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Rock Kriging With the Microscope1

Y. L. Voytekhovsky2,3 and M. A. Fishman4

An idea to consider rock textures from a geostatistical viewpoint is suggested. Mineral grains are coded
by indicator functions. Four metrics are shown of interest for petrographic applications. The simplest
one is used to calculate covariograms of indicators for platinum-bearing gabbronorite from the Pansky
rock massif (Kola Peninsula, Russia) with maximal range of 2 units. This is generalized in the concept of
a minimal cluster of mineral grains for the given rock. The theory allows us to combine grain-by-grain
and cluster-by-cluster considerations of rock texture. It may be used to classify monotonous lithological
series using nuances of rock textures.
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gabbronorite.

INTRODUCTION

What is the main (mathematical) idea concealed by Nature in rocks? This question
has been asked, from time to time, by prominent mineralogists and petrologists
for at least the last two centuries.

The most important result is that we are not allowed to use genetic interpreta-
tions when modelling rock. Probably, it was C. F. Naumann who distinctly divided
genetic and structural aspects of the problem in 1859 for the first time (Naumann,
1907, p. 4). Harker emphasized in 1895 that “some fundamental principle has
yet to be found in petrology. . .and any genetic classification of rocks must be
regarded as one of convenience rather than of principle” (Harker, 1908, p. 20).

The concept was introduced from crystallography after the fundamentals
of that science had been established by E. S. Fedorov and A. M. Schoenflies.
Following this principle, some elementary cells (in respect of mineral and chemical
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compositions and texture) build rock like a macrocrystal. To our mind, there is
neither physical reason for mineral grains to be joined in such a manner nor
experimental evidence for such a process. Nevertheless, the hypothesis has been
very popular up to the present. See a critical review of the recent viewpoints in
Voytekhovsky (1998).

What we suggest in this paper is another way to understand any crystalline
rock. We begin from individual mineral grains of different species obviously in
contact with each other, and look for some internal principle to combine them into
units of higher hierarchical levels.

METRICS

In view of prevailing pragmatic philosophy regarding rock as an industrial
material, it makes sense to stress a rather simple idea. Since its origin, rock has
nothing to do with our needs. Usually, we consider it contained in an ordinary
Euclidean space. But, any rock can be represented in a proper space which might
be Euclidean or not depending on the rules laid down. Let us assume real mineral
grains to be the “points” of this space with “to be or not to be in contact” as the
only inherent spatial relation between them, and try to define some natural metrics.

An intuitively clear construction ish(a, b) = min[dist(a, b)], where dist(a,b)
is the number of binary intergrain boundaries crossed on the continuous way from
graina to b. Let us check the axiomatics.

1. Requirementsh(a, b) ≥ 0 andh(a, b) =0⇔ a ≡ b follow from the sense
of h(a, b).

2. Let h(a, b) = p, then h(b,a) ≤ p because a path of lengthp from b
to a exists. If h(b,a) < p, thenh(a, b) < p because the way of length
less thanp from a to b exists. It follows from this contradiction that
h(b,a) = p = h(a, b).

3. Leth(a, b) = p, h(b, c) = q, thenh(a, c) =min dist(a, c) ≤ dist(a, c) =
p+ q = h(a, b)+ h(b, c) because a path of lengthp+ q from a to c via
b exists.

So,h(a, b) meets all the requirements of a metric . It is interesting to extend it
to any aggregates of mineral grains, sayA andB. It is easy to show thath(A, B) =
min dist(a, b|a ∈ A, b ∈ B) is not a wanted extension ofh(a, b). For example, if
A∩ B 6= ∅, B ∩ C 6= ∅, A∩ C = ∅ thenh(A, B) = h(B,C) = 0, h(A,C) > 0,
andh(A,C) > h(A, B)+ h(B,C) is in contradiction with (3). A real extension
is given by Hausdorff metricσ (A, B) = max{{ζ (a, B)|a ∈ A}, {ζ (b, A)|b ∈ B}},
whereζ (a, B) = min{h(a, b)|b ∈ B}, ζ (b, A) = min{h(b,a)|a ∈ A}.

One more idea is to use any measureµ (i.e., nonnegative, monotonic, and
additive function, e.g., the number of grains composing an aggregate) to de-
fine another type of metric for the aggregates. It can be shown thatξ (A, B) =
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µ(A∪ B)− µ(A∩ B) andρ(A, B) = 1− µ(A∩ B)/µ(A∪ B) satisfy the above
axiomatics. The condition (3) being the most difficult to check, is given in Appendix
for the above three metrics.

COVARIANCES

Following general theory of geostatistics (Armstrong, 1998; Journel and
Huijbregts, 1991; Rivoirard, 1994;) to calculate the space covariograms for mineral
grains of different species, we code them by indicators:

I[m(x) = mi ] = 1 if m(x) = mi and I [m(x) = mi ] = 0 if m(x) 6= mi .

