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Determination of thermal properties and formation temperature
from borehole thermal recovery data

Tien-Chang Lee∗, A. D. Duchkov‡, and S. G. Morozov ‡

ABSTRACT

Thermal recovery in boreholes cooled by circulation
of drilling mud has been modeled for estimating for-
mation temperature and thermal conductivity. Coupled
with a finite-element simulation of heat conduction, in-
verse modeling for the desired parameters starts with
a genetic algorithm that feeds initial estimates of model
parameters to an iterative quasi-linear inversion scheme.
In addition to using the rms misfit between the com-
puted and observed borehole temperatures, the results
are assessed by comparing or constraining the model for-
mation temperature with a value obtained convention-
ally from an asymptotic temperature–time relation for
a steady line source. The model conductivity is further
evaluated for equality with a conductivity value, which
is estimated through simulation of heat exchange be-
tween the formation and circulating mud. Test results on
synthetic data and two sets of highly noisy borehole data
from Lake Baikal in Russia indicate that the two equality
criteria in temperature and conductivity are achievable.
Multiple runs of GA-IM are used to find mean param-
eter values and their uncertainties. The resultant model
conductivity values are consistent with those measured
in cores with a needle-probe method.

INTRODUCTION

Drilling and mud circulation disturb the formation temper-
ature around a borehole. The heat transfer associated with the
mass movement (e.g., mud circulation, mud infiltration into
formation, borehole cave-in, and formation fluid flow) is fairly
complicated. Common practices that use transient borehole
temperature for estimating the undisturbed formation temper-
ature tend to be based on simplistic, analytic thermal recovery
models because temperature data are usually noisy and sparse,
caused in part by drilling disruptions or other borehole ex-
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periments. For heat flow measurement or temperature-related
reservoir assessment, it is desirable to determine accurately the
equilibrium formation temperature from the disturbed tran-
sient borehole temperature data.

Many studies based on transient bottom-hole temperature
(BHT) have been reported. Deming (1989) comprehensively
reviews the quality of BHT data, notes potential pitfalls of using
a well-known method (Horner plot) for estimating equilibrium
temperature from BHT, discusses the limits of using empirical
relations to correct BHT, cites examples of using BHT in basin
studies (Majorowicz and Jessop, 1981; Drury, 1984; Reiter et al.,
1986; Deming and Chapman, 1988), and discusses the practi-
cality of using more realistic heat-transfer models (Lee, 1982;
Luheshi, 1983; Shen and Beck, 1986). Most BHT studies orig-
inate from oil and gas wells, and the data are usually collected
before the bottom hole is thermally stabilized (see examples of
using BHT in Towend, 1997, 1999; Forster and Merriam, 1999;
Majorowicz et al., 1999). Rarely are BHT data precisely timed
to within a few minutes or measured to be better than a few
hundredths of a degree. The sparseness of data and uncertainty
in data quality have prevented the development of a sophisti-
cated thermal model for estimating formation temperature.

We present a method for determining equilibrium tempera-
ture and thermal conductivity from a series of thermal recovery
data in boreholes. Through a test study on field data, subject
to the limits of data quality and quantity, we also attempt to
address the uncertainty of models that fit the data well and
propose two measures in addition to rms misfits for assessing
modeling results.

Here, the thermal recovery is simulated with a finite-element
method that can handle a borehole filled by mud which is
distinct from the formation in thermal properties. Thermal
properties, equilibrium formation temperature, and their un-
certainties will be determined using a quasi-linear inversion
method that relies on a genetic algorithm to provide estimates
of thermal properties as well as the initial and boundary condi-
tions. Before the methodology is presented and the test results
are discussed, we first review common methods of estimating
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1836 Lee et al.

formation temperature from the transient borehole data and
then forge those existing simplistic, analytic solutions into one
equation which explains the observation (Deming, 1989) that
the estimates by various methods appear to converge eventu-
ally to one value. We justify why one of those methods is chosen
to help constrain our inverse modeling.

RELATIONS BETWEEN EXISTING METHODS

Various empirical relations between equilibrium formation
temperature and BHT are excluded from consideration be-
cause those relations apply only to areas where relations
were established and equilibrium temperatures used to con-
struct those empirical relations were often dubiously described
(Deming, 1989). Instead, we address universally applicable
methods as follows.

Models of steady heat source

Two analytical solutions are commonly used for estimating
formation temperature. The first is based on line source theory.
Simulated as a heat sink for the cooling effect of mud circula-
tion, the line source exchanges energy steadily with the forma-
tion (Bullard, 1947; Lachenbruch and Brewer, 1959). Essen-
tially, the method assumes that the temperature disturbances
are caused by a steady line source of finite cooling duration. Ac-
cording to the line source solution (Carslaw and Jaeger, 1959,
p. 262) and the principle of linear superposition, the transient
temperature θ(t) in the borehole behaves asymptotically:

θ(t) ≈ θasy+ Q

4πkasy
ln

t

t − tD
, (1)

where θasy is the asymptotic formation temperature, t is the
time since the drill bit first touched the depth in question, tD

is the duration of mud circulation, Q is the steady rate of heat
exchange per unit line length (Q < 0), and kasy is the asymp-
totic thermal conductivity of the formation. (See Table 1 for
notations and units.) The postdrilling time t − tD is commonly
known as the shut-in time. A linear regression of θ(t) versus
ln[t/(t − tD)] yields intercept θasy and the slope for the Q/kasy

ratio. Usually this Q is not estimable; but if it is as demonstrated
in this paper, kasy can be found accordingly.

We review several methods for estimating formation temper-
ature and conductivity. To distinguish various values obtained
by different methods, we define asymptotic as a determination
by equation (1). Hence, an asymptotic conductivity does not
imply it is a time-dependent property.

The linear relation in equation (1) is commonly known as
Lachenbruch’s plot, which is equivalent to the Horner plot for
pressure recovery in reservoir tests or to a drawdown recovery
plot in aquifer pumping tests; here it is referred to as the steady
heat-source model. Its principle can be implemented for in-situ
thermal conductivity measurements in sediments with a given,
steady line source Q. This asymptotic approximation is good to
within 1% from the exact line source solution if r 2/4κ(t − tD) ≤
0.01, where r is a characteristic distance (e.g., a borehole radius)
and κ is the thermal diffusivity. As an example appropriate
for our field test data (κ ≈ 0.3× 10−6 m2s−1 and r ≈ 0.1 m),
the shut-in time t − tD should be greater than 230 hours for a
desired 1% accuracy.

Models of steady circulating mud temperature

The other commonly used analytic solution is based on the
assumption that the temperature θ(t) in a borehole of radius
a drops instantly from the formation temperature θ f to an un-
known, initial mud temperature θm (Carslaw and Jaeger, 1959,
p. 260):

θ(t)− θm

θ f − θm
= exp

(
− a2

4κt

)
. (2)

Table 1. Notations

Symbol Definition

a = rw , borehole radius, m
A all shifted data
BHT bottom-hole temperature
ce capacitance matrix, element
C capacitance matrix, global
Cd covariance matrix, data
Cp covariance matrix, parameters
Cp′ post processing Cp
d computed temperature, ◦C
dobs observed temperature, ◦C
D diffusion distance
E early time data
f = θasy/θequ− 1
FE finite element
G sensitivity matrix
GA genetic algorithm
IM inverse modeling
k conductivity, Wm−1K−1

k1 k, borehole
k2 k, sediment
kasy k, asymptotic
ks k, instant heat release
ke conductance matrix, element
K conductance matrix, global
L late data
M number of parameters
N number of data points
Nr number of elements
p parameter vector
pguess guessed p
Q heating rate/length
Qtot total heat release/length
r radial distance, m
rw borehole radius, m
r∞ radius of model domain
rms root means squares, ◦C
S objective function
SI S, data and parameters
SI I S, constrained by θasy/θequ
t time since drilling, s
tD duration of mud circulation
tend t at last observation
w weighting factor for SI I

1t time step duration
θ temperature, ◦C
θn θ at nth iteration
θ1 θ , borehole
θ2 θ , sediment
θasy θ∞, asymptotic relation
θequ θ∞, GA-IM model
θ f θ∞, zero circulation model
θm θ , mud
θ∞ equilibrium formation θ
1θ θasy− θequ

κ thermal diffusivity, m2s−1

ρc heat capacity, Jm−3K−1
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Formation Temperature 1837

The mud and formation are considered to have the same ther-
mal properties. We call this relation the zero circulation model,
a special case for models of steady circulating mud tempera-
ture. By iteratively modifying θm to maximize the linear cor-
relation of ln[(θ(t)− θm)/(θ f − θm)] versus 1/t , one can de-
termine κ , then find θ f from equation (2). This and similar
approximations for cases of constant circulating mud temper-
ature have been used to estimate formation temperature from
BHT measured after mud circulation has ceased (Middleton,
1979; Leblanc et al., 1981; Jones et al., 1984).

