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S U M M A R Y
The problem of formation temperature stabilization during the shut-in period is solved ana-
lytically by the approximate generalized integral-balance method. The model accounts for the
thermal history of the borehole exploitation, which may include a finite number of circulation
and shut-in periods, and different flow regimes during circulation periods. The latter is deter-
mined by the temperatures of the circulating fluid and different Biot numbers that depend on
intensity of the heat transfer on the bore-face. Normally the temperature fields in the well and
surrounding rocks are calculated numerically by the finite-difference and finite-element meth-
ods or analytically, by applying the Laplace-transform method. Formulae, analytically obtained
by Laplace transform, are rather bulky and require tedious non-trivial numerical evaluations.
Moreover, in previous research the heat interactions of the circulating fluid with formation
were treated under the condition of constant bore-face temperatures. In the present study the
temperature field in the formation disturbed by the heat flow from the borehole is modelled by
the heat conduction equation and thermal interaction of the circulating fluid with formation is
approximated by the Newton relationship on the bore-face. The problem for circulation and
shut-in periods is solved analytically using the heat balance integral method, where the radius
of thermal influence, which defines the thermally disturbed domain, is a function of time,
which satisfies the algebraic equation. Within this method, the approximate solution of the
heat conduction problem is sought in the form of a finite sum of functions which belong to a
complete set of the linearly independent functions defined on the finite interval bounded by the
radius of thermal influence and satisfy the homogeneous boundary condition on the bore-face.
It can be proved theoretically that the approximate solution found by this method converges to
the exact one. Numerical results illustrate quite good agreement between the approximate and
exact solutions. As a result of its simplicity and accuracy, the derived solution is convenient
for geophysical practitioners and can be readily used, for instance, for predicting equilibrium
formation temperatures.

Key words: fluid circulation, integral-balance method, rock formation temperature, shut-in
period, thermal stabilization.

1 I N T RO D U C T I O N

The reliable assessment of thermal interaction between a borehole
and the surrounding rock formation is of considerable interest in
a number of geophysical applications. The following applications
are worth mentioning: (1) interpretation of electric logs and esti-
mation of the formation temperatures from well logs, which require
knowledge of temperature disturbances in the formation produced
by circulating fluid during drilling (Luheshi 1983; Jones et al. 1984;
Shen & Beck 1986); (2) optimal design of the drilling bit cooling
system within the high-temperature formation (Saito & Sakuma
2000) require assessment of the heat either delivered from the high-
temperature rocks to the drilling bit or transmitted to the forma-

tion from the circulating fluid; (3) developing new technologies and
methods in the area of geothermal energy production (Morita &
Tago 1995; Kanev et al. 1997; Fomin et al. 2002). Shen & Beck
(1986) provided a detailed review of the numerical and analytical
approaches for modelling bottom hole temperature stabilization. In
the above paper and the earlier study of Lee (1982) the formation
temperatures, obtained by the method of Laplace transformation, are
rather bulky and require tedious non-trivial numerical evaluations
and, therefore, are not very convenient for engineering estimations.
Moreover, in these publications and in a number of earlier studies,
heat interactions of circulating fluid and with formation were treated
under the condition of constant bore-face temperature or heat flux
(Edwardson et al. 1962; Ramey 1962; Squier et al. 1962; Jensen &
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Sharma 1989; Arnold 1990). On the basis of these solutions, and
with some additional simplifying assumptions, several simple ana-
lytical formulae for the rock temperature in the formation and the
heat flux on the walls of the well were proposed (Kutasov 1987;
Kutasov 1999). However, in reality, the temperature on the wall of
the well is an unknown function of time and wellbore depth, and de-
pends on the fluid flow regime. The above-mentioned approach can
be used mainly in the case of highly intensive heat transfer between
the circulating fluid and surrounding rocks, which takes place for
fully developed turbulent flow in the well. In the present study, a
Newtonian model of heat transfer on the bore-face during the circu-
lating period is adopted, for which a model with given bore-face con-
stant temperature is a particular case. Moreover, in the present study
the initial temperature of formation can be an arbitrary function of
spatial coordinates. It depends on the borehole exploitation history
and should be obtained from the solution of the heat transfer problem
for the previous stage of the borehole exploitation. Similarly to Shen
& Beck (1986), the heat transfer model formulated below can be
solved using the Laplace transform. However, it would lead to rather
awkward formulae. In order to avoid the complexity of the final so-
lution and to obtain a simpler solution convenient for geophysical
studies, it would be interesting to employ the approximate analytical
integral heat balance method proposed by Goodman (1958, 1964)
and later improved by Volkov et al. (1988). This method was suc-
cessfully applied by Fomin et al. (1994) for solving the problem of
moving a heat source within the borehole in application to melting
of the paraffin deposition in the annulus. A simplified solution found
by this method could also be beneficial for its further incorporation
into the complete model of heat and mass transfer processes for
simulating the whole life-cycle of borehole exploitation. The gener-
alized integral heat balance method (Volkov et al. 1988) is applied in
the present study for solution of the heat conduction problem in the
surrounding borehole formation during the circulating and shut-in
periods. The fundamentals of this method are briefly described in the
Appendix.

