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Formation of Concentric Rings Around Sources1

B. P. Harlamov2

Zones of increased concentration formed by a solvent flowing from a source are considered. A matehmat-
ical model for forming such zones is proposed. It takes into account that such a zone is composed of a set
of independent particles. Hence the distribution of a substance around the source can be explained by
movement of an individual particle. In the model this movement is a continuous semi-Markov process
with terminal stopping at some random point in space. Parameters of the process depend on the velocity
field of the flow. Forward and backward partial differential equations for the distribution density of a ran-
dom stopping point of the process are derived. The forward equation is investigated for the centrally sym-
metric case. Solutions of the equation demonstrate either a maximum or a local minimum at the source
location. In the latter case a concentric ring around the source is formed. If different substances vary
in their absorption rates, they can form separable concentration zones as a family of concentric rings.

KEY WORDS: continuous semi-Markov process, absorption, terminal stopping, partial elliptical
differential equation, concentration zone.

INTRODUCTION

In Harlamov (1978), a model of accumulation of accessory minerals in sediment
layers was proposed on the basis of the theory of diffusion Markov processes. In
this work, an exponential stopping time independent of the process was considered.
To obtain the distribution of the process at such a random time the above accumu-
lation problem was reduced to Laplace transformation of the forward Kolmogorov
equation. Examples of diffusion processes with terminal stopping considered in
this work demonstrate increased concentration zones at points where either shift or
diffusion coefficients are discontinuous. Moreover, Harlamov (2000b) proposed
a simple model for formation of zones of increased concentration in the neigh-
borhood of a source on basis of the one-dimensional semi-Markov theory. In this
model, a particle of the substance moves along a straight line. The law of this
movement is a monotone continuous semi-Markov process. It is well known that
trajectories of such a process can have finite intervals of constancy and a terminal
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stopping time. Finite intervals of constancy are not essential from a geological
point of view. On the other hand the infinite interval begun at the terminal stopping
time determines the permanent position of a particle on the line. If the line is a
ray in some centrally symmetric field, the set of these positions form a zone of
increased concentration around the source.

In what follows, the term “stopping” refers to the terminal stopping, i.e., the
infinite interval of constancy. It can be interpreted as sedimentation of the particle
due to physical or chemical interaction with the substance of the filter.

In the present paper we propose a more general semi-Markov model of ac-
cumulation than that of Harlamov (2000b). We investigate two types of processes
with smooth and diffusive character of transportation. Such processes are inter-
esting from a geological point of view (see Korzhinskii, 1982). On the geological
timescale the observed distribution of substance can be interpreted as a limit dis-
tribution of the intensity measure, i.e., an expectation of some random measure
(see Harlamov, 1978).

SEMI-MARKOV PROCESSES WITH STOPPING

A random process in a metric space of statesX and with trajectoriesξ : ξ (t) ∈
X (t ≥ 0) is said to be semi-Markov if it has the Markov property with respect to
the first exit timeσ1 from any open set1 ⊂ X, whereσ1(ξ ) = inf{t : ξ (t) /∈ 1}.
This process can be determined by a consistent family of probability measures (Px)
on the set of all functionsξ continuous from the right and having limits from the
left (Skorokhod spaceD). Letπt (ξ ) be the value of the process at timet ≥ 0. We
say that the subprobability distribution depending on the pointx ∈ X of the form

Fτ (A× S|x) = Px(τ ∈ A, πτ ∈ S) (A ⊂ R+, S⊂ X), (1)

(Fτ (R+ × X|x) ≤ 1)is the semi-Markov transition function corresponding to the
Markov timeτ. The family (Px) is uniquely determined by the set of all semi-
Markov transition functions (Fτ ) or by the set of all semi-Markov transition gener-
ating functions (fτ ). The latter is the Laplace transform ofFτ in the first argument:

fτ (λ, S|x) =
∫ ∞

o
e−λt Fτ (dt × S|x) ≡ Px(e−λτ ; πτ ∈ S, τ <∞). (2)

To construct the semi-Markov process it is sufficient to use these families for all
τ = σ1, where1 is an open set.