Equation (2) has been improved with analytical or numeri-
cal solutions by considering mud circulation of finite duration
at constant temperature and a borehole filled by mud with
distinctive thermal properties (Lee, 1982; Luheshi, 1983). The
accounting of borehole property allows the use of short-term
temperature measurements to estimate formation tempera-
ture; the implementation of finite mud circulation time per-
mits estimates at any depth where zero circulation time is not
an appropriate assumption. The improvement has been ad-
vanced further by Shen and Beck (1986) and Cao et al. (1988)
to include the effect of radial or lateral fluid flow.

Models of instant heating

Being a variant to the steady-line source solution in equation
(1), a third relation based on instantaneous heat release has
been used frequently to obtain equilibrium temperature from
the cooling history of a temperature sensor probe that was fric-
tionally heated during its rapid insertion into unconsolidated
sediments to measure geothermal gradient and hence heat flow
through the ocean or lake floor (Hutchison and Owen, 1989).
At large time values the temperature at the source location
evolves like (Carslaw and Jaeger, 1959, p. 258)

θ(t) ≈ θ f + Qtot

4πkst
, (3)

where Qtot is the total frictional heat production per unit line
length (Qtot > 0) and ks is the thermal conductivity of a ho-
mogeneous medium. In contrast to equation (1), this is named
the instant heating model. The equilibrium temperature θ f is
obtainable from a linear regression of θ(t) versus 1/t , but ks is
indeterminable from the regression-line slope because Qtot is
unknown.

Lee and von Herzen (1994) use the initial temperature rise
resulting from frictional heating, instead of heat production
Qtot , to simulate a thermal probe’s cooling history and to in-
verse model the observed transient temperature for estimating
equilibrium temperature and thermal conductivity. Lee et al.
(2003) estimate Qtot from inverse modeling and use the resul-
tant Qtot to obtain ks in accordance with equation (3). This ks

is expected to equal the conductivity k derived by the inverse
modeling. Hence 3(ks/k− 1)2 was added to the conventional
misfit function for inverse modeling. The equilibrium temper-
ature θequ resulted from the ks/k-constrained inverse modeling
is then compared with the independently obtained θ f as one of
several measures for assessing the modeling results.

The method based on the model of steady circulation mud
temperature (Lee, 1982) has been modified and applied to
borehole data in Lake Baikal to estimate equilibrium temper-
ature and thermal conductivity (Duchkov et al., 2001). The
resultant conductivity values agree to within 10% of the val-

ues obtained with a commonly practiced needle probe method
(based on a steady line source method described originally by
von Herzen and Maxwell, 1959) for unconsolidated sediments
but deviate more than 50% from the values obtained with a
thermal comparator (based on calibration with reference ma-
terial; Kalinin et al., 1983; Duchkov, 1991; also see a hybrid
method by Lee, 1989).

Model equivalency

Now we are ready to show that, to the first-order approxima-
tion, equations (1)–(3) are equivalent at large time values. The
steady heat-source model in equation (1) for tÀ tD becomes

θ(t)= θasy− Q

4πkasy
ln
(

1− tD

t

)
≈ θasy+ QtD

4πkasyt
, (4)

which is equivalent to equation (3) for the instant heating
model because QtD is the total heat exchange per unit line
length during mud circulation (QtD < 0). For this relation of θ
versus 1/t to be applicable, the ratio tD/t must be less than 0.2
for the slope to be determined to within 10%, or 0.1 for 5%.
Most of our test data do not satisfy the tD/t conditions. Hence,
equation (1) is the choice for the modeling constraint.

If the term exp(−a2/4κt) in equation (2) for the model
of zero circulation time is replaced by (1−a2/4κt) for small
a2/4κt at large time values, equation (2) becomes

θ(t) ≈ θ f + −πa2ρc(θ f − θm)
4πkt

(5)

by noting that κ = k/ρc. This relation is again equivalent to
equation (3) because the factor −πa2ρc(θ f − θm) represents
the total heat energy exchange per unit line length (θ f >θm).
The needed waiting time for equation (5) to be applicable is
proportional to the borehole’s cross-sectional area.

The equivalency in equations (3), (4), and (5) explains why
the estimates of equilibrium temperature by different methods
or recovery models tend to converge at large time. Hence, con-
sistency in the estimates of formation temperature by the three
different methods is necessary but insufficient to validate any
estimates.

We revisit the data from Lake Baikal and add a genetic al-
gorithm to improve the selection of trial parameter values for
inverse modeling. Many sets of inversion results, of which the
rms of misfits between the observed and computed tempera-
tures are on par with the level of measurement errors, can be
generated to define the uncertainty of parameter determina-
tions. Furthermore, as an option, the difference between the
simulated θequ and the θasy of equation (1) can be imposed as
an additional term (θasy/θequ− 1)2 in the misfit function for in-
verse modeling. The steady heat exchange rate Q in equation
(1) is also estimated by modeling to yield a kasy that can then
be compared with the k determined by inverse modeling as an
additional check for confidence in the results of modeling.

THERMAL RECOVERY MODELING

Modeling thermal recovery in a borehole that has been
cooled by mud circulation consists of two intertwining phases:
(1) forward modeling computes temperature distribution from
the given initial and boundary conditions and material prop-
erties, while (2) inverse modeling revises the conditions and
properties in view of the given borehole recovery data.
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1838 Lee et al.

Governing equation and conditions

By inspecting the transient borehole temperature variations,
we assume thermal recovery was dominated by heat conduc-
tion. Neglecting the vertical heat transfer, of which the rate is
much smaller than the radial flow rate, the heat conduction for
an axisymmetric problem follows:

∂2θ

∂r 2
+ 1

r

∂θ

∂r
= ρc

k

∂θ

∂t
, (6)

where θ(r, t) is temperature, r is radial distance, t is time, k is
thermal conductivity, and ρc is volumetric heat capacity, which
is a product of mass density ρ and specific heat c.

The thermal regime consists of two media with distinctive
thermal properties k and ρc, one inside the borehole (medium
1) and the other outside. Initially the temperature in the two
media is uniform at θequ, i.e.,

θ1(r, 0) = θ2(r, 0) = θequ. (7)

Mud starts to circulate at the depth of interest in the borehole
at time 0. The borehole temperature remains at θm for a dura-
tion of tD , and the far-field temperature stays forever at θequ.
Explicitly, the boundary conditions are

θ1(r, t) = θm, 0 ≤ t ≤ tD;(
∂θ1

∂r

)
r=0
= 0, tD < t <∞;

θ2(∞, t) = θequ, 0 ≤ t <∞. (8)

The condition of ∂θ1/∂r = 0 at r = 0 implies that no heat energy
is extracted from or injected into the borehole after mud circu-
lation stops, except for the heat exchange through the borehole
interface. The conditions at the interface r = rw for all time are

θ1(rw, t) = θ2(rw, t),(
k1
∂θ1

∂r

)
rw

=
(

k2
∂θ2

∂r

)
rw

. (9)

The thermal recovery is now fully described by the govern-
ing differential equation as well as the initial and boundary
conditions, provided that seven parameters including k1, (ρc)1,
k2, (ρc)2, θm, θequ, and tD are known. The solution is obtained
through a finite-element method.

