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On Rhythmical Layering of Rocks Formed
From Basaltic Magma1

A. B. Vistelius2,3 and V. M. Pavlov2

Formation of rhythmical layering in intrusive basic and ultrabasic rock bodies is explained in different
ways, in particular, by the movement of microparticles (mineral clusters) of plagioclase and pyroxene
within the basalt melt under the influence of thermal and gravitational forces. A model of cluster
movement is proposed as a consequence of the forces appearing when ultrasonic elastic fluctuations
pass through the melt. The model is based on fundamental dynamic equations. Depending on cluster
density, wave parameters, and magmatic chamber size, in the melt there can form different combinations
of rhythmically alternating layers of different composition.
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INTRODUCTION

The problem of layering in basic and ultrabasic rocks is being studied by many
geologists. There are several hypotheses explaining this phenomenon including
some based on the principles of physics. It is supposed, in particular, that layering
could appear as a result of the influence of forces upon the magmatic melt, which
cause the motion of separate particles (mineral clusters) to distances large enough
to form visually identifiable monomineral layers.

In the case of a basaltic melt, the clusters are represented mainly by pyroxene
and plagioclase. The leucocratic (plagioclase) layers are enriched in, or are entirely
composed of, frame silicates, i.e. minerals especially inclined to polymerization.
Melanocratic layers are composed of chain silicates, mainly pyroxene, sometimes
with olivine. But, as it is known from observations, such differentiation produces
no dunite or olivine layers. Along with the monomineral layers there are layers of
mixed composition close to leucocratic or melanocratic gabbro.
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The observed thicknesses of the layers vary from millimeters to meters. The
character of layering can be varied. So, a frequently occurring type of alternation
with similar thicknesses of the leucocratic and melanocratic layers is observed in
the Skaergaard sections (Irvin, 1992) and in the ophiolites described by Nicolas
(1989). Another type of layering is alternation of a series of two melanocratic
layers divided by a thin leucocratic layer and with thick leucocratic layers. Such
layering is characteristic of the Stillwater massif, where it is observed for dozens
of kilometers (Czamanske and Zientek, 1985). The borders between the layers are
clear without any traces of interaction. Turbulent vortices inevitable with horizontal
movement of molten material were not observed. Of physical forces which could
cause differentiation of the substance within the melt, those which are relevant
during crystallization include thermal and gravitational fields. Equations of heat
conduction and directed crystallization are used in constructing corresponding
models (Frenkel, 1995).

This paper presents an attempt to model the processes of layering of basaltic
melt with at least two types of mineral clusters, based on the principles of con-
tinuum mechanics (Sedov, 1984). It is supposed that the fluctuating state of the
medium (suspension consisting of melt and grain-clusters) was caused by the
passage through this medium of elastic vibrations with acoustic (ultrasonic) fre-
quencies and formation of standing waves as a result of reflection from the roof.
Vibrations with such frequencies are constantly observed in nature, for example,
in regions of volcanic activity. Appearance of standing waves in the melt volume
leads to the formation within it of zones of compression and tension and movement
of clusters under the influence of vibrational force into the zones corresponding
to stationary states for certain densities. This is how the alternation of layers of
minerals with different density appears; or, at least, offers a theoretical premise
for this phenomenon.

It can be supposed that the source of vibrations was at a considerable depth
underneath a magmatic chamber, longitudinal elastic waves moved through the
melt along the normal to the surface and the set of frequencies depended upon
the form and size of the chamber (such frequencies are resonant frequencies of
the given volume and their presence requires investigation of equations of motion
under corresponding boundary conditions).

We discuss the simplest case and study dispersal of melt of relatively low
viscosity (basalt with, perhaps, volatile components) the liquid phase of which has
a densityρ0. The melt is in a chamber of heightL with solid walls and rigid roof.
ρi is the density of a solid phase of compositioni, V is velocity, t is time, and
ω is frequency.L = Lω/c andV̄i = Vi /c are dimensionless variables, ¯ρ = ρ/ρ0

(ρ is the density of a mixture of the melt and solid phase),c is the velocity of
sound in the carrying phase, andg is the gravitational constant. We assume that
both volumetric and mass contents of the cluster phase are small. Let us discuss
the averaged cluster movement in the carrying phase the movement of which is
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described by the following equation (nonlinear effects are taken into consideration)
(Ganiev and Ukrainsky, 1975).