2 S Y M B O L S U S E D I N T H E T E X T

a Equilibrium formation temperature gradient,
∂tf (z∗)/∂z∗

ak(τ ) Functions in approximate solutions (23) and (A1)
B Biot number defined by eq. (5)
b Temperature on the surface, tf(0)
cr, cL Specific heat of the rock and fluid, respectively
d r Heat diffusivity of the formation
f k(r ) Functions in approximate solution (23) and (A1)
f k

′(l) Derivative df k (r)/dr at r = l
g Flow rate in the borehole during the circulation

stage
H Depth of the borehole
hw Heat transfer coefficient on the bore-face
J 0, J 1 Bessel functions of the first kind of the order 0

and 1, respectively
q(τ ), qw(z, τ ) Heat fluxes on the bore-face defined by eqs (18),

(19), (21) and (22)
kr, kL Heat conductivity of the formation and fluid,

respectively
l(τ ) Radius of thermal influence
lc(τ ) Radius of thermal influence during the circulation

period
ls(τ ) Radius of thermal influence during the shut-in

period

rw Radius of the borehole
r, z Non-dimensional cylindrical coordinates defined

by eq. (5)
T (z, r , τ ) Auxiliary temperature defined by eq. (11)
T c(z, r , τ ) Modified temperature of the formation during

fluid circulation defined by eq. (5)
T m(z, τ ) Modified mean temperature of the fluid during

circulation defined by eq. (5)
T s(z, r , τ ) Modified temperature of the formation during

the shut-in period defined by eq. (10)
tb Temperature at the bottom of the borehole (z = 1)
t c(z, r , τ ) Temperature of formation during fluid circulation
t s(z, r , τ ) Temperature of formation during the shut-in

period
t f Equilibrium temperature of formation
tm(z, τ ) Mean fluid temperature in a borehole
Y 0, Y 1 Bessel functions of the second kind of order 0

and 1, respectively
β Parameter defined by eq. (10)
τ Time
τ c Duration of the circulation period
τ s Time for shut-in period

Superscript
∗ Dimensional quantities

Subscripts
c Circulation
s Shut-in
L Liquid
m Mean value
r Rock
w Wall of the borehole

3 S Y S T E M M O D E L A N D A N A LY S I S

According to Shen & Beck (1986), the temperature in the formation
during the shut-in period will be practically the same either assuming
that the fluid is a perfect conductor during circulation and shut-
in periods (i.e. radially constant fluid temperature in the well) or
considering the radial variation of the fluid temperature. On the
basis of the above conclusion, we will assume that the borehole
fluid is well stirred laterally throughout the circulating and shut-
in periods, which allows one to use the cross-sectional average of
the fluid temperature tm(z∗, τ ∗) as a function of axial coordinate
and time. This is analogous to the assumption that the borehole
fluid remains a perfect conductor in the radial direction. Shen &
Beck (1986) validated that the temperature profile computed by the
latter approach does not differ significantly from the solution of
the exact model except for very small shut-in periods. Circulation
of fluid in the borehole, during drilling or production stages of the
borehole exploitation, disturbs the initial equilibrium temperature
in the rock formation, t f(z∗) = az∗ + b. The heat transfer on the
bore-face, r∗ = rw, can be modelled by Newton’s law −kr ∂t/∂r∗ =
hw(tm − t), where t is the disturbed formation temperature during
the borehole exploitation. This model allows one to account for the
influence of the flow regime in the borehole during the circulating
period, since the heat transfer coefficient, hw, differs to an order of
magnitude for the laminar, transient to turbulent and fully developed
turbulent flow regimes. Since the radial temperature gradients are
typically 100–1000 times greater than temperature gradients in the
vertical direction (Luheshi 1983; Shen & Beck 1986), the derivatives
of temperature with respect to z∗ can be neglected in the governing
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equations and the temperature distribution t c in the surrounding rock
during the fluid-circulation period in cylindrical coordinates (r , z)
can be described by the following non-dimensional mathematical
model:

∂Tc

∂τ
= 1

r

∂

∂r

(
r
∂Tc

∂r

)
, 1 < r < ∞, 0 < τ < τc; (1)

τ = 0, Tc = 0; (2)

r = 1, −∂Tc/∂r = B[Tm(z, τ ) − Tc]; (3)

lim
r→∞

Tc < ∞. (4)

The non-dimensional quantities in eqs (1)–(4) are defined by the
following relationships:

r = r∗/rw, z = z∗/H, B = hwrw

/
kr, τ = τ ∗dr/r 2

w,

Tc = tc − tf, Tm = tm − tf. (5)

Eq. (1) describes the temperature distribution in the rock surround-
ing the borehole, eq. (2) is the initial condition at τ = 0, eq. (3) rep-
resents Newton’s law of heat transfer on the borehole wall, eq. (4)
is the condition of the finite temperature of the rock at r → ∞.

If at the specified time τ = τ c, fluid circulation within the bore-
hole is shut down, the disturbed temperature of the formation t c

tends to recover to its initial undisturbed distribution t f. Assum-
ing that the borehole fluid remains a perfect conductor, the process
of stabilization of the bottom hole temperature during the shut-
in period is governed by the following equations (Shen & Beck
1986):

∂Ts

∂τ
= 1

r

∂

∂r

(
r
∂Ts

∂r

)
, 1 < r < ∞, τ > τc; (6)

τ = τc, Ts = Tc(z, r, τc) (7)

r = 1,
∂Ts

∂r
= β

∂Ts

∂τ
; (8)

lim
r→∞

Ts = 0, (9)

where

β = cLρL

2crρr
, τc = τ ∗

c dr/r 2
w, Ts = ts − tf. (10)

In the problem (6)–(9), T c is the solution of eqs (1)–(4) at the end
of circulation period and eq. (8) results from averaging the heat
conduction equation over the borehole cross-section and assuming
that the borehole fluid is a perfect conductor, kL → ∞.

From the definition of T c(r , τ ) it follows that this function should
satisfy eq. (6). Hence, if for fixed τ c a solution of eqs (6)–(9) is sought
in the form

Ts(z, r, τs, τc) = T (z, r, τs) + Tc(z, r, τs + τc), (11)

where τ s = τ − τ c , τ s ≥ 0, then the unknown auxiliary temperature
T should satisfy the following equations:

∂T

∂τs
= 1

r

∂

∂r

(
r
∂T

∂r

)
, 1 < r < ∞, τs > 0; (12)

τs = 0, T = 0; (13)

r = 1,
∂T

∂r
= β

∂Tc

∂τs
− ∂Tc

∂r
+ β

∂T

∂τs
; (14)

lim
r→∞

T = 0. (15)

The exact solution T 1 of eqs (1)–(4) for the temperature T m = 1
is found from Carslaw & Jaeger (1959),

T1(r, τ ) = 1 − 2B

π

∫ ∞

0

e−p2τ

p

× {J0(pr )[pY1(p) + BY0(p)] − Y0(pr )[pJ1(p) + B J0(p)]}dp{
[p J1(p) + B J0(p)]2 + [pY1(p) + BY0(p)]2

} ,

(16)

where J 0(p), J 1(p) are Bessel functions of the first kind of order
zero and one, respectively; Y 0(p), Y 1(p) are Bessel functions of the
second kind of order zero and one, respectively.

For an arbitrary T m, due to the Duhamel theorem, the solution of
eqs (1)–(4) can be presented in the following form:

Tc = ∂

∂τ

∫ τ

0
Tm(z, p)T1(r, τ − p) dp (1 < r < ∞, 0 < τ < τc).

(17)

The heat flux on the bore-face qw can be readily computed from
(16) and (17) as

qw = − 1

B

∂Tc

∂r

∣∣∣∣
r=1

= Tm(z, τ )

+
∫ τ

0
Tm(z, p)

∂

∂τ
q(τ − p) dp, (0 < τ < τc), (18)

where

q = − 1

B

∂T1

∂r

∣∣∣∣
r=1

= 4B

π2

∫ ∞

0

× e−p2τ dp{
[pJ1(p) + B J0(p)]2 + [pY1(p) + BY0(p)]2

}
p
. (19)