Finite-element analysis

Given these seven parameters, one can simulate the bore-
hole temperature and compare it with the observed tempera-
ture. Here the simulation as forward modeling is based on 1D
axisymmetric finite-element analysis, for which theoretical de-
velopment is available in several texts (e.g., Bathe and Wilson,
1976). The relevant formulation is given below.

The region of interest between r = 0 and r = r∞ (r∞ is a proxy
of infinite radial distance∞) is discretized into Nr ring (shell)
elements with the ring thickness increasing radially outward.
The radius of the innermost ring coincides with the borehole
radius rw , which may be enlarged to account for borehole cave-
in if necessary. The outermost ring radius r∞ is at least five times
the conduction distance D=√κtend, where tend is the ending
observation time, counting from the time when the drill bit first

touches the depth of temperature observation. This choice of
r∞ ensures that the nodal temperatures at five or more outer
nodes are at θequ. The number of rings Nr and ring thicknesses
are estimated empirically.

The medium outside the borehole is presumed to be homo-
geneous and isotropic, and its thermal properties differ from
those of the water–mud-filled borehole. The properties are also
assumed to be independent of temperature for the range con-
sidered (∼2–10◦C).

The temperature inside each element is interpolated linearly
between its two bounding nodal temperatures. The nodal tem-
perature at r∞ stays at θequ. During mud circulation (t ≤ tD),
the nodal temperatures at r = 0 and r = rw are maintained at
θm; but for t > tD , the two are allowed to vary by switching the
constant-temperature condition for r ≤ rw to zero heat flux
condition at r = 0 (i.e., ∂θ/∂r = 0).

After minimizing the Galerkin weighted residual and using
linear interpolation for temperature distribution between two
consecutive time steps, the governing equation (6) and the ini-
tial and boundary conditions become a set of simultaneous
equations for nodal temperature vector θn+1 at time (n+ 1)1t
in terms of θn at time n1t :(

C+ 21t

3
K
)
θn+1=

(
C− 1t

3
K
)
θn, n= 0, 1, 2, . . . .

(10)
The (Nr + 1)× (Nr + 1) global capacitance matrix C is assem-
bled from the 2× 2 elementary matrix,

Ce = ρcr̄1r

6

[
2 1

1 2

]
. (11)

The global conductance matrix K is similarly assembled from
the elementary matrix

Ke = kr̄

1r

[
1 −1

−1 1

]
, (12)

where r̄ is the mean of the outer and inner radii of element
e, 1r is its ring thickness, and the k and ρc are properties of
element e.

In the first time step, the (Nr + 1)× 1 column vector θ0 rep-
resents the initial condition; θ1 is the final nodal temperature,
obtained by means of the Gaussian elimination procedures. In
the second time step, θ1 plays the role of initial temperature
for obtaining a set of new nodal temperatures θ2. The process
cycles through all time steps. The step size 1t is generally a
fixed fraction of the least sampling interval.

Inverse modeling

For inverse modeling to determine the model-defining pa-
rameters, we apply an iterative Newton-Gauss method to a
scalar objective function or misfit function:

S= SI + wSI I , w = 0 or 1,

SI = 1
2

{ (
dobs− d

)T
C−1

d

(
dobs− d

)
+ (pguess− p)T C−1

p (pguess− p)
}
,

SI I = 1
2

(
θasy

θequ
− 1

)2

, (13)
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Formation Temperature 1839

where SI defines a misfit between observed and computed tem-
peratures as well as between guessed and modeled parameters
(Tarantola, 1987; Lee, 1999), SI I measures the closeness be-
tween θasy and θequ, and weighting factor w dictates whether
the constraint SI I is imposed; dobs is the N× 1 observed bore-
hole temperature vector, d is the N × 1 temperature vector
(i.e., θ at r = 0) computed from the desired parameter vector
p, pguessis the M × 1 guessed values of parameter vector, Cd is
the N× N covariance matrix of data, Cp is the M × M covari-
ance matrix of parameters, N is the number of the observed
temperature data points, and M is the number of parameters.
The superscript T designates the transpose of a matrix. The
diagonal entries of Cd and Cp are the variances of the data and
parameters, respectively. The differences between dobs and d
and between pguess and p are assumed to have Gaussian dis-
tributions. The data are also assumed to have random errors
but no systematic error. The parameters are theoretically in-
dependent of one another for a given material such that the
off-diagonal entries for the two covariance matrices are set to
zero initially. (The postprocessing Cp is not necessarily diago-
nal, implying some crosscorrelation among the parameters or
numerical dispersion in our test examples.)

Minimization of S with respect to p (i.e., setting ∂S/∂p= 0)
and solving for p from the resultant simultaneous equations
yield the iterative relation,

pi+1 = pguess+Cp′i G
T
i C−1

d

{
(dobs− di )−Gi (pguess− pi )

}
−Cp′i fi

∂ fi
∂pi

, (14)

where i is the iteration step and

fi = θasyi

θequi
− 1. (15)

Others symbols will be explained shortly. Equation (14), ex-
cluding the f -bearing term, is given by Tarantola (1987) and
Lee (1999, equation 10.75). The entries of the N×M sensitivity
matrix Gi are defined by

Gi,nm= ∂dn

∂pm

∣∣∣∣
pi

, n= 1, 2, . . . , N; m= 1, 2, . . . ,M.

(16)
This partial derivative is evaluated numerically at the nth com-
puted borehole temperature and at iteration step i . Matrix Cp′ i

is the postprocessing covariance matrix, which is reciprocal to
the Hessian:

C−1
p′i = C−1

p +GT
i C−1

d Gi . (17)

The derivatives ∂ fi /∂pi are evaluated for the θequ and tD vari-
ations only because the intercept θasy is obtained from the re-
gression analysis of the asymptotic relation, equation (1), which
depends solely on tD . The asymptotic conductivity kasy, how-
ever, depends on the slope through heating rate per unit line
length Q, which is computed from the temperature disturbance
at the end of mud circulation:

Q = 2π
tD

∫ ∞
0
ρc [θ(r, tD)− θequ] rdr, (18)

where θ(r, tD) is linearly interpolated between nodal
temperatures.

As a footnote, Lee et al. (2003) use (ks/k− 1)2/2 as the SI I

constraint (instant heating model) instead of (θasy/θequ− 1)2/2
(steady heat-source model) because their primary inverse mod-
eling objective is to determine thermal conductivity in situ,
while we mainly estimate formation temperature.

Fitting criteria.—Four measures are used to select the in-
verse modeling results. The misfit between dobs and d is first
assessed by the rms:

rms1 =
√√√√ 1

N

N∑
n=1

(
1− dn

dobs
n

)2

,

rms2 =
√√√√ 1

N

N∑
n=1

(dobs
n − dn)2. (19)

Generally, rms1 shows greater resolution than rms2 for our test
examples; therefore, the former is the preferred measure. How-
ever, rms2 is still monitored because rms2 can be compared di-
rectly with the data error. For each choice of pguess, there is a
minimum in rms among all iterations i . Since there are a count-
less number of local minima in the seven-parameter model
space, one assignment of pguess may not lead to the desired
global minimum, which is found by using a genetic algorithm
to generate numerous pguess.

The parameters p that yield the least rms among the min-
ima in rms for all choices of pguessare generally the preferred
model parameters in the belief that the associated rms is at the
global minimum. However, in view of our data quality and un-
certainty in modeling cooling behavior during mud circulation
and subsequent thermal recovery, the parameters p associated
with the least rms may not be the correct choice. The misfit dis-
tribution (d− dobs) is hence included as a second measure, with
the understanding that those distributions are not compared,
quantitatively. The third measure is the difference between θequ

and θasy, regardless of whether the optional constraint SI I is im-
posed for the inversion. The fourth measure checks the oneness
in the ratio of kasy to k. This fourth measure can be imposed
directly in inverse modeling, but it has not been implemented
because (1) the ratio is intentionally excluded for an indepen-
dent assessment of the model k and (2) depending on the range
of time used in modeling, the SI I may not be applicable and
the addition of conductivity ratio could obliterate the inverse
modeling.