Here and in what follows we use denotationµ(ϕ; S) for the integral of the
functionϕ(x)IS(x) with respect to the measureµ(dx), omitting the first argument
if ϕ = 1, and omitting the second argument ifS is the whole space on which the
measure is determined.
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We are interested in continuous processes stopping permanently at a random
time

ς = ς (ξ ) = inf{t ≥ 0 : ζ = ζ (ξ ) = inf {t ≥ 0 : such that for all

s ≥ t ξ (s) = ξ (t)}, (3)

i.e., the time when an infinite interval of constancy begins. Generally this time
depends on the future, i.e., the event{ς ≤ t} does not only depend on values of the
trajectory before the timet . In other words this moment is not a “stopping time”
or “Markov time” in the sense of the theory of stochastic processes. However, for
semi-Markov processes we can express the distribution of this time and the value of
the process on the infinite interval of constancy in terms of semi-Markov transition
functions. It can be found as a limit of step functions associated with a continuous
function. Letor be the first exit time from the open spherical neighborhood (of
radiusr ) of the initial point of the trajectory;on

r be the sequence of iterated times
σ 1

r = σr ; σ n+1
r = σ n

r + σr ◦ θσ n
r
, (n ≥ 1), whereθt is a shift operator:θt (ξ )(s) =

ξ (t + s); Lr ξ be the step function corresponding to this sequence:Lr (ξ )(t) = πσ n
r
ξ

if and only if σ n
r (ξ ) ≤ t < σ n+1

r (ξ ). Evidentlyς (Lr (ξ )) ≤ ς (ξ ) andς (Lr (ξ ))→
ς (ξ ) asr → 0. Alsoπ (ς (Lr (ξ )))→ π (ς (ξ )). This follows from the definition of
continuity if ς is a point of continuity of the functionξ . But it is true even ifς is a
point of discontinuity of the functionξ since in this situation there existsr0 such
thatς (ξ ) = ς (Lr (ξ )) for all r < r0. Denote

Fς (A× S|x) = Px(ς ∈ A, πς ∈ S), Hς (S|x) = Fς (R+ × S|x). (4)

So the measureHς (S|x) is a weak limit of the sequence of measuresHr
ς (S|x) ≡

Px(ς (Lr ξ ) <∞, π (ς (Lr ξ )) ∈ S) as r → 0. Let us find the distribution of the
couple (ς (Lr ), π (ς (Lr ))):

Px(ς (Lr ) < t, π (ς (Lr )) ∈ S) =
∞∑

n=0

Px(σ n
r < t, σr ◦ θσ n

r
= ∞,π (σ n

r ) ∈ S)

=
∞∑

n=0

∫
S

Fσ n
r
([0, t)× dx1|x)(1− Hr (X|x1))

=
∫

S
Ur ([0, t)× dx1|x)(1− Hr (X|x1)), (5)

whereHr (S|x) = Fσr (R+ × S|x) andUr ([0, t)× S|x) =∑∞n=0 Fσ n
r
([0, t)× S|x).

This is a measure onR+ × X that expresses the intensity measure of
the locally finite integer-valued measureN([0, t} × S), counting points of the
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two-dimensional marked point process (σ n
r , π (σ n

r )) (0≤ n <∞) belonging to
the set [0, t)× S. In particular

Hr
ς (S|x) =

∫
S

Zr (dx1|x) (1− Hr (X|x)), (6)

whereZ Zr (S|x) = Ur (R+ × S|x). Generally the measure under the integral sign
in (6) tends to infinity and the integrated function tends to zero asr →0. In some
cases it is possible to find asymptotics of these functions.

Note that the right-hand side of formula (6) determines the distribution of
the limit point of the trajectory in both cases:ς <∞ andς = ∞. The latter case
is if lim ξ (t) (ast →∞) almost certainly existsPx. In what follows we suppose
Px(ς <∞) = 1. Then the limit point is always a stopping point and for allx the
measureHς (S|x) is a probability measure. It is not difficult to give and to justify
sufficient conditions for this property to hold.

DIFFUSION AND SMOOTH TYPES OF PARTICLE MOVEMENT

We consider two basic subclasses of semi-Markov processes: diffusion and
smooth types. For a time homogeneous process its distribution “on the whole”
is determined by the set of all “local” distributions of processes that begin from
different points of the state space, i.e., all “germs” of processes considered from
the initial time until the first exit time from a small neighborhood of its initial
point. A difference between diffusion and smooth semi-Markov process types
becomes apparent when analyzing distributions of the first exit point from a small
neighborhood of the initial point. The one-dimensional continuous process is the
simplest case. Leta < x < b and

g(a,b)(x) = Px(σ(a,b) <∞, πσ(a,b) = a), h(a,b)(x)

= Px(σ(a,b) <∞, πσ(a,b) = b). (7)

For a diffusion process we have

g(x−r,x+r )(x) = 1/2− b(x)r − (1/2)c(x)r 2+ o(r 2), (8)

h(x−r,x+r )(x) = 1/2+ b(x)r − (1/2)c(x)r 2+ o(r 2), (9)

whereb(x) is the shift parameter determining tendency of displacement to the right
(if b(x) is positive) or to the left (ifb(x) is negative);c(x) > 0 is the parameter of
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stopping. In this connection