As can be seen, the exact solution (16)–(19) is rather awkward.
Applying the approximate generalized integral balance method
(Volkov et al. 1988), Fomin et al. (2002) proposed a simple ap-
proximate solution for the problem (1)–(4),

Tc =

Tm

B ln(lc/r )

1 + B ln(lc)
, r ≤ lc

0, r > lc,

(20)

qw(τ ) = Tm(τ )q(τ ), (21)

where

q(τ ) = 1/[1 + B ln(lc)], lc = 1 + 2.084 + 0.704B

1.554 + 0.407B

√
τ . (22)

Comparison with the exact solution (16)–(19) shows that the solu-
tion (20)–(22) is sufficiently accurate for simulating the heat flux
on the bore-face and temperature field in the formation during the
period of fluid circulation (Fig. 1). Substitution of eqs (20) and (21)
into the boundary conditions (7) and (14) closes the model for the
shut-in period (6)–(9) and the auxiliary problem, eqs (12)–(15), re-
spectively. In view of the simplicity and accuracy of eqs (20)–(22), it
is sensible to employ the same generalized integral-balance method
for the further analysis of temperature distribution during the shut-in
period. For this purpose, it is convenient to convert eq. (14) to the
following form:

r = 1,
∂T

∂r
= β

∂Tc

∂τs
− ∂Tc

∂r
+ β

∂

∂r

(
r
∂T

∂r

)
. (23)

Eq. (23) is obtained from eq. (14) by replacing the time derivative
with the second-order spatial derivative, which is permissible for a
smooth and differentiable solution T of eq. (12) everywhere within
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the domain and its boundary r = 1. Following the procedure of the
generalized integral balance method (see the Appendix), the solution
of eqs (12), (13), (15) and (23) to the second order of accuracy is
sought in the following form:

T = −
(

∂Tc

∂r

∣∣∣∣
r=1

− β
∂Tc

∂τs

∣∣∣∣
r=1

)
ln

r

ls
+ a1(τs) f1(r ) + a2(τs) f2(r )

(24)

for r ≤ ls(τ s), where ls is the radius of the thermal influence that
defines the thermally disturbed region of the rock formation. For r >

ls(τ s), the temperature T is assumed to be equal to 0 and at r = ls(τ s),

T |r=ls = ∂T /∂r |r=ls = 0. (25)

Functions f 1 and f 2 in eq. (24) should satisfy the corresponding
steady-state eq. (A2) with homogeneous boundary conditions ∂ fk

∂r =
β ∂

∂r (r ∂ fk
∂r ) at r = 1, which follow from eq. (23) and are similar to

the conditions (A3) for the problem (1)–(4). It can readily be shown
that

f1 = 1, f2 = r 2/4 + (β − 0.5) ln r. (26)

Substituting eqs (26) into (24) and using conditions (25) yield

T = −
(

∂Tc

∂r

∣∣∣∣
r=1

− β
∂Tc

∂τs

∣∣∣∣
r=1

)
l2
s

l2
s − 1 + 2β

×
[

ln
r

ls
+ 0.5

(
1 − r 2

l2
s

)]
. (27)

Multiplying eq. (12) by r and integrating it for r over an interval
(1, ls) leads to the following equation for ν = ∫ ls

1 rT dr :

∂ν

∂τs
= − β

∂T

∂τs

∣∣∣∣
r=1

+
(

∂Tc

∂r
− β

∂Tc

∂τs

)∣∣∣∣
r=1

, ν|τs=0 = 0. (28)

Eq. (28) integrates to the following expression:

ν = −βT |r=1 +
∫ τs

0

(
∂Tc

∂r
− β

∂Tc

∂τs

)∣∣∣∣
r=1

dτs. (29)

On the other hand, due to eq. (27),

ν =
∫ ls

1
rT dr =

(
∂Tc

∂r
− β

∂Tc

∂τs

)∣∣∣∣
r=1

× 1

l2
s − 1 + 2β

l4
s − 4l2

s ln ls − 1

8
. (30)

Combining eqs (29) and (30), and after rather trivial algebraic eval-
uations, we obtain an implicit equation for the unknown radius of
thermal influence, ls,

l4
s − 4(1 − 2β)l2

s ln ls − 4βl2
s + 4β − 1

8
(
l2
s − 1 + 2β

)