The four measures are compatible with one another if a good
numerical model is found. As described later, only a few test
results can satisfy all four measures. Hence, we present the
averages for all test results, assign the standard deviations as
the uncertainties, and use the discrepancy θasy− θequ and ratio
kasy/k to assess the results.

Genetic algorithm

The results of inverse modeling vary with pguess. The out-
come can be modified by iteratively fine-tuning the input val-
ues, as done in Duchkov et al. (2001), in which the third and
fourth measures of curve fitting were not exercised. Manual
fine-tuning is tedious and is subject to a modeler’s intuition and
bias. Before the fine-tuning stage is reached, inverse modeling
may suffer numerous run-time crashes. A genetic algorithm is
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1840 Lee et al.

thus implemented to achieve reasonably objective results. Ge-
netic algorithm coding is problem dependent (Lee et al., 2001);
hence, only a brief accounting of the coding is described.

The genetic algorithm begins with NG A randomly selected
sets of parameter values, every one of which is within a de-
fined range for each parameter. Misfits are computed for all
sets according to equation (19). Among them, the least rms is
found, and the standard deviation of all rms is computed. The
parameter sets whose rms lies beyond 0.4β from the least rms
are rejected, where β = (rmsaverage− rmsleast) and rmsaverage is
the average rms for the NG A sets of parameter values. The cut-
off (0.4β) is empirically selected such that about 10% or more
of the population can survive in the early stage of evolution.
The surviving parents give birth to the offspring to replace the
perished individuals, keeping the population at the same NG A

for every generation.
The offspring are generated by one of the four randomly se-

lected procedures: retaining a surviving parent without modi-
fying any of its parameter values, exchanging some parameter
values between two parents, taking weighted mean values for
some parameters of two parents, and perturbing some param-
eter values of a surviving parent. The perturbation allows an
opportunity to move away from a local minimum in the param-
eter space.

The reproduction processes are iterated for 15 generations;
a minimum in rms for each generation is identified. The least
among those 15 minima is pguess, which is then input to the
inverse model. Each pguessyields a set of model parameters p.
The sequence of genetic algorithm and inverse modeling for
a given data set is typically repeated five to ten times to find
the potential ranges or uncertainty for each of the parameter
determinations.

With some modifications, the above-mentioned basic genetic
algorithm structures are applicable to other inverse problems.
For example, Lee et al. (2002) use genetic algorithm and inverse
modeling in the logarithmic space of parameters (instead of
a linear scale here) to determine hydraulic properties in an
unconfined aquifer.

TEST EXAMPLES

The genetic algorithm/inverse modeling/finite element (GA-
IM-FE) sequence is tested with two data sets, BDP93 (Baikal
Drilling Project–1993) and BDP96, from three boreholes in
Lake Baikal, Russia. This testing is supplemented with syn-
thetic data to cast some light on our methodology as applied
to real data.

The BDP93 set (Duchkov and Kazantsev, 1996) consists of
temperature measurements from two boreholes located a few
meters apart in the Buguldeika saddle (52◦32′N, 106◦08′E). The
early part (12–50 hours postdrilling, Figure 1) of BDP93 came
from a hole drilled through an ice sheet to 95 m below the lake
floor beneath a water depth of 355 m. It took about 200 hours to
complete the drilling, and the hole was flushed with lake water
(∼ 1◦C). The sediments are mainly unconsolidated, alternating
biogenic (diatomaceous) and terrigenous muds (water content
∼40%). A thermal logging cable with three thermistor sensors
spaced at 30-m depth intervals was installed after the drilling,
and the thermal recovery was recorded from 12 to 50 hours
and reported to the nearest hour. The late part of BDP93 (76
to 380 hours) came from another hole that was actually drilled

first and took ∼300 hours to drill to a depth of 100 m. An
unnatural transition appeared in the merged temperature–time
trend (Figure 1). Hence, the two segments were aligned by
eyeball to yield a smooth temperature transition between 50
and 76 hours postdrilling (Figure 2). The tests for this study
were conducted for the two parts separately and for the entire
realigned data set.

Borehole BDP96 was drilled to a depth of 100 m in about
110 hours below a water depth of 320 m in the Academichesky
Ridge (53◦42′N, 108◦21′E). The temperature was recorded be-
tween 100 and 193 postdrilling hours. The logging cable slipped
between 166 and 170 hours (Figure 3). For modeling purposes,
the temperature data after 170 hours are migrated downward
by a constant amount for each sensor, again by eyeball aligning
the segmented data.

As described earlier, the drilling and temperature record-
ings did not indicate a smooth, ideal operation: the duration
of mud circulation is uncertain, the recording timing is good
to one-half hour, and the mud temperature is likely to have

FIG. 1. Thermal recoveries at three depths at site BDP93 in
Lake Baikal, Russia. Each curve represents one set of model
parameters. Outliers (¤) are excluded from modeling. The
early (postdrilling time ≤ 50 hours) and late data sets were
obtained from two boreholes spaced a few meters apart. Data
are marked by ++ or××.

FIG. 2. Model curves of thermal recovery at BDP93. Data were
merged from two boreholes through eyeball alignment of two
segments of temperature–time data (Figure 1). The number
next to each arrow indicates the amount of temperature shift
that has been made for the alignment. Data are marked by ++.

D
ow

nl
oa

de
d 

06
/0

5/
16

 to
 1

29
.1

1.
21

.2
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Formation Temperature 1841

fluctuated substantially. For our modeling, the recording is as-
sumed to be accurately timed; the unsteady mud temperature
is higher than the flushing water temperature and is assumed
to be constant at each depth of measurement. The data error
is probably within±0.05◦C as judged by the smoothness of the
thermal recovery curves, uncertain time resolution, and exis-
tence of three outliers in the data. This error estimate sets the
limit of goodness in curve fitting. Ranking numerical models in
genetic algorithm and inverse modeling is based on rms1 (rms2

lacks comparable resolution). Here, all results with rms2 be-
low 0.06◦C are deemed acceptable in terms of misfit rms alone.
This target misfit limit is much greater than the limit (0.002◦C)
used in a study by Lee et al. (2003), who apply a similar but
not identical method [e.g., equation (1) instead of equation (3)]
to high-quality data to determine formation temperature and
thermal properties in the top 2 m of Lake Baikal sediments.
The present study tests the general methodology with compar-
atively inferior data sets, which in practice could be frequently
encountered.

Implementation

We implemented our test examples as follows.

Finite-element simulation.—The forward finite-element
modeling of BDP93 is based on a domain size of 8.1 m radius.
This is discretized into 32 (= Nr ) elements, with their widths
increasing radially from the innermost element of 0.12 m (ra-
dius of borehole) to 0.30 m for the outermost one. For BDP96
and the early segment of BDP93, the Nr is reduced to 28 and
the domain size is 6.9 m. These two choices ensure that, at the
end of temperature recording (drilling plus postdrilling time),
the nodal temperatures at five or more outer nodes equal the
far-field equilibrium temperature θequ. The square of the pre-
sumed data error (0.05◦C)2 is taken as the variance in the data
covariance matrix Cd, and the square of 10% of pguessis taken as
the variance for the respective parameter in Cp. The borehole
temperature is computed as the average of the nodal temper-
atures, weighted by a 2:1 ratio, at the center and edge of the
borehole.

FIG. 3. Thermal recoveries at site BDP96 in Lake Baikal,
Russia. The original data marked by dots have been down-
shifted by eyeball alignment with the pre-170 hours data for
modeling. The entire data set and curve at depths 65 and 95 m
have been subtracted by 1◦ and 2◦C, respectively, for plotting.
Data used for modeling are marked by ++.

The basic time step 1t used in the finite-element model is
either one-half or one-third of the shortest sampling interval.
The two choices do not lead to a significant difference in re-
sults. Either choice of 1t may be slightly reduced such that
the temperature is computed exactly at each observation time.
Essentially, a variable 1t is used in the finite-element model.