An indicator is a random function of grain,x. Its mathematical expectation
and variance are

Ei = E{I[m(x) = mi ]} = P[m(x) = mi ], V i = V{I[m(x) = mi ]}
= P[m(x) = mi ] × P[m(x) 6= mi ].

Covariances of indicators are

Ci i (h) = P[m(x) = mi ,m(x + h) = mi ] − {P[m(x) = mi ]}2,
× hence Ci i (0)= V i ,

Ci j (h) = P[m(x) = mi ,m(x + h) = mj ] − P[m(x) = mi ] × P[m(x) = mj ],

× hence Ci j (0)= −Ei E j .

EXAMPLES

The above formulae were used to calculate automatically the space covari-
ograms of minerals in gabbronorite from the Pansky rock massif, Kola Peninsula,
Russia. See a petrographical section (Fig. 1) and calculated covariograms (Fig. 2).
Plagioclase, clinopyroxene, orthopyroxene are white, grey, black and indicated by
1, 2, 3, respectively. The values of Ci i (h), Ci j (h) for h = 0, . . . , 10 are in Table 1.

DISCUSSION

In our case, the maximal range appears to be equal to 2 as follows from
the C11(h) covariogram. The value, C11(1)= −0.0949, visually differs from zero.
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Figure 1. Gabbronorite from the Pansky rock massif.

But, the situation is not so definite for C11(2)= 0.0293. We obviously need a
more precise criterion to solve this dilemma. This is especially important when
considering covariograms for minor minerals. In this case, the absolute Ci j (h)
values are negligible if compared with those of the main rock-forming minerals.
The appropriate covariograms should be analysed in their proper scale.

It is conspicuous that some covariograms are systematically positive (e.g., C12,
C13, C23) and tend not to zero but to some small positive value while others (C22)

Figure 2. Covariograms for the gabbronorite-forming minerals.
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Table 1. Covariances for the Gabbronorite-Forming Minerals

h C11 C12 C13 C22 C23 C33

0 1.98E−1 −1.86E−1 −1.21E−2 1.90E−1 −4.22E−3 1.63E−2
1 −9.49E−2 2.12E−1 6.65E−2 1.12E−2 7.14E−3 3.27E−5
2 2.93E−2 1.53E−1 1.66E−2 −6.03E−3 8.06E−3 6.35E−4
3 −4.31E−3 1.83E−1 1.90E−2 −1.05E−3 4.79E−3 3.12E−5
4 9.11E−3 1.78E−1 1.13E−2 −1.90E−3 5.06E−3 1.38E−4
5 −3.02E−3 1.92E−1 1.23E−2 −3.13E−3 4.32E−3 −1.42E−4
6 9.68E−3 1.81E−1 9.60E−3 −2.51E−3 4.11E−3 3.02E−5
7 7.05E−3 1.79E−1 1.22E−2 −3.96E−5 3.94E−3 −1.57E−4
8 4.85E−3 1.87E−1 9.05E−3 −1.60E−3 3.11E−3 −9.38E−5
9 2.80E−3 1.86E−1 1.13E−2 −1.76E−3 3.46E−3 −4.82E−8

10 5.02E−3 1.81E−1 1.06E−2 1.78E−3 3.65E−3 −4.29E−5

tend to a small negative value. Probably, this fact may result from the mathematical
properties of the closed number system:∑

i

I[m(x) = mi ] = 1.

So, one more problem to bear in mind for the future geostatistical investigations
of rock texture, is to find criteria for the sills in case of the closed number system.

From the argument above, we may define a “minimal cluster” of rock as
any maximal aggregate of grains being at a distance less than the range from
each other. If the range equals 1, we have common grain-by-grain consideration
of rock. An example of such rock was shown by Kretz (1969). A pyroxene–
scapolite–sphene granulite from the Grenville terrain, Quebec, Canada, was found
to be a pure mosaic by the crystal density, area fraction, point-sample, quadrat,
nearest-neighbor, random-point, contact-area, contact frequency, and line-transect
methods. We have obtained the same result from the covariogram analysis.

If the range exceeds 1, there appears to be intrinsic reason to consider rock
as built from minimal clusters also. As they are identical only in a statistical
sense, clusters may be of the same or different mineral/chemical composition.
And this phenomenon may be also investigated geostatistically with the metrics
σ (A, B), ξ (A, B), andρ(A, B) derived especially to operate with mineral aggre-
gates. As a result, any grain/cluster may be effectively estimated by a kriging
procedure given the species/composition of some neighbors.

CONCLUSION

So, what is the main idea concealed by Nature in rocks? A century-old mathe-
matical crystallography affirms that an ideal crystal may be described, in principle,
within the framework of a deterministic theory. Any real crystal is already more or
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less nonideal and needs more complicated probabilistic methods to be described.
By comparison, rock is a stochastic system even in the best approximation. We
suppose the range may exceed 2 for some equigranular magmatic rocks. But it is
unlikely to be very high. Rock is a type of locally ordered system.