=
∫ τs

0

(
∂Tc
∂r − β ∂Tc

∂τs

)∣∣∣
r=1

dτs(
∂Tc
∂r − β ∂Tc

∂τs

)∣∣∣
r=1

. (31)

With ls defined by eq. (31), the real temperature around the well
during the shut-in period is given by the equation

Ts(z, r, τc + τs) = Tc(z, r, τc + τs) −
(

∂Tc

∂r

∣∣∣∣
r=1

− β
∂Tc

∂τs

∣∣∣∣
r=1

)

× l2
s

l2
s − 1 + 2β

[
ln

r

ls
+ 0.5

(
1 − r 2

l2
s

)]
(32)

for r ≤ ls.
The values of ∂Tc

∂r |r=1 and ∂Tc
∂τs

|r=1 in eqs (31) and (32) can easily
be evaluated from the formulae (20)–(22).

q

τ

Bi=0.5

Bi=1

Bi=4

Bi=10

Figure 1. Variation of the bore-face heat flux during circulation, q, with
respect to time (0 ≤ τ ≤ τ c) for different B. Solid line, exact solution (18);
dotted line, approximate solution (A17) and (A18); dashed line, proposed
solution (21) and (22).

4 N U M E R I C A L R E S U LT S
A N D D I S C U S S I O N

Although previous studies related to application of the generalized
integral method convincingly validate its accuracy and efficiency for
solving heat conduction problems, it would be reasonable (due to the
approximate character of the obtained solution) to verify this fact
once again. For instance, as is illustrated in Fig. 1 for the circulation
period, the heat flux distribution qw on the bore-face, computed
by the approximate formulae (21) and (22) and exact solution (18)
and (19), are in good agreement for all B and τ . The satisfactory
consistency of the results for the shut-in period, computed with
eqs (31) and (32) and obtained experimentally (Proselkov 1975), is
illustrated in Table 1.

Thermophysical properties of formation and circulating fluids are
well documented. For computations we take (Shen & Beck 1986):
kr = 2.51 W m−1 K−1, kL = 0.61 W m−1 K−1, ρrcr = 2.09 × 106

J m−3 K−1, ρLcL = 4.19 × 106 J m−3 K−1. Computed tempera-
ture distributions with respect to radial distance for different Biot
numbers and durations of circulating periods are shown in Figs 2–7.
For a relatively short circulation period of τ c = 10, the extent of
the thermally disturbed formation area (radius of thermal influence)
and the corresponding temperature distribution vary significantly
with time (Figs 2–4). Whereas for a long circulating time, of τ c =
1000 (Figs 5–7), the changes in the radius of thermal influence are
insignificant for all shut-in times τ s and temperature profiles differ
for each duration of the shut-in period only for r < ls/2. For r > ls/2

Table 1. Comparison of the temperatures T s measured experimentally (data
in parentheses were reported by Proselkov 1975) and computed by eqs (31)
and (32).

τ s 0 0.62 1.87 3.12 6.24 12.5
r

1 1 0.6 0.427 0.347 0.243 0.162
(1) (0.74) (0.45) (0.345) (0.22) (0.16)

1.5 0.775 0.585 0.421 0.343 0.241 0.161
(0.72) (0.63) (0.43) (0.335) (0.22) (0.15)

2.4 0.517 0.501 0.389 0.324 0.232 0.157
(0.47) (0.49) (0.38) (0.31) (0.21) (0.135)

3.35 0.34 0.353 0.332 0.289 0.216 0.149
(0.3) (0.32) (0.29) (0.25) (0.18) (0.12)

4.5 0.194 0.208 0.234 0.231 0.189 0.138
(0.175) (0.195) (0.195) (0.2) (0.15) (0.11)
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Formation temperature stabilization modelling 473

Figure 2. Radial temperature distribution for B = 1 and τ c = 10. Solid lines, β = 1; dashed lines, β = 0.

Figure 3. Radial temperature distribution for B = 5 and τ c = 10. Solid lines, β = 1; dashed lines, β = 0. (1) τ s = 0, (2) τ s = 5, (3) τ s = 15, (4) τ s = 35.