Parameter ranges.—The genetic algorithm is initiated by the
modeler with a pseudorandom number. It then randomly se-
lects 100 (= NG A) sets of parameters from the following ranges
of choice: The conductivity values for the sediments range from
0.8 to 1.5 Wm−1K−1, and heat capacity values range from 1.0
to 3.0× 106 Jm−3K−1 (the corresponding ranges for the mud
properties are 2∼4 and 0.15∼0.9 units, respectively). The lower
bound of the mud temperature is the inlet lake water temper-
ature (1◦C), and its upper bound is the zero-time intercept of
a linear relation obtained for the first four data points. The
equilibrium temperature uses the mean of the last two temper-
ature readings as its lower limit and adopts a range twice that
between the lower limit and a θ f obtained from the last four
readings according to equation (3). Because the temperature–
time curve is concave downward (Figure 1), such chosen ranges
for the mud temperatures are relatively large for the late data
segments as compared to those for the early segments at site
BDP93; the reverse is true for the potential range of equilib-
rium temperature.

The mud circulation time tD , which ostensibly should be the
least uncertain to estimate from the drilling records, has the
largest uncertainty because tD is not necessarily the interval
between the time when the drill bit first touches the depth of
temperature measurements and the time when drilling ends.
After drilling, the mud may continue to circulate for some time,
posing a challenging game of estimating tD . For BDP96, the
ranges are narrow because the time the drill bit first passed the
depth in question is available; but for BDP93, such information
is not available, and the likely ranges are relatively wider. The
ranges and the midrange values of tD decrease with increasing
depth. For a given depth, the tD is also greater for the late
segments than for the early segments because it took about
1.5 times longer to drill the hole for the late segment. For the
composite data sets, the tD ranges straddle those for the early
and late segments.

Selection.—Fifteen generations are allowed in genetic algo-
rithm for every chosen pseudorandom number. The population
in each generation is kept at 100 sets. Misfit is computed for
each set; the minimum among those misfits (rms1) is the mis-
fit for that generation. The set of parameters associated with
the least among the 15 generational minima constitute pguess.
After an initial rapid decline in rms1, increasing the number of
generations beyond 15 does not improve rms1 significantly.

No parameter ranges are imposed during inverse modeling
[equation (14)], which begins with the input of pguessfrom ge-
netic algorithms. The resultant p is regarded as a desired set of
parameter values if the accompanying rms2 is less than 0.06◦C.
Usually, p does not differ much from pguess. Occasionally, the
output p is identical with the input pguessto three significant dig-
its, but in those cases inverse modeling is still capable of yield-
ing slightly better misfit distributions. Rarely, inverse modeling
crashes with the input provided by genetic algorithms. Multiple
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1842 Lee et al.

runs generate a set of p, almost all of whom meet the rms2 cri-
terion. The arithmetic means of those rms2-passed p are taken
as the final parameter values, and their standard deviations
signify the uncertainty of determination.

Remarks.—The linearity of equation (1) is obtained at each
inverse modeling-estimated tD by maximizing its linear corre-
lation coefficient through one-by-one removal of the earlier
data points until at least five points remain or a correlation
coefficient of 0.98 or better is achieved. Usually, high linearity
is achieved after a few points have been skipped, but occa-
sionally the removal of up to 20 points may be needed. The
intercept θasy and the slope Q/4πkasy are obtained from the
linear relation with the highest correlation coefficient.

Depending on the PC’s clock speed, the run time for each
GA-IM-FE sequence is about 5 to 10 minutes. The inverse mod-
eling run time is only a small fraction of the total run time. The
genetic algorithm as a means of solving the governing differen-
tial equation can produce the desired rms2, but the addition of
inverse modeling yields better fitting distribution in the sense
of least squares.

Results

The results of curve fitting, without the constraint of SI I in
equation (13), are illustrated in Figure 1 for every segment of
BDP93. Three outliers marked by squares are excluded from
modeling. Figure 2 exemplifies the fitting for the realigned com-
posite data; the amounts of temperature shifting are posted
next to the arrows.

Table 2. Results of modeling without the constraint of SI II I . Numbers designate average +– one standard deviation.

Heat capacity Conductivity Formation temperature Conductivity ratio Difference
(106Jm−3K−1) (Wm−1K−1) (θequ, ◦C) (kasy/k) (θasy− θequ, ◦C) rms2

∗ (◦C)

BDP93†
28 m

Early 1.46 ± 0.31 1.35 ± 0.10 5.00 ± 0.06 1.51 ± 0.12 −0.23 ± 0.04 0.046 ± 0.002
Late 1.94 ± 0.56 1.24 ± 0.28 4.96 ± 0.01 1.09 ± 0.08 −0.01 ± 0.01 0.016 ± 0.001
All 1.48 ± 0.42 1.33 ± 0.13 4.95 ± 0.03 1.10 ± 0.10 −0.02 ± 0.02 0.027 ± 0.005

58 m
Early 1.87 ± 0.50 1.26 ± 0.15 6.04 ± 0.06 1.24 ± 0.12 −0.15 ± 0.06 0.046 ± 0.009
Late 1.37 ± 0.47 1.29 ± 0.20 6.12 ± 0.01 0.85 ± 0.08 0.02 ± 0.02 0.031 ± 0.002
All 1.57 ± 0.41 1.30 ± 0.12 6.12 ± 0.01 1.05 ± 0.09 −0.01 ± 0.02 0.030 ± 0.003

88 m
Early 2.11 ± 0.49 1.26 ± 0.07 7.04 ± 0.09 1.00 ± 0.09 −0.02 ± 0.04 0.031 ± 0.007
Late 1.86 ± 0.48 1.26 ± 0.09 7.57 ± 0.01 0.91 ± 0.04 0.02 ± 0.01 0.016 ± 0.001
All 1.81 ± 0.50 1.21 ± 0.17 7.56 ± 0.02 0.96 ± 0.08 0.02 ± 0.03 0.044 ± 0.003

Syn58 2.00 1.20 6.10
Early 1.91 ± 0.64 1.21 ± 0.19 6.16 ± 0.09 1.19 ± 0.17 −0.13 ± 0.08 0.033 ± 0.005
Late 1.66 ± 0.59 1.26 ± 0.13 6.09 ± 0.01 0.95 ± 0.06 0.01 ± 0.01 0.023 ± 0.001
All 1.63 ± 0.52 1.19 ± 0.14 6.10 ± 0.02 1.04 ± 0.07 −0.01 ± 0.01 0.023 ± 0.002
BDP96∗∗

35 m 1.78 ± 0.48 1.00 ± 0.10 6.39 ± 0.08 0.71 ± 0.06 0.21 ± 0.05 0.029 ± 0.001
65 m 1.98 ± 0.23 0.95 ± 0.09 9.23 ± 0.07 0.43 ± 0.03 0.78 ± 0.05 0.047 ± 0.001
95 m 1.90 ± 0.76 0.90 ± 0.07 11.26 ± 0.14 0.33 ± 0.03 0.51 ± 0.04 0.058 ± 0.002

Syn65 2.50 0.90 9.30
65 m 1.50 ± 0.55 1.03 ± 0.07 9.49 ± 0.16 0.67 ± 0.07 0.37 ± 0.07 0.022 ± 0.001

∗Significant to the second digits only.
†The mean needle-probe conductivity values for BDP93 are 1.18 Wm−1K−1 between depths 28 and 58 m and 1.22 Wm−1K−1 between
58 and 88 m.
∗∗The mean needle-probe conductivity values for BDP96 are 0.88 Wm−1K−1 between depths 35 and 65 m, and 0.90 Wm−1K−1

between 65 and 95 m.

Figure 3 depicts the results of modeling BDP96. The data
marked by dots beyond hour 170 have been downshifted to
correct for the offsets in the data curves caused by a cable
slippage. Also, note that 1◦ and 2◦C have been subtracted from
the data and model curves, respectively, at 65 and 95 m depth
for graphical accommodation.