Px(ς < σ(a,b)) ≤ Px(σ(a,b) = ∞) (10)

and

Px(σ(a,b) <∞) = g(a,b)(x)+ h(a,b)(x) = 1− c(x)r 2+ o(r 2). (11)

For a smooth process we have

g(x−r,x+r )(x) = 1− c(x)r + o(r ), h(x−r,x+r )(x) = o(r ), (12)

or

h(x−r,x+r )(x) = 1− c(x)r + o(r ), g(x−r,x+r )(x) = o(r ). (13)

The parameterc(x) also determines stopping of movement, although in a different
way than in the diffusion case. Ford-dimensional space (d ≥ 0) the difference
between diffusion and nondiffusion characters of movement in principle is as
shown above. For a diffusion process starting at pointx there exists a nondegenerate
linear mapping of the spaceRd on itself that preserves motionless the pointx such
that in the new space the distribution of the first exit point from a small ball with
centerx is uniform on the surface of the ball (in zero approach). In the first and
second approach shift and stopping members are added to the uniform member.
For a nondiffusion process the distribution of the first exit point from a small ball
with centerx is concentrated (in zero approach) on intersection of the surface of
the ball with some hyperplane. For a smooth process this “hyperplane” is a line
and the first exit point in zero approach is unique. The point of exit determines
the unique trace of the process going across the pointx. In the first approach
a member determining stopping inside the ball is added. Note that in Harlamov
(2000a) another definition of the diffusion process was proposed. This is a process
such that its semi-Markov transition generating function (as a function of an initial
point) satisfies a partial differential equation of the second order of elliptical type
with corresponding boundary conditions, on boundaries of corresponding regions.
Practically in Harlamov (2000a) equivalence of the two definitions of diffusion
process was established: on the basis of a differential equation and on the basis of
distribution of the first exit point from a small neighborhood of the initial point.

ACCUMULATION EQUATIONS FOR DIFFUSION-TYPE PROCESSES

Let us consider a continuous semi-Markov process of diffusion type and its
“accumulation kernel”Hς (S|x) the probability measure depending on initial point
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of the process. We are going to derive the forward and backward accumulation
differential equations with respect to the output (S) and input (x) arguments cor-
respondingly. Let us begin with derivation of the backward equation. As shown in
Harlamov (2000a) for any twice differentiable functionϕ there exists the limit

a0(ϕ|x) ≡ lim
r→0

1

r 2
(Hr (ϕ|x)− ϕ(x))

(14)

= 1

2

∑
i j

ai j (x)ϕ′′i j (x)+
d∑

i=1

bi (x)ϕ′i (x)− c(x)ϕ(x),

whered ≥ 1 is the dimension of the Euclidean spaceX; (ai j (x)) is some symmetric
positive definite matrix of coefficients, depending on a point of the state space
and also the trace of this matrix (the sum of its diagonal members) is equal to
unity; (bi (x))(1≤ i ≤ d)is some vector field of coefficients;c(x)is some positive
function;ϕ′i , ϕ

′′
i j are partial derivatives ofϕ by coordinates identified asi and j

respectively. Let us consider the functionL Rξ for the arbitrary functionξ ∈ D and
R> 0 such thatL Rξ (t) = ξ (0) if t < σR(ξ ), andL Rξ (t) = ξ (t) if t ≥ σR(ξ ). Let

H R
ς (S|x) = Px(πς ◦ L R ∈ S, ς ◦ L R <∞). (15)

Then

H R
ς (ϕ|x) = ϕ(x)(1− HR(X|x))+

∫
X

HR(dy|x)Hς (ϕ|y). (16)

Let us subtractHς (ϕ|x) from both sides and divide them byR2. Then, under
suppositions thatHς (ϕ|x) is continuous and twice differentiable (this condition
can be justified) andR→ 0, we obtain on the right-hand side

1

2d
ϕ(x)c(x)+ 1

2d
a0(Hς (ϕ)|x) (17)

and on the left the limit of the expression

(
H R
ς (ϕ|x) − Hς (ϕ|x)

)
/R2 = 1

R2
Px(ϕ(x)− ϕ(πς ); ς < σR)

≤ max{|ϕ(x) − ϕ(x1)| : |x − x1| ≤ R} 1

R2
(1− HR(X |x)), (18)
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that is equal to zero. This yields thatHς (ϕ) ≡ Hς (ϕ|.) satisfies the equation