(in the case of a long circulation time), temperatures are insensitive
to the duration of the shut-in period. The dashed lines in Figs 2–7
correspond to β = 0. As can be seen, these temperature profiles
differs insignificantly from the curves evaluated for β = 1 except
for very small distances from the borehole. Moreover, for long cir-
culation times (Figs 5–7) the discrepancies are negligible already
at the onset of the shut-in period. Thus we may simplify the final
equations (31) and (32) by setting β = 0. The other parameter that
can affect the solution is the Biot number B, which characterizes the
flow regime during circulation. Without denoting the exact bounds
for the parameter B for different regimes, we will simply take the
typical values: for the laminar flow B = 1 or 0.4 (for this regime
B is typically less than unity), B = 100 or B → ∞ for the fully
developed turbulent flow, and B = 5 for the transient from lam-
inar to turbulent flow regime. As has been mentioned above, the
previous results of Shen & Beck (1986), Lee (1982), Jones et al.
(1984) and Luheshi (1983) correspond to constant temperature or
flux on the bore-face during circulation. In our model, this means that
B → ∞, i.e. turbulent circulation is assumed. As can readily be seen
from Figs 2–7, high Biot numbers lead to high temperatures dur-
ing the circulation period and consequently also during the shut-in

periods. In other words, assuming that B → ∞ may result in an
overestimation of the formation temperature and, consequently, the
time of stabilization.

Figs 8–10 show the formation temperature distribution with re-
spect to the shut-in time for B = 0.4 (laminar flow), B → ∞ (tur-
bulent flow) and B = 5 (transition from laminar to turbulent flow).
As can be expected, temperatures are lower for a shorter circulation
time τ c. The laminar flow regime (Fig. 8) also provides lower tem-
peratures in formation during circulation and shut-in periods and,
therefore, the time of temperature stabilization is shorter in this case.
Results presented in Figs 8 and 9 correspond to the constant mean
temperature within the borehole during circulation, T m = constant.
However, in reality T m is a function of time τ and depth z. Nu-
merical computations for the unsteady flow regime in the borehole
conducted by Raymond (1969) show that shortly after onset of cir-
culation the thermal behaviour of a fluid begins to approach a slow,
logarithmic decline. Such a decline suggests that the heat transfer
processes in the circulating fluid rapidly becomes pseudo-steady. In
this case the fluid temperature can be found analytically in explicit
form. For instance, assuming the pseudo-steady regime in the bore-
hole, the mean temperature of the fluid in the production well can
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Figure 4. Radial temperature distribution for B → ∞ and τ c = 10. Solid lines, β = 1; dashed lines, β = 0. (1) τ s = 0, (2), τ s = 5, (3) τ s = 15, (4) τ s = 35.

Figure 5. Radial temperature distribution for B = 1 and τ c = 1000. Solid lines, β = 1; dashed lines, β = 0. (1) τ s = 0, (2) τ s = 25, (3) τ s = 100, (4) τ s =
200.

be presented as (Ramey 1962; Arnold 1990):

Tm = (tb − b − aH ) exp

[
− Bq

G
(1 − z)

]

+ a H G

Bq

{
1 − exp

[
− Bq

G
(1 − z)

]}
, (33)

where G = (gcL)/(2πHkr) and q(τ ) is defined by eq. (22).
Results illustrated in Fig. 10 by the dashed lines correspond to the

flow regime in the geothermal production borehole at the depth z =
0.3 (z∗ = 900 m), which is characterized by the following data (Jing
et al. 2000): tb = 100 ◦ C, b = 20 ◦ C, a = 0.05 ◦ C m−1, H = 3000 m,
g = 2.4 kg s−1. For comparison, the solid lines in this figure are at-
tributed to the constant fluid temperature, T m = constant. As can be
seen, even though the flow rate g is relatively high and the fluid tem-
perature tb at the bottom of the borehole (z = 1) is much lower than
the equilibrium temperature, accounting for the time dependence of
the function T m does not affect the temperatures during the shut-
in period significantly. Computations carried out for the other flow
regimes also reveal that the thermal effect of the fluid temperature
variation with time is of minor importance for the shut-in period.
Hence, the assumption of constant temperature T m can be adopted

as quite a reasonable approximation for modelling the temperature
field in the formation during the shut-in period. The case when T m

is constant, τ c = 2 and B → ∞ has been considered by Shen &
Beck (1986) and plotted in their fig. 2(a). Comparison of their ex-
act solution with our approximate computations (curve 4 in Fig. 9)
once again verifies the sufficient accuracy of the integral-balance
method. For these reasons, the approximate solution obtained in the
present study can be used reliably for solving the inverse problem
of predicting the equilibrium formation temperature. Briefly, if the
duration of the circulation period and thermophysical properties of
the particular rock and fluid are known then for each specified value
of coordinate z = zi the temperature T s(zi, 1, τ c + τ s) variation ver-
sus time τ s can be computed using eqs (32), (20) and (33). Hence
the borehole temperature t s(zi, 1, τ c + τ s) can be presented as

ts(zi , 1, τc + τs) = tf(zi ) + Ts(zi , 1, τc + τs). (34)