Table 2 summarizes the results of modeling without the con-
straint of SI I : heat capacity, thermal conductivity, and forma-
tion temperature. The listed values are means ± standard de-
viations for five genetic algorithm/inverse modeling runs, ex-
cept that the early segments at BDP93 were run 10 times each.
Also tabulated are values that can be used to assess model-
ing results: ratios of asymptotic to model conductivity (kasy/k),
differences between asymptotic and model formation temper-
ature (θasy− θequ), and misfits (rms2). All modeling results with
rms2≤ 0.06◦C are summarized for the tabulation.

The uncertainties in determining formation temperature and
conductivity are also illustrated in Figures 4 and 5, respectively.
For every depth of measurement, there are two vertical bars for
each: all composite (A), early (E), and late (L) data sets. Each
upper bar in Figure 4 represents the equilibrium temperature,
and each lower bar represents the difference θasy− θequ. Every
bar centers at its mean value, and the height signals two stan-
dard deviations. The mean values are plotted with reference to
the mean equilibrium temperature determined for the A data
set at each depth of BDP93; the mean value for every A data
set is then reset at 1◦C for graphical comparison. Similarly, all
equilibrium temperatures for BDP96 are reset to 1◦C for com-
parison. The uncertainties in conductivity at each depth are also
represented by two vertical bars (Figure 5), with the upper bar
for conductivity and the lower one for the ratio kasy/k.
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Formation Temperature 1843

DISCUSSION

A crucial question in any inverse modeling for parameter
determination is the reliability of end results. The methods in
common practice for estimating formation temperature tend
to be simplistic because increasing the model sophistication
may not be warranted in view of data quality or quantity. For
example, the data used by Middleton (1979) are not numer-
ous enough for our application. Based on an instantaneous

FIG. 4. Uncertainty in the determination of equilibrium for-
mation temperature. Each pair of vertical bars represents the
results for one data set. (E, L , and Astand for the early, late, and
all-composite data segments, respectively.) Each upper bar for
BDP93 denotes the mean formation temperature, plotted with
reference to the value for A. All mean values for A at different
depths are reset to 1◦C for comparison. For BDP96, all mean
formation temperature are also reset at 1◦C. As a measure for
model selection, each lower bar represents the mean value of
the differences θasy− θequ. The length of each bar represents
two standard deviations. The true values for synthetic data are
marked by ×’s.

FIG. 5. Uncertainty in the determination of thermal conduc-
tivity. Each pair of vertical bars represents the results for one
data set. Each upper bar centers at the mean conductivity, while
the lower bar centers at the mean conductivity ratio of kasy/k,
which is a measure for model selection. The length of each bar
represents two standard deviations. Each× symbol denotes the
mean of conductivity values measured with the needle-probe
method in cores between the indicated depth ranges, except
that it represents the true value for the synthetic data. The
conductivity is in units of Wm−1K−1.

line source, equation (3) works well for cooling a temper-
ature probe that was inserted instantly into soft sediments
(Hutchison and Owen, 1989; Lee et al., 2003) but may not
be appropriate for thermal recovery after a borehole has en-
dured a long period of mud circulation unless the observation
times are far beyond the circulation time, as addressed ear-
lier. Usually the zero circulation model of equation (2) is more
appropriate at the bottom of the borehole than for the mea-
surements made far above the bottom. At the very bottom,
however, the axial (vertical) heat flux may become a factor to
be reckoned. Equation (1) is thus preferred for mud circulation
of long duration even though the circulation time is unknown
or undefinable when the data from two holes are spliced to-
gether for BDP93. Additionally, the mud circulation was likely
punctuated with disruption during drilling operations. The heat
exchange between the circulating mud and the formation has
never been steady, as assumed in our modeling. Despite these
concerns, the diffusion processes will have smoothed the im-
prints of thermal irregularities if the records used are taken
long after mud circulation ends.

Formation temperature

The modeling results as measured by rms2 (Table 2) ap-
pear acceptable because all rms are below a perceived error
of 0.05◦C except for BDP96-95m, which has an rms2 of 0.06◦C.
The misfit distributions as represented by Figures 1 and 2 ap-
pear unbiased. Because the temperature was recorded to the
nearest 0.01◦C, the third decimal digit for the rms listing is
insignificant. Nevertheless, the third decimals are retained to
show small variations in rms2 (<0.01◦ C). Frequently, the vari-
ations are too subtle to permit model selection by rms alone.
We take the mean values as the final model parameters and
append the standard deviations as the uncertainties.

At BDP93, the standard deviations of the equilibrium forma-
tion temperatures are less than 0.03◦C for the late- and all-data
models but reach 0.09◦C for the early segments (Table 2, Fig-
ure 4). Similarly, the mean values are consistent (<0.01◦C) with
one another for the late- and all-data sets; but for the early seg-
ments, the mean equilibrium values deviate from those for the
all- and late-data sets by 0.04◦, 0.08◦, and 0.5◦C at depths of 28,
58, and 88 m, respectively. These patterns are also reflected in
the distribution of the differences 1θ(= θasy− θequ). The con-
sistency suggests that θequ is well determined for late and all
data. Greater uncertainty and discrepancy for the early-data
segments seem to imply that the record lengths for the early
segments are too short to allow a good estimate of θasy. This
implication is contrary to the fact that the linear correlation
coefficient for equation (1) is between −0.98 and −1.00 after
some early data points are eliminated one by one (until at least
five points remain) to establish a linear asymptotic relation.

The uncertainty in θequ and the discrepancy1θ are relatively
greater for BDP96 (Table 2, Figure 4). The 1θ (0.21◦–0.78◦C)
are much greater than the data error of 0.05◦C, and they are so
large that the inclusion of SI I constraint cannot reduce the
discrepancy to a satisfactory level. This failure is partly at-
tributable to using a short shut-in time. Hence, the SI I con-
straint has not been implemented systematically in this study
despite our original intention. The goodness of curve fitting in
Figure 3 for BDP96 is visibly albeit slightly inferior to that in
Figure 1 or 2 for BDP93. Based on the sizes of misfit rms and
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1844 Lee et al.

the standard deviations of θequ, the accuracy in determining
θequ for BDP96 is probably around 0.1◦C. This translates into
an error of ±0.03◦C/m in the estimate of geothermal gradient
or about 4% error at this site (the sensors are spaced 30 m apart
in depth).

Conductivity

The uncertainties in thermal conductivity as measured by
standard deviations are within ±10% except for 14% for all
data at BDP93-88m (Table 2, Figure 5). Most ratios of kasy/k
are within ±0.1 from unity; notable exceptions appear at the
early segment of BDP93-28m and at all three depths of BDP96.
Good ratios support the notion that those model conductivity
values are acceptable; poor ratios cast doubt on the results.
Next, the assessment is made by comparing the model values
with a set of independently measured conductivity values, al-
though this optional, experimental comparison normally is not
available for assessing inversion modeling in practice.

Thermal conductivity at BDP93 has been measured on
drill cores. Duchkov and Kazantsev (1996) reported a con-
ductivity value of 1.16± 0.17 Wm−1K −1 for 109 measure-
ments in cores with a needle-probe method and a value of
1.76± 0.24 Wm−1K−1 for 553 measurements with a thermal
comparator applied over the flat surface of lengthwise-sliced
cores. The large discrepancy between the two sets of measured
values (26% from their mean value of 1.46 Wm−1K−1) necessi-
tated an independent study through inverse modeling of ther-
mal recovery to properly determine terrestrial heat flow. Using
a scheme similar to this one without using genetic algorithm
to generate pguess, ignoring the conductivity ratio kasy/k as a
criterion, and keeping the modeler from knowing the two dif-
ferent sets of values, Duchkov et al. (2001) find a mean value of
1.26 Wm−1K−1 for the whole unshifted data by searching the set
of p that gives the least misfit rms2 through meticulously fine-
tuning the input pguess. Since the model value is much closer to
the needle-probe value, the needle-probe values were deemed
preferable to the comparator values. A similar discrepancy be-
tween the results by the needle-probe and comparator meth-
ods has been reported elsewhere (e.g., the comparator value is
greater than the needle-probe value by 13% on average; see
Horai, 1981).