1

2

∑
i j

ai j (Hς (ϕ))′′i j +
d∑

i=1

bi (Hς (ϕ))′i − cHς (ϕ)+ cϕ = 0. (19)

This equation is said to bebackward accumulation equation. The solution we are
interested in tends to zero at infinity. Uniqueness of this solution follows from
the maximum principle. Let us derive the forward accumulation equation. In this
case instead of the kernelHς (S|x) it is more convenient to analyze its average
with respect to some measure. Letµ(x) be a probability distribution density on
X and

Hς (S|µ) =
∫

X
Hς (S|x)µ(x)dx. (20)

The average kernelsHr
ς (S|µ) andZr (S|µ) and the measurePµ have similar sense.

According to eq. (6) we have

Hr
ς (ϕ|µ) =

∫
X

Zr (dx|µ)ϕ(x)(1− Hr (X|x)). (21)

For any continuous functionϕ the left side of this equation tends to a limitHς (ϕ|µ).
On the right side we have (1− Hr (X|x))/r 2→ c(x). Assume the functionc(x)
to be continuous. Then asr → 0 there exists a weak limitW(S|µ) of the measure
r 2Zr (S|µ), and consequently

Hς (ϕ|µ) =
∫

X
W(dx|µ)ϕ(x)c(x). (22)

Assume that there exists the densityhς (x|µ) of the measureHς (S|µ). Then
there exists the densityw(x|µ) of the measureW(S|µ) and in this case
hς (x|µ) = w(x|µ)c(x). According to definition of the functionZr (see (1)) we
have

Zr (ϕ|µ) =
∞∑

k=0

Pµ(ϕ(πσ k
r
); σ k

r <∞)

= ϕ(µ)+
∞∑

k=1

Pµ(ϕ(πσr ) ◦ θσ k−1
r

; σ k−1
r <∞, σr ◦ θσ k−1

r
<∞)
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= ϕ(µ)+
∞∑

k=1

Pµ(Pσ k−1
r

(ϕ(πσr ); σr <∞); σ k−1
r <∞)

= ϕ(µ)+
∫

X
Zr (dx|µ)Px(ϕ(πσr ); σr <∞), (23)

whereϕ(µ) = ∫X µ(x)ϕ(x)dx. We get the equation

ϕ(µ)+
∫

X
Zr (dx|µ) (Px(ϕ(πσr ); σr <∞)− ϕ(x)) = 0. (24)

Suppose the functiona0(ϕ|x) is continuous onX. Then multiplying the measure
Zr by r 2, dividing the integrated difference intor 2, and going to the limit asr → 0,
we obtain the equation

ϕ(µ)+
∫

X
W(dx|µ)a0(ϕ|x) = 0. (25)

The integral in this expression can be represented in the form

∫
X

W(dx|µ) ≤
(

1

2

∑
i j

ai j (x)ϕ
′′
i j (x)+

d∑
i=1

bi (x)ϕ′i (x)− c(x)ϕ(x)

)
dx = 0.

(26)
Assume that the functionϕ and all its first-order partial derivatives tend to zero at
infinity. Then using integration by parts, we obtain another representation of the
integral

∫
X
ϕ(x) ≤

(
1

2

∑
i j

(ai j (x)w(x|µ))
′′
i j −

d∑
i=1

(bi (x)w(x|µ))′i

− c(x)w(x|µ)

)
dx. (27)

Choosing an arbitrary functionϕ, we imply that wherew(µ) = w(·|µ) and
w(x|µ) = ∫X w(x|x1)µ(x1)dx1. We obtainthe forward accumulation equationif
we substitute w(x|µ) = hς (x|µ)c(x) in the latter equation. Finally we
obtain

1

2

∑
i j

(hς (µ)ai j /c)
′′
i j −

d∑
i=1

(hς (µ)bi /c)′i − hς (µ)+ µ = 0. (28)
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The only restriction is that for any initial probability densityµ the solutionhς (µ)
we are interested in is also a probability density, i.e., nonnegative, integrable and
its integral equals unity. Such a solution is unique. In differential equation theory
Eq. (28) is called conjugate to Eq. (19).

Note that in the theory of Markov processes with break (the break timeς is
identified with the first entrance time to infinity) the kernelHς (S|x) is interpreted
as the distribution of the point of the process just before the break (depending on the
initial point). Therefore Eqs. (19) and (28) can be derived by methods of diffusion
Markov processes. We demonstrate a “semi-Markov method” of deducing them
on the basis of semi-Markov interpretation.