On the other hand, several temperature logs during the shut-in pe-
riod allow one to simulate the real borehole temperature tw(τ s) as
a function of time τ s with a good degree of accuracy. Substituting
the function at the left-hand side of eq. (34) by this, experimentally
obtained temperature tw(τ s), defines the equilibrium temperature t f
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Figure 6. Radial temperature distribution for B = 5 and τ c = 1000. Solid lines, β = 1; dashed lines, β = 0. (1) τ s = 0, (2) τ s = 25, (3) τ s = 100, (4) τ s =
200.

Figure 7. Radial temperature distribution for B → ∞ and τ c = 1000. Solid lines, β = 1; dashed lines, β = 0. (1) τ s = 0, (2) τ s = 25, (3) τ s = 100, (4) τ s =
200.
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Figure 8. Temperature distribution T s/T m on a bore-face (r = 1) with respect to shut-in time for different circulation times, B = 0.4, β = 1 and T m =
constant.
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Figure 9. Temperature distribution T s/T m on a bore-face (r = 1) with respect to shut-in time for different circulation times, B → ∞, β = 1 and T m =
constant
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Figure 10. Temperature distributions on a bore-face (r = 1) with respect to shut-in time for different circulation times, B = 5, β = 1. Solid lines, T s/T m,
where T m is constant; dashed lines, T s/T m(τ c), where T m is defined by eq. (33) at z = 0.3.

at z = zi. Repeating the same procedure at the other depths, z = z1,
z2, etc., the formation temperature distribution in equilibrium t f(z)
can be readily restored. The detailed description of the inversion
procedure for this problem can be found in the above-cited papers
by Shen & Beck (1986), Lee (1982) and Luheshi (1983). Further-
more, these papers illustrate how the linear regression method can
by applied for identifying the other best-matched parameters that
characterize the process.

The main advantages of the solutions obtained in the present work
are: (1) their simplicity, which is convenient for geophysical esti-
mations and (2) the capability to handle the situations characterized
by the low Biot numbers and, subsequently, by different thermal
regimes in the borehole during the circulation period.

As a final remark, we would like to point out the possibility of
extending the present methodology to the modelling of the complete
drilling cycle, which includes a finite number of circulating and
drilling periods. For such an application, solution of eqs (32) and
(34), t s,1 = t s(r , τ c + τ s,1), at the end of the shut-in period, τ s = τ s,1,
would become the initial temperature in the formation at onset of the
next drilling period instead of the equilibrium temperature. In other

words, in eqs (1)–(5), we should denote t f = t s,1 Then, denoting
in eqs (5) T c = t c − t s,1 and Tm(z, τ ) = tm − (ts,1 − 1

Bi
∂ts,1
∂r )|r=1,

we obtain exactly the same non-dimensional governing eqs (1)–(4)
for the circulation period. Then again, solving eqs (1)–(4) for the
circulation period and employing formulae (31) and (32) at the shut-
in stage we obtain at the end of the next shut-in period t s,2 = t s(r ,
τ c + τ s,2), etc. Further evaluations can be continued without any
difficulty.
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A P P E N D I X

The generalized integral-balance method is briefly illustrated below
by means of application to a specific problem, say, problem (1)–(4).
According to Volkov et al. (1988) the approximate solution of the
problem (1)–(4) is sought in the form

T (r, τ ) =

TL +

n∑
k=1

ak(τ ) fk(r ), 1 ≤ r ≤ l(τ ),

0, l(τ ) < r < ∞,

(A1)

where functions f k(for k = 1, 2, 3, . . .) constitute a complete and
linearly independent system for every finite interval [0, l] and satisfy
the following relationships:

1

r

∂

∂r

(
r
∂ fk

∂r

)
= fk−1, f0 = 0, (A2)

r = 1, ∂ fk/∂r = B · fk . (A3)

It is approximately assumed that function T and its derivative ∂T /∂r
for each specified moment of time differs from zero only for r within
the finite interval (0, l) and at r = l the following conditions for
r = l are valid:

T |r=l = ∂T/∂r |r=l = 0. (A4)

So in this sense the function l(τ ) can be referred to as a radius of
thermal influence.