The needle-probe values (Duchkov et al., 2001) are listed in
Table 2 for comparison with the results of the present model-
ing and plotted in Figure 5 for visual comparison. Relative to
the needle-probe values, the model values for the early data
are overestimated by 11% and 5% at depths between 28 and
58 m, and between 58 and 88 m at BDP93, respectively; the
corresponding values for the late data are also overestimated,
respectively, by 7% and 6%. For the composite data as a whole,
the respective values are positively biased by 11% and 5%. For
BDP96, the model conductivity values are overestimated rel-
ative to the needle-probe values by 11% and 3%, respectively,
at depths between 35 and 65 m, and between 65 and 95 m.
These comparisons indicate that model mean values, despite
internal uncertainty of about 10%, are fairly reliable because
a needle-probe value may have an uncertainty of 5% to 10%
and because the quoted needle-probe values represent mean
values for a long segment of cores while the model values rep-
resent a much narrower depth range of sediments around a
temperature sensor.

The uncertainties in the estimates of heat capacity range
from 12% to 40% for the results listed in Table 2. No indepen-
dent measurement assesses the results, and the heat capacity
must be viewed as undeterminable from the available data at
this writing. Large uncertainties in heat capacity are associated
with comparable uncertainties in the estimates of mud proper-
ties, initial mud temperature, and circulation time.

Synthetic data

Two sets of temperature–time data were computed with
model parameters at BDP93-58m and BDP96-65m. Random
errors up to ±0.03◦C were imposed on the computed values
to yield two sets of synthetic data, Syn58 and Syn65. The syn-
thetic data were then modelled using the same procedures and
parameter ranges for the corresponding sets of the real data.
The genetic algorithm–inverse modeling procedures were run
five times for each scenario.

Temperature.—The results (Table 2, Figure 4) for Syn58 indi-
cate that both the formation temperatures θequ and discrepan-
cies1θ are determined within 0.01◦C of the true values for late
and all data. For the early segment, which exhibits the worst-
case scenario for Syn58, the mean formation temperature errs
by 0.06◦C but the rms2 of 0.033◦C exceeds the data error by an
insignificant 0.003◦C. Like the case for the early-data segment
of BDP93-58, the discrepancy1θ of−0.13◦C suggests that the
record length may not be long enough to determine θasy from
an asymptotic relation. For Syn65, the mean θequ errs by 0.19◦C
and the discrepancy 1θ reaches 0.37◦C, even though an rms2

of 0.022◦C is still below the data error. These results suggest
that the formation temperatures at BDP96 could err by similar
magnitudes.

Figure 6 depicts the misfit distributions for the synthetic data.
The parameters determined from the early segment are also
used to predict the late temperatures, and vice versa. The data
and model temperatures for the upper two sets of curves have
been offset graphically to avoid overlapping. A solid curve rep-
resents a fitting based on a single set of model parameters, while
a dashed curve represents the fitting obtained from the mean
values for multiple genetic algorithm–inverse modeling runs.
Note that models derived from the early data yield systematic
misfits in extrapolation to late data (middle curves); the dashed
curve extrapolates slightly better than the solid curve. For mod-
els based on late data (upper curves), the extrapolation shown
by the dashed curve performs much better. The fact that the
models of multiple genetic algorithm–inverse modeling runs
can outperform the single-run models supports our practice of
using the averages as the model parameter values.

Also depicted in Figure 6 is the fitting for Syn65. This plot
provides a perspective of thermal recovery at the two Lake
Baikal sites. The relatively greater slope for Syn65 over the
identical postdrilling period indicates that the thermal conduc-
tivity at BDP96 should be less than that at BDP93, as demon-
strated by the genetic algorithm–inverse modeling results
(Table 2). Modeling the synthetic data indicates greater uncer-
tainties are expected in the parameter estimates for BDP96.

Thermal properties.—For Syn58, the conductivity generated
from the early data is essentially identical to the true value, but
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a conductivity ratio kasy/k of 1.19 suggests that the asymptotic
relation is not yet established for the early segment of data.
Both the late segment and the all composite data yield ac-
ceptable conductivity (<5%) and ratio (± 5%). For Syn65, the
conductivity is underestimated by 14% (worse than that for the
corresponding real data if the needle-probe value is true) and
the conductivity ratio is unacceptably small.

Errors in estimating the heat capacity of sediments are un-
acceptably large except for the early segment at Syn58, which
also yields the least error in the estimate of heat capacity for
the mud (not listed). The late segment has the greatest error
in the estimates of conductivity for the mud. The errors in the
estimates of initial mud temperatures range from 0.2◦ to 0.3◦C,
being greatest for the late segment as expected.

CONCLUSION

We have used a genetic algorithm and quasi-linear inversion
modeling to determine equilibrium temperature and thermal
conductivity from the thermal recovery data. We have also used
multiple genetic algorithm–inverse modeling runs to establish
uncertainty, misfit rms, discrepancy 1θ , and conductivity ratio
kasy/k for assessing the reliability of parameter determinations.
The test data are highly noisy and require ad hoc manipulation
of data sets. The conclusions, favorable or unfavorable, should
be viewed with some reservation.

Despite the nonideal data at BDP93, the modeled equilib-
rium temperatures θequ are compatible with the results θasy ob-
tained by a commonly used method for estimating equilibrium
temperature [equation (1)]. The discrepancy increases with de-
creasing depth (Table 2) for the early data segments, suggesting
that the expected increase in tD/t or decline in t − tD degrades
the applicability of the analytic solution. This upward deterio-
ration trend is shared by the conductivity ratio kasy/k. Gener-
ally the deviations of the model conductivity values from the
needle-probe values also increase with decreasing depth, but
there is no clear pattern of deviations as related to the early

FIG. 6. Models of synthetic thermal recoveries, Syn58 and
Syn65. The curves associated with ×-marked data represent
extrapolations (or predictions) that are computed with model
parameters obtained from data marked with +’s. Each solid
model curve is based on one genetic algorithm–inverse model-
ing run, while a dashed model curve is based on multiple runs.
The early and late data sets have been offset by 1◦ and 2◦C,
respectively, for plotting.

or late data. The trend of deviations could be caused by the
greater uncertainty in tD itself at shallower depth. The θequ val-
ues for the early, late, and all composite data at each depth are
fairly consistent (around the estimated data error of 0.05◦C)
except for the early segment BDP93-88 m, where it is lower by
0.5◦C for unknown reasons. The results for the synthetic data
Syn58 substantiate the feasibility of using our method.

For BDP96, the discrepancy and conductivity ratio as two
measures for assessing the modeling results fail. However, the
closeness of the model conductivity values to the needle-probe
values (Table 2) suggests that if the modeling results are wrong,
the error is very likely much less than the error incurred when
the analytic solution is used alone. Acceptable but imperfect re-
sults are generated for Syn65. The imperfection occurs because
the data-time coverage is narrow and the overall postdrilling
time is short (Figure 6).

We estimated the average rate of heat exchange Q between
mud circulation and the formation and used it to obtain an
asymptotic conductivity kasy from equation (1). The ratio kasy/k
is expected to be 1 despite the fact that equation (1) is formu-
lated for a steady heat exchange rate and our recovery model
is based on a steady circulating mud temperature. This oneness
is essentially achieved for a data set that includes both early
and late data; but if the data are available only for a small time
span, the oneness may not be achievable. In this case, it does
not necessarily imply a failure in our method, as demonstrated
by the modeling for BPD93 and Syn65.

The genetic algorithm is a biased stochastic process for solv-
ing a differential equation, but the results of genetic algorithm
may not yield randomly distributed misfits. The inverse model
modifies the genetic algorithm-generated parameter values to
yield randomly distributed misfits and reduce the rms further.
However, in some data-dependent cases the inverse model is
unable to modify significantly the genetic algorithm-generated
parameter values (to the third significant digit). Inverse mod-
eling crashes frequently but rarely if pguess is provided by the
genetic algorithm. Through the genetic algorithm, many sets
of parameters can be generated; most of their misfit rms are
similarly low and on par with the data error, but individual pa-
rameters can vary significantly (>10%). Hence, it is advisable
to run GA-IM 5–10 times and take the arithmetic means as the
representative values, as practiced here. If justified, the param-
eters associated with an outlier result can be excluded from the
averaging or the averaging can be weighted according to the
size of their rms (not practiced here).