ACCUMULATION EQUATIONS FOR SMOOTH-TYPE PROCESSES

Semi-Markov processes of smooth type can be defined by the following prop-
erty of distribution of the first exit point from a small ball neighborhood of the
initial point of the process:

Hr (ϕ|x) = ϕ(x + r b̄)(1− c(x)r + o(r )) (r → 0), (29)

whereϕ is a continuous function;̄b = b̄(x) = (bi (x)) is a point on the surface of
the unit sphere. The family (̄b(x)) (x ∈ X) determines a field of directions in the
spaceX. We suppose the vector function̄b(x) to be continuous and the function
c(x) to be continuos and positive. Under such assumptions for allϕ, there exists
the limit

α0(ϕ|x) ≡ lim
r→0

1

r
(Hr (ϕ|x)− ϕ(x)) =

d∑
i=1

bi (x)ϕ′i (x)− c(x)ϕ(x). (30)

To derive the backward accumulation equation, we use Eq. (16) with another
normalizing factor. From this follows the identityα0(Hς (ϕ|x)+ c(x)ϕ(x) = 0
that implies the equation

d∑
i=1

bi (Hς (ϕ))′i − cHς (ϕ)+ cϕ = 0. (31)

This is the backward accumulation equationfor processes of smooth type. We
are interested in bounded nonnegative solutions tending to zero at infinity if the
parametric function is the same. In this connection maxHς (ϕ) ≤ maxϕ.

To derive the forward accumulation equation, we use Eq. (24). In this case
the measurer Zr (S|µ) tends weakly to some finite measureY(S|µ). Its density
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y(x|µ) (if it exists) is connected with the density of the measureHς (S|µ) by the
equality:hς (x|µ) = y(x|µ)c(x). From the identity (4), we obtain the equation

ϕ(µ)+
∫

X
y(x|µ)α0(ϕ|x)dx = 0. (32)

Substituting the value of the operatorα0 in the left part and integrating by parts,
we take the identity

∫
X
ϕ(x)

(
−

d∑
i=1

(y(x|µ)bi (x)

)′
i

− c(x)y(x|µ)+ µ(x))dx = 0, (33)

from which we obtain the equation

−
d∑

i=1

(y(µ)bi )′i − cy(µ)+ µ = 0. (34)

Replacing the functiony, we getthe forward accumulation equationfor processes
of smooth type:

d∑
i=1

(hς (µ)bi /c)′i + hς (µ)− µ = 0. (35)

The required solution is a probability density if the functionµ is the same.

EQUATIONS WITH REGARD TO CENTRAL SYMMETRY

Backward accumulation equations relate to a problem of reconstruction of
the initial distribution of matter on the basis of a defined result of its transport. In
this paper we are not going to solve this problem. In what follows we investigate
forward accumulation equations with rather simple fields of coefficients. They
answer the question of how the matter around a source is distributed.

Assume the set of coefficients of the differential equations to satisfy the
principle of central symmetry with respect to the origin of the coordinates. We
consider a particular case of such a set of coefficients, namely

ai j (x) = a(r )

d
δi j , bi (x) = b(r )

xi

r
, c = c(r ), (36)
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wherexi is the i -th coordinate of the vectorx; r =
√∑d

i=1 (xi )2 is the length

of x; δi j is the Kronecker symbol (δi j = 0 if i 6= j andδi i = 1); a(r ), b(r ), c(r )
are continuous positive functions ofr ≥ 0 (for a smooth-type processb(r ) = 1).
Hence the vector field at any point but the origin is directed along the ray going
from the origin through this point (radial vector field). Such a field represents an
idealized picture of velocity directions inside a laminar liquid stream flowing from
a point source ind-dimensional space (d ≥ 1).

Let us consider the forward accumulation equation for a process of Diffusion
type with the functionµ of degenerate form. Letµ be the Unit loading at the
origin of coordinates that we denote as0. Hence

∫
X ϕ(x)µ(x) dx = ϕ(0) whereϕ

is any continuous bounded function. Evidently in this case the densityh = hς (·|µ)
represents a centrally symmetric functionh = h(r ). We have

(hai j /c)′i =
1

d
(h/c)′

∂r

∂xi
= 1

d
(h/c)′

xi

r
, (37)

(hai j /c)
′′
i j =

1

d

(h/c)′

r 2
+ 1

d

(
(h/c)′′

r
− (h/c)′

r 2

)
(xi )2

r
, (38)

hxi b/(rc))′i =
hb/c

r
+
(

(hb/c)′

r
− (hb/c)

r 2

)
(xi )2

r
. (39)