Multiplying eq. (A1) by r f k(r ) and integrating over the interval
[0, l] while accounting for boundary conditions (A2) and (A4),
yields the recurrent system

dνk

dτ
= νk−1 + TL B fk(r )|r=1, (ν0 = 0) (A5)

with initial conditions at τ = 0, νk = 0, where

νk =
∫ l(τ )

1
r fk(r )T (r, τ ) dr. (A6)

Hence, from eq. (A5) νk can be readily obtained,

νk = B
k∑

j=1

f j (1)
∫ τ

0
· · ·

∫ τ

0︸ ︷︷ ︸
k− j+1

TL(τ ) dτ . (A7)

On the other hand, substituting eq. (A1) into eq. (A6), νk can be
presented in the following form:

νk = TL Mk +
n∑

j=1

a j (τ )M jk, (A8)

where

Mk(l) =
∫ l(τ )

1
r fk(r ) dr , M jk(l) =

∫ l(τ )

1
r f j (r ) fk(r ) dr ,

(k, j = 1, 2, . . .). (A9)

Functions f k(r ), which should be substituted into eq. (A9), satisfy
the recurrent relationships (A2) and (A3). From the latter, for in-
stance for k = 1, 2 and 3, the first three functions are

f1(r ) = ln (r ) + 1/B, (A10)

f2(r ) = r 2

4

[
ln (r ) − 1 + 1

B

]
+ B2 − 2B + 2

4B2,
(A11)

f3(r ) = r 4

64

(
ln r − 3

2
+ 1

B

)
+ r 2

4

B2 − 2B + 2

4B2

− 5B3 − 20B2 + 40B − 32

128B3
. (A12)

Comparing formulae (A7) and (A8), yields

n∑
j=1

a j (τ )M jk = −TL Mk + B
k∑

j=1

f j (1)
∫ τ

0
· · ·

∫ τ

0
TL(τ )dτ

︸ ︷︷ ︸
k− j+1

,

(k = 1, . . . , n − 1) (A13)
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n∑
k=1

ak(τ ) fk(l) = −TL,

n∑
k=1

ak(τ ) f ′
k (l) = 0. (A14)

In eq. (A14) and below the derivatives, df k/dr , at r = l are denoted
as f k

′(l) (k = 1, . . . , n).
The system of (n + 1) equations (A13) and (A14) is used for the

calculation of n unknown coefficients ak(τ ) (k = 1, 2, . . . , n) and
the function l(τ ). To a first approximation (n = 1)

a1 = −TL/ f1(l), (A15)

M1 − M11(l)

f1(l)
= B f1(1)

1

TL

∫ τ

0
TL(p) dp. (A16)

and, hence, eq. (A1) reduces to

T (r, τ ) = TL
B ln(l/r )

1 + B ln l,
1 ≤ r ≤ l(τ ), (A17)

Since, as can be readily shown, M11(l) = l[ f 1(l) f ′
2 (l) − f ′

1

(l) f 2(l)], and M1(l) = l f ′
2 (l) − B f 2(1), eq. (A16), which defines

function l(τ ), can be converted to

f2(l)

f1(l)
− B f2(1) = 1

TL

∫ τ

0
TL(p) dp. (A18)

After a bit more tedious but straightforward manipulation, the sec-
ond approximation (n = 2) for the temperature distribution in the
rocks, eq. (A1), can be presented by equation

T (r, τ ) = TL

{
1 −

[
r 2

4

(
ln r + 1

B
− 1

)
+ B2 − 2B + 2

4B2

− l2

2

(
ln l + 1

B
− 1

2

)(
ln r + 1

B

)]
/[

l2

4

(
ln l + 1

B
− 1

)
+ B2 − 2B + 2

4B2

− l2

2

(
ln l + 1

B
− 1

2

)(
ln l + 1

B

)]−1}
, (A19)

which is valid for 1 ≤ r ≤ l(τ ).
In eq. (A19) the function l(τ ) is defined by

f2(l)

f1(l)
− B f2(1) + l f1 (l) f ′

3(l) − f3(l)

l f1 (l) f ′
2(l) − f2(l)

− f2(l)

f1(l)

= 1

TL

∫ τ

0
TL(p) dp. (A20)

C© 2003 RAS, GJI, 155, 469–478

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/155/2/469/597403 by guest on 02 February 2022