∂ρ̄

∂ t̄
+ ∂ρ̄V̄

∂ x̄
= 0,

∂ V̄

∂ t̄
+ V̄

∂ V̄

∂ x̄
= − 1

ρ̄

∂ p̄

∂ x̄
+ ḡ

p̄ = p̄0+ (ρ̄ − 1)+ 1

2
(γ − 1)(ρ̄ − 1)2 (1)

whereγ is an empirical factor of nonlinearity of the medium.
The equation of the cluster phase movement is

di Vi

dt̄
= 3ρ̄

ρ̄ + 2ρ̄i

∂ V̄

∂ t̄
+ 3ρ̄

ρ̄ + 2ρ̄i
V̄
∂ V̄
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+ 9t (ω)

t (µ)
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− 2ḡ
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(2)

t (µ) = ρ0a2/µ1 is the time necessary for obtaining the Stokes conditions of the
flow around particles, wherea = particle radius,µ1 = dynamic viscosity (pa/s),

di

dt
= ∂

∂t
+ vk

i

∂

∂xk

is the substantive derivatives connected with the movement of thei th phase.
Suppose, at the chamber bottom (x̄ = L̄) there are small simple harmonic

oscillations of pressurep0 with amplitude1p0 and frequencyω, and near the
roofing (̄x = 0) velocity of the carrying phase is 0, then

p(t̄, L̄) = p̄0+ ε
∑

n

(an sin(nt)+ bn cos(nt)) = p̄0+ ε f (t̄)

where f (t̄) is the arbitrary periodic function,

x̄ = L̄, p(t̄, L̄) = p̄0+ ε f (t̄); ε = 1p0

ρ0c2
; ε2¿ 1;

x̄ = 0, V̄(t̄, 0)= 0.

Solution of these equations of the motion of the carrying phase at rather small
amplitudes of perturbationsε can be submitted as expansion on a small parameter.
Averaged motion is described by functionξ (t). The equation for the parameters
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of the averaged motion in the third approximation is

ξ ′ + µτ0ξ
′′ = −µ4 3

2
ε2χ2

0

(
2ρ̄2

i − 1
) ∞∑

j=1

j
a2

j + b2
j

sin2(L j )
sin(2j ξ )

+µ42ε2χ0(1− ρ̄i )δ0 (3)

µ is a small parameter,j = 1, 2,. . . , τ0 = 9χ0t (ω)/t (µ), χO = (1+ 2ρi /ρ0)−1,

δO = g/(cωε2).
A generalized vibrational force can be included in the equation of the averaged

motion (3) together with viscous resistance and resultant force of weight and the
Archimedes’ force (the second member in the right-hand side expression);

F = 3ε2χ2
0 (1− 2ρ̄i )

2

∞∑
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j
a2

j + b2
j

sin(L j )
sin(2j ξ )

This vibrating force reflects the influence of the carrying phase oscillations upon
the translational movement of the particles. The sign of the vibrating force depends
upon the crystal densityρi . Stationary solutions of the Eq. (3) occur when

ξ ′ = ξ ′′ = 0⇒
∞∑
j=1

j
a2

j + b2
j

sin(L j )
sin(2j ξ ) = 4

3
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gρ2
0c3

ω(1p0)2

The elementary example isj = 1 (Krasilstchikov and Krylov, 1984). The station-
ary solution can be written in the following form:

sin(2ξ ) = 4

3

2ρ̄i + 1

2ρ̄i − 1
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sin2 L(
a2

1 + b2
1

)
(1p0)

gρ2
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ω
= A

ξ = ξ ∗(n), ξ ∗(n) = (−1)n arcsin(A)/2− πn/2, n = 1, 2 . . .nmax

ξ (n) = c

ω
ξ ∗(n)

The condition for stability of the obtained stationary solutions is the following
(Bogolyubov and Mitropolsky, 1963)

(2ρ̄i − 1) cos(2ξ ) > 0
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A condition of applicability of the presented arguments is

ω À µ

ρ0a2
.

Now, we discuss cases of stationary solution derivation at various values of the
densityρi .

Case 1

Values of the constants are chosen as the following:

L = 50m, g = 9.8 m/s, c = 6000m/s,1p0 = 107 pa, ω = 52360.

ρ0 = 3000 kg/m3, ρpl = 2700 kg/m3, ρpx = 3400 kg/m3 are densities of the
melt, plagioclase, and pyroxene, respectively.

Stationary solutions for the averaged movement at such values are

ξpl = 0.04+ 0.3n, ξpx = 0.26+ 0.3n (in meters).

So, if this case is realized, there will be only pyroxene and plagioclase layers in
the section.

Case 2

Values of the constants are chosen as the following:

L = 50m, g = 9.8 m/s, c = 6000m/s,1p0 = 107 pa, ω = 52360.

ρ0 = 3000 kg/m3, ρpl = 2600 kg/m3, ρpx = 3400 kg/m3 are densities of the
melt, plagioclase, and pyroxene, correspondingly.

Stationary solutions for the averaged movement at these values are as follows:
for ξpl there are no stationary solutions, andξpx = 0.26+ 0.3n (in meters)
So in this case there will be only layers of pyroxene separated by gabbro layers.
Plagioclase layers will be absent.

The proposed method of formation of rhythmical layering in massifs of basic
and ultrabasic rocks should be considered as a possibility for solution of the prob-
lem based on fundamental dynamic equations. The model allows reconstruction
in general of any distribution of layers observed in a certain object.
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