Here and in what follows denotationsf ′, f ′′ (without fixing arguments the func-
tions are differentiated by) relate to derivatives off by r . Therefore we obtain

∑
i j

(hai j /c)
′′
i j

d∑
i=1

(haii /c)′′i i

= (h/c)′

r
+ 1

d
≤
(

(h/c)′′

r
− (h/c)′

r 2

)
r = 1

d
(h/c)′′ + d − 1

d

(h/c)′

r
, (40)

d∑
i=1

(hxi b/(rc))′i = dhb/(rc)+ ≤
(

(hb/c)′

r
− (hb/c)

r 2

)
r

= (hb/c)′ + (d − 1)
hb/c

r
. (41)

Equation (5) is being transformed into the equation

1

2d
(h/c)′′ + d − 1

2d

(h/c)′

r
− (hb/c)′ − (d − 1)

hb/c

r
− h = 0 (r > 0).

(42)
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Correspondingly Eq. (35) for a smooth process is transformed into the
equation

(h/c)′ + (d − 1)
h/c

r
+ h = 0 (r > 0). (43)

The unit loading at the origin of the coordinates affects properties of solutions
of Eqs. (42) and (43). Under our suppositions, Eq. (28) can be represented in the
form∇2(ha/c)− div (hb/c)− h+ µ = 0 where∇2u is the Laplacian applied to
the functionu; div v̄ is the divergence of the vector field ¯v; b̄ is the vector field with
coordinatesbi . Let us integrate all the members of this equation over a small ball
neighborhood (of radiusR) of the origin of coordinates. Under our supposition
the integral of the last term is equal to unit for anyR> 0. The integral of the
third term tends to zero (ifh is bounded or tends to infinity not very quickly as
its argument tends tō0). The first and second terms remain. From the theory of
differential equations it follows that the integral of the divergence of the given
vector field over a ball is equal to the integral of the functionhb/c over the surface
of the ball, i.e., it is equal toRd−1ωdh(R)b(R)/c(R), whereωd is the area of
the unit ball surface ind-dimensional space. The integral of∇2(h/c) over the
ball is equal to the integral of the function−(h/c)′ over the surface of the ball,
i.e., it is equal to−Rd−1ωd(h/c)′(R). Therefore the following condition must
hold

Rd−1ωd(h/c)′(R)+ Rd−1ωdh(R)b(R)/c(R)→ 1. (44)

It is true if the functionb is bounded in a neighborhood of the origin and the
functionh/c has a pole in the point̄0 of the corresponding order. Namely

h(r )/c(r ) ∼
{

(− logr )/(2π ), d = 2
1/(r d−2(d − 2)ωd), d ≥ 3.

(45)

Note that near such a pole the function tends to infinity not very quickly. In this case
the integral of the divergence tends to zero asR→ 0. Thus the desired centrally
symmetric solution of the forward accumulation equation must be of order (45)
and consequently it depends on the rate ofc(r ) at the zero point. If the function
b is not bounded in a neighborhood of zero, it can happen that the second term
of the equation determines the order of the solution. This term is determining for
Eq. (43) when the second derivatives are absent. To assign the order of solutions
at the origin means in fact to assign initial conditions for Eqs. (42) and (43).
However it is not convenient to use these conditions for drawing graphs of solutions
because of their instability. We seek positive and integrable solutions on the positive
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semiaxis: ∫ ∞
0

h(r )r d−1dr <∞, (46)

and therefore,h(r )→ 0 (r →∞).
Also, under “time inversion,” solutions of the equations become stable. Hence one
can find solutions of Eqs. (8) and (9) with the help of the computer on any finite
interval (ε, T) (0< ε < T) replacingr 7→ T − r . Below we bring some examples
of choice of parameters for Eqs. (8) and (9), having physical interpretation, and
also their solutions in analytical (if possible) or graphical form (by computer).

CHOICE OF COEFFICIENTS

Although solutions of accumulation equations depend on the ratioai j/c and
bi/c, the interpretation of these ratios is more natural if one considers the fields
(ai j ), (bi ), andc separately because each of them has specific physical sense. They
may be mutually dependent.

In nature, generally liquids and gases play the role of carrier for a particle
of matter. As a rule, liquids determine a smooth type of a process, and gases a
diffusion type. We take the simplest supposition with respect to diffusion. We
consider it to be constant over all space. The reason for such a choice follows
from the interpretation of diffusion as a result of chaotic movement of molecules
in the stable thermal field. It is possible to give other interpretations of diffusion,
for example, turbulence. However taking into account turbulence would change
our model and the form of related differential equations. In the present paper we
consider only laminar streams of liquids and gases.