This fundamental property may be used in applied geology, for example, to
classify monotonous lithological series by range value. This is just what we do for
the platinum-bearing Pansky rock massif to correlate its tectonic units.

Another idea is to use noneuclidean metrics when modelling rock textures.
The first step is to build the space partition with a noneuclidean range needed.
The second is to add euclidean granulometric distributions of the rock-forming
minerals.

A more profound idea is to correlate the nuances of textures with petrogen-
esis. An apparent problem is that recent petrology does not use parameters calcu-
lated with noneuclidean metrics. Nevertheless, some relations can be seen even in
Figures 1 and 2. Plagioclase crystallized first of the three rock-forming minerals.
And it is the covariogram of plagioclase C11 that shows the maximal range. The
reason is that plagioclase created the original matrix in the holes of which other
minerals appeared one by one from the extracted melt. And the question is whether
is it possible to get some more detailed information from the covariograms or not.
We believe it is.
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APPENDIX

Derivation of condition (3) for the three metrics described.

Metric 1

Let us take sucha andc thath(a, c) = σ (A,C). Without loss of generality,
h(a, c) = ζ (a,C). Let us take suchb ∈ B andc′ ∈ C thath(a, b) = ζ (a, B) and
h(b, c′) = ζ (b,C). Thenh(a, b) ≤ σ (A, B) andh(b, c′) ≤ σ (B,C).By definition
of ζ (a,C), h(a, c) ≤ h(a, c′). Because ofh(a, c′) property,h(a, c′) ≤ h(a, b)+
h(b, c′). Hence,σ (A,C) = h(a, c) ≤ h(a, c′) ≤ h(a, b)+ h(b, c′) ≤ σ (A, B)+
σ (B,C).

Metric 2

Let us denote the mutually disjointed sets of mineral grains as follows: (A∩
C)\B = 1, (A∩ B)\C = 2, A∩ B ∩ C = 3, (B ∩ C)\A = 4, A\(B ∪ C) = 5,
B\(A∪ C) = 6,C\(A∪ B) = 7. Required isξ (A, B)+ ξ (B,C) ≥ ξ (A,C), i.e.,
µ(A∪ B)− µ(A∩ B)+ µ(B ∪ C)− µ(B ∩ C) ≥ µ(A∪ C)− µ(A∩C), i.e.,
µ1+ µ2+ µ3+ µ4+ µ5+ µ6− µ2− µ3+ µ1+ µ2+ µ3+ µ4+ µ6+ µ7
− µ3− µ4≥ µ1+ µ2+ µ3+ µ4+ µ5+ µ7− µ1− µ3, i.e., µ1+ µ6≥ 0.
The latter results from the nonnegativity ofµ1 andµ6.

Metric 3

Required isρ(A, B)+ ρ(B,C) ≥ ρ(A,C), i.e., 1-µ(A∩ B)/µ(A∪ B)+
1− µ(B ∩ C)/µ(B ∪ C) ≥ 1-µ(A∩ C)/µ(A∪ C), i.e.,

∑ = µ(A∩ B)/µ(A∪
B)+ µ(B ∩ C)/µ(B ∪ C)− µ(A∩ C)/µ(A∪ C) ≤ 1. In above notation,

∑
is

majorized by
∑∗ = (µ2+ µ3)/(µA+ µ4)+ (µ3+ µ4)/(µC + µ2)− µ3/(µA

+ µC − µ3). It may be shown that
∑∗ ≤ 1.

Consider the functionF(µ2)= (µ2+ µ3)/(µA+ µ4)+ (µ3+ µ4)/(µC +
µ2) on the segment [0, µA− µ3]. dF/dµ2= 1/(µA+ µ4)− (µ3+ µ4)/(µC +
µ2)2 = 0 if µ2∗ = [(µA+ µ4)(µ3+ µ4)]1/2− µC. In this pointd2F/d(µ2)2|µ2∗
= 2(µ3+ µ4)/(µC + µ2∗)3 = 2(µA+ µ4)−3/2(µ3+ µ4)−1/2 > 0. So, F(µ2)
has a maximum at one of the bounds.

In the same way,F(µ4)= (µ2+ µ3)/(µA+ µ4)+ (µ3+ µ4)/(µC + µ2)
has a maximum at one of the bounds of the segment [0, µC − µ3].

In three cases we immediately get the result
∑∗ ≤ F(0, µC − µ3)= F(µ

A− µ3, 0)= F(µA− µ3, µC − µ3)= 1. In the fourth case we have
∑∗ ≤

F(0, 0)= µ3/µA+ µ3/µC − µ3/(µA+ µC − µ3)= F(µ3). ConsiderF(µ3)
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on the segment [0,min(µA, µC)]. dF/dµ3= 1/µA+ 1/