for the
gyration constant y, the limitation

kzyg < cfm. (19)

Similar expressions appear in the result of devel-
oping the determinants of the sixth order. The inequal-
ities for directions n=(1, 0, 0) and n=(0, 1, 0) are again
the same, i.e.,

4(1‘4/3%5%011066 + K* B G3ciices — k*B305ceq
— 2k4ﬁ25;cl3c66 - k45§c%3 + k45‘2‘cllc33
+ 2k* By 020 mCls + 24 Bud3dmcizces
+ k4,825 c11¢66 + k4ﬁm5mcuc66 ﬁ 52 Cos
— 2k*By0202 cr3c66 — 2k4 0302 ¢y + 2k 0307 crieas
+2k*B,6 ,,,013066 — k4ot 2 mCl3 T+ k* 5mc11033
— 2k4ﬂm52nzcé6 + 2k* B0 2172013c66
— 2k* B By OmtaCg
+ 2k* B205,m2¢13¢66
+ K B3 + kK S3mesaces + k* ) m5es3ces
— 2k* B BuS2m e — 2k* B85, 1306
— 2k B3Ot Cls — 2k* 330 mMC33C66

— 2k45§ N>C33C66

— 2k*8,82 myc33¢66

— 2k* B, 02 mc13c6s — 2k* 8, 0,C33C66

+ 24 oo e + K B3 + K63, 33666
+ k45m11m033066 k /3201 1C44C66 k ﬂ C1 1(344(?%6
+ k2ﬁ§C44C26 + kzﬁmC44066 + 2k ﬁ2520136446‘§6
+ 2k25§C%3C44C66 - 2k2550110336‘44c66
+ k25§C33C44026 — 2k2ﬁm5m(2|3044026
+ 2k252 0%3044666 — 2](252 mC11C33C44Ce6
267 Bynyci3caacs

k ’72033044026

+ 26 By, €134 + 2K O C33CaaCl

+k 5 C33C44C66
+ 2k 031y C33Ca4Ce —
— K2 e33caacgs — Cl3CiaCos + C11033C34C5
— e33ciceq) > 0. (20)
The inequality for n=(0, 0, 1) direction adds one
more inequality to Eq. (18):

4[—kPop, + cs3(en — ces) — 1) (—K273 + i)
x (—k*o3 + cgg) > 0.
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It contains the limitation for gyration constant oy:
2,2 _ 2
ko < cgg- (21)

Thus, the limitations sought are given by the
inequalities (14), (21) and (19) for gyration constants
O» O, Y2, (15) for the gyration constants f3,, 02, #2,
(16) for the gyration constants f3,,,, 0,,, 11,,, and (17) and
(20) for the gyration constants f35, 92, 12, B> Oms Hom-

4. Conclusions

The derived inequalities for relations between
stiffnesses and gyration constants are supposed to
provide a more appropriate way to carry out compu-
tations for anisotropic gyrotropic media than to
choose these constants arbitrarily in the belief that
gyration constants, by analogy with optics and acous-
tics, ought to be a hundred and a thousand times less
than stiffnesses. The inequality for a gyrotropic me-
dium with identical properties in all directions (sym-
metry group oo co) and the inequality for n=(0, 0, 1)
direction in a gyrotropic medium of the symmetry
group oo are simple. The inequalities for n=(1, 0, 0)
and n=(0, 1, 0) directions in a medium of the
symmetry group oo need to be investigated and, if
possible, transformed.
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