In the diffusion case, the velocity ¯v of the carrier matter determines the
tendency of movement of a particle but not its actual displacement. In this case
we take the field of coefficients̄b to be equal to the field of velocities. In the
smooth case the velocity field plays the main role in transportation of a particle.
In this case we supposēb = v̄/|v̄|. It means these fields coincide in directions but
differ in values of vectors. In both types of processes velocity values can affect the
coefficient of absorptionc. In the centrally symmetric case we suppose the velocity
field is as follows ¯v(x) = v(r )x/r , wherev(r ) depends on the dimensionality of
the space and on loss of carrier matter during transportation of the particle. The
choice is based on the principle of mass balance under stationary activity of the
point source.

For incompressible liquid and without loss of liquid from the system (for
example, by change of state) the mass balance equation has the form:

div v̄ = 0, (47)
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hencev′ = −(d − 1)v/r and consequently,v(r ) = v(1)/r d−1. If the incompress-
ible liquid flows on a plane and leaves the system as vapor with the ratev1 per unit
square the velocity on the surface decreases faster. The balance of carrier matter
has the form:v0 = 2πr v(r )+ v1πr 2, wherev0 is the activity of the source at point
0̄, hencev(r ) = (v0− v1πr 2)/(2πr ).

In this case (in contrast to the previous one when the liquid completely covers
the plane) the circle determined by the conditionv(r ) > 0 is the domain of the
carrier liquid. Hencermax=

√
v0/(πv1) is the radius of this circle.

In three-dimensional space the velocity of the particle transported by incom-
pressible liquid varies in inverse proportion to the squared distance from the source:
v(r ) = v(1)/r 2. In this case it is difficult to give a reasonable interpretation to loss
of the carrier matter, and we do not consider it.

For a gaseous carrier the velocity of the particle depends on pressurep = p(r )
that depends on resistance of the medium and decreases with distance from the
source. The mass balance equation, when passing through a homogeneous porous
medium, has the form:

div (pv̄) = 0, (48)

which follows from the Boyle-Marriott law. Hence in the centrally symmetric
case we obtain the equation:(pv)′ + (d − 1)pv/r = 0 and consequently,
pv = p(1)v(1)/r d−1. On the other hand from the Hagen-Poiseuille law for lam-
inar flow of gas the velocity of the stream is proportional to gradient of pressure
(see Golbert and Vigdergauz, 1974):

v̄ = −k∇ p, (49)

wherek > 0 is a coefficient depending on properties of gas and the porous medium;
∇ p is a vector with coordinatesp′i . Using the value of the productpv, we obtain the
differential equation with respect top : pp′ = −k1/r d−1, wherek1 = p(1)v(1)/k.
Hencep2 = p2

∞ + 2k1/((d − 2)r d−2) (d ≥ 3) wherep∞ is the pressure of gas
at a point at infinite distance, for example, atmospheric pressure. Therefore for
space (d = 3) we obtain

v = m

r 3/2
√

r + n
,

wherem= p(1)v(1)/p∞, n = 2p(1)v(1)/(p∞k).
We consider the field of absorptionc(r ) to be of two forms. First, this is a con-

stant fieldc(r ) ≡ c1 =const. We call such a field “strong.” In this case probability
of absorption only depends on the passed distance (possibly, on the number of colli-
sions of the transported particle with molecules of immovable phase). Second, this
is a field varying in inverse proportion to the velocity of a carrier:c(r ) = c1/b(r ).
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We call such a field “weak.” In a weak field the probability of absorption in some
interval of immovable phase depends not only on the length of this interval but
on the time it takes the particle to interact with the immobile phase. The second
dependence seems to be more plausible. It is verified indirectly in the theory of
chromatography (see Harlamov, 2000b). There can be also intermediate laws of
interaction, but we do not consider them in the present paper.

TRANSPORT WITH LIQUID CARRIER

The liquid carrier can flow out from the source and flood over a horizontal
surface. In this case we deal with a two-dimensional accumulation problem. If
the carrier is not being lost as a result of evaporation, its radial velocity decreases
because of geometry of plane. If the carrier is being lost by evaporation, its radial
velocity decreases faster and reaches value zero at a finite distance from the source.
The liquid carrier can penetrate into a three-dimensional volume filled with porous
matter. In this case the carrier is not lost; the radial velocity decreases only because
of the geometry of the space. We consider also two forms of absorption fields for
each dimension: strong and weak. We do not take into account diffusion for a
liquid carrier. Therefore in this case we deal with differential equations of the first
order. For dimensiond = 2 three types of coefficients are investigated:

1. c(r ) = c1, flood over without evaporation; strong absorption field. In this
case the solution of Eq. (43) has the form

h = C
1

r
exp(−c1r ). (50)

The distribution density of the accumulated matter has an acute maximum
at the place of the source.