Overall, the results of our test cases for inverse modeling of
thermal recovery are not entirely satisfactory. The constraint
of SI I [equation (13)] has not been systematically exercised be-
cause (1) the discrepancy 1θ(= θasy− θequ) obtained without
this constraint is already on par with the data error; (2) if the
1θ is significantly large, imposing the constraint still cannot
reduce 1θ to a satisfactory level (<0.05◦C for our noisy test
data); and (3) the postdrilling time t − tD is too short to war-
rant the use of equation (1), especially for the early data seg-
ments or measurements at shallow borehole depths. Our test
data happen to represent these two bipolar situations, mainly a
consequence of different time-sampling spans or durations of
data coverage as substantiated through modeling the synthetic
data. We anticipate that data of better quality and coverage
will produce much better results, as demonstrated in a recent
study on cooling recovery (Lee et al., 2003) which, unlike the
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present model of finite mud circulation, is based on an instant
heating model and on a constraint derived from equation (3)
rather than equation (1).

ACKNOWLEDGMENTS

We appreciate the comments made by two anonymous re-
viewers.

REFERENCES

Bathe, K. J., and Wilson, E. L., 1976, Numerical methods in finite ele-
ment analysis: Prentice-Hall, Inc.

Bullard, E. C., 1947, The time necessary for a borehole to attain tem-
perature equilibrium: Monthly Notices of Roy. Astr. Soc., 5, 127–130.

Cao, S., Lerche, I., and Hermanrud, C., 1988, Formation temperature
estimation by inversion of borehole measurements: Part II—Effects
of fluid penetration on bottom-hole temperature recovery: Geo-
physics, 53, 1347–1354.

Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of heat in solids:
Oxford University Press.

Deming, D., 1989, Application of bottom-hole temperature corrections
in geothermal studies: Geothermics, 18, 775–786.

Deming, D., and Chapman, D. S., 1988, Inversion of bottom-hole tem-
perature data, the Pineview field, Utah–Wyoming thrust belt: Geo-
physics, 49, 453–466.

Drury, M. J., 1984, On a possible source of error in extracting equi-
librium formation temperatures from borehole BHT data: Geother-
mics, 13, 175–180.

Duchkov, A. D., 1991, Review of Siberian heat flow data. in Cermak, V.,
and Rybach, L., Eds., Terrestrial heat flow and lithosphere structure:
Springer-Verlag, Berlin, 426–443.

Duchkov, A. D., and Kazantsev, S. A., 1996, Temperature measurement
in the first underwater boreholes in Lake Baikal: Russian Geol. Geo-
phys., 37, 94–102.

Duchkov, A. D., Lee, T.-C., and Morozov, S. G., 2001, Thermal proper-
ties of bottom sediments of Lake Baikal: Russian Geol. Geophys.,
42, 288–296.

Forster, A., and Merriam, D. F., 1999, Problems and potential of indus-
trial temperature data from a cratonic basin environment, in Forster,
A., and Merriam, D. F., Eds., Geothermics in basin analysis: Kluwer
Academic/Plenum Publishers, 35–59.

Horai, K., 1981., Thermal conductivity of sediments and igneous rocks
recovered during Deep Sea Drilling Project Leg 60, in Hussong,
D. M., and Uyeda, S., Eds., Initial reports, Deep Sea Drilling Projects,
60, 807–834.

Hutchison, I., and Owen, T., 1989, A microprocessor heat flow probe,
in Wright, J. A., and Louden, K. E., Eds., Handbook of seafloor heat
flow: CRC Press, 71–90.

Jones, F. W., Rahman, M., Leblanc, Y., 1984, A three-dimensional
numerical bottom-hole temperature stabilization model: Geophys.
Prosp., 32, 18–36.

Kalinin, A. N., Sokolova, L. S., Duchkov, A. D., and Chrepanov, V. Y.,

1983, Investigation of a thermal comparator for measuring the ther-
mal conductivity of rocks: Soviet Geol. Geophys., 24, 109–114.

Lachenbruch, A. H., and Brewer, M. C., 1959, Dissipation of temper-
ature effect of drilling a well in arctic Alaska: Bull. U.S. Geol. Surv.,
1083-C, 73–109.

Leblanc, Y., Pascoe, L. J., and Jones, F. W., 1981, The temperature
stabilization of a borehole: Geophysics, 46, 1301–1303.

Lee, C.-Y., Ma, L., and Antonsson, E. K., 2001, Evolutionary and adap-
tive synthesis methods, in Antonsson, E. K., and Cagan, J., Eds., For-
mal engineering design synthesis: Cambridge Univ. Press, 270–320.

Lee, T.-C., 1982, Estimation of formation temperature and thermal
property from dissipation of heat generated by drilling: Geophysics,
47, 1577–1584.

——— 1989, Thermal conductivity measured with a line source be-
tween two dissimilar media equals their mean conductivity: J. Geo-
phys. Res., 94, 12443–12447.

——— 1999, Applied mathematics in hydrogeology: Lewis Publishers.
Lee, T.-C., and von Herzen, R. P., 1994, In-situ determination of ther-

mal properties in sediments using a friction-generated probe source:
J. Geophys. Res., 99, 12121–12132.

Lee, T.-C., Duchkov, A. D., and Morozov, S. G., 2003, Determination
of thermal conductivity and formation temperature from cooling
history of friction-heated probes: Geophys. J. Internat., 152, 433–
442.

Lee, T.-C., Perina, T., and Lee, C.-Y., 2002, Validation of aquifer param-
eter determination by extrapolation fitting and treating thickness as
an unknown: J. Hydrol., 265, 15–33.

Luheshi, M. N., 1983, Estimation of formation temperature from bore-
hole measurements: Geophys. J. Roy. Astr. Soc., 74, 746–776.

Majorowicz, J. A., and Jessop, A. M., 1981, Regional heat flow patterns
in the western Canadian sedimentary basin: Tectonophysics, 74, 209–
238.

Majorowicz, J. A., Garven, G., Jessop, A., and Jessop, C., 1999, Present
heat flow along a profile across the western Canada sedimentary
basin, the extent of hydrodynamic influence, in Forster, A., and
Merriam, D. F., Eds., Geothermics in basin analysis: Kluwer Aca-
demic/Plenum Publishers, 61–79.

Middleton, M. F., 1979, A model for bottom-hole temperature stabi-
lization: Geophysics, 44, 1458–1462.

Reiter, M., Eagleston, R. E., Broadwell, B. R., and Miner, J., 1986,
Estimates of terrestrial heat flow from deep petroleum tests along
the Rio Grande rift in central and southern New Mexico: J. Geophys.
Res., 91, 6225–6245.

Shen, P. Y., and Beck, A. E., 1986, Stabilization of bottom hole tem-
perature with finite circulation time and fluid flow: Geophys. J. Roy.
Astr. Soc., 86, 63–90.

Tarantola, A., 1987, Inverse problem theory: Elsevier, Science Publ.
Co. Inc.

Towend, J., 1997, Estimates of conductive heat flow through bottom-
simulating reflectors on the Hikurangi and southwest Fiordland con-
tinental margins, New Zealand: Marine Geol., 141, 209–220.

——— 1999, Heat flow through the west coast, South Island, New
Zealand: New Zealand J. Geol. Geophys., 42, 21–31.

von Herzen, R. P., and Maxwell, A. E., 1959. The measurement of ther-
mal conductivity of deep-sea sediments by a needle probe method:
J. Geophys. Res., 64, 1557–1563.

D
ow

nl
oa

de
d 

06
/0

5/
16

 to
 1

29
.1

1.
21

.2
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/