2. c(r ) = c1r, flood over without evaporation; weak absorption field.

h = C exp

(
−c1r 2

2

)
(51)

This is the unique case when the accumulated matter has a normal distri-
bution as a result of transporting matter by a liquid carrier (see Harlamov,
2000b).

3. c = 2c1πr
v0−v1πr 2 ≤

(
0< r <

√
v0
πv1

)
, flood over with evaporation; strong

absorption field. In this case the solution of equation (43) has the form

h = C
(
v0− v1πr 2

)c1/v1−1
. (52)
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There is clearly expressed dependence of the form of distribution on the
ratio of the absorption and evaporation coefficients. Ifc1/v1 > 1 the matter
is being accumulated in the form of a hill above the source. Ifc1/v1 < 1
the matter is concentrated near the boundary of a circular domain forming
a ring with a sharp border.

For dimensionalityd = 3 two types of coefficients are investigated:

1. c = c1, penetration of liquid into a three-dimensional volume; strong ab-
sorption field. The solution of Eq. (43) has the form:

h = C
1

r 2
exp(−c1r ) (53)

There is an acute maximum at the source location.
2. c = c1r 2, penetrating of liquid into three-dimensional volume; weak ab-

sorption field. The solution of Eq. (43) has the form:

h = C exp

(
−c1r 3

3

)
. (54)

This distribution is similar to normal but it has a more clear expressed
boundary between large and small values of the density than that of the
normal distribution (see Harlamov, 2000b).

TRANSPORT WITH GASEOUS CARRIER

We consider an inflow of a gaseous carrier into a porous medium, where the
gas decelerates rather less than would a liquid. Accumulation of matter corresponds
to two types of fields of absorption coefficients:

1. b = m
r 3/2
√

r+n
, c = c1, strong absorption field. In this case Eq. (8) has the

form

h′′ + h′ ≤
(

2

r
− 6b

)
− h

(
3nb

r (r + n)
+ 6c1

)
= 0. (55)

Its analytical solution is not known. Graphs of solutions are shown (Figs. 1
and 2). There is an acute maximum at the source; the rate of decrease of
density depends on the valuec1.
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Figure 1. The solution of Eq. (55) withc1 = 1.

2. b = m
r 3/2
√

r+n
, c = c1/b, weak absorption field. In this case Eq. (42) has

the form

h′′ − Fh′ + Gh= 0, (56)

where

F = 6r + 4n

r (r + n)
, G = −5r 2+ 6rn + (9/4)n2

r 2(r + n)2
+ b(36r + 24n)

r (r + n)
− 6c1

b
.

Its analytical solution is not known. Graphs of solutions are shown (Figs. 3
and 4). The distribution has a “crater” at the source location. The radius
of the ring of maximum values depends onc1.

To obtain graphics we use a standard algorithm for approximate solution of
systems of first-order differential equations, solved with respect to derivatives. This
algorithm is implemented in computer program “Stend” by Prof V. A. Proursin.
In all the figures, profiles of distribution densities are shown as functions of the
distance from a source at the origin (on the left).

CONCLUSION

In the present work in the context of the theory of semi-Markov processes
we obtained forward and backward accumulation equations. The density of the
measure of accumulated matter is proportional to the distribution density of the
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Figure 2. The solution of Eq. (55) withc1 = 10.

process at time of stopping. When analyzing the process of accumulation two
problems arise: forward and backward. The backward problem is to reconstruct a
source on the base of an observable distribution. For this aim the backward equa-
tion can be used. We do not consider this problem in the present paper. The main

Figure 3. The solution of Eq. (56) withc1 = 1.
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Figure 4. The solution of Eq. (56) withc1 = 10.

content of this paper is to derive forward accumulation equations for diffusion and
smooth types of processes and to solve them under a simplifying assumption of
circular symmetry. Thus we consider a point source in two- and three-dimensional
homogeneous and isotropic mediums. It is shown that under some combinations
of the model parameters increased concentration zones of accumulated matter can
have either maximum or local minimum at the source. In the latter case increased
concentration zones form concentric rings or spheres around the source. The radii
of these rings and spheres depend on the rate and character of absorption of moving
particles by the substance of the filter. Hence this property can imply separation
of components of a mixture which differ in their absorption rates.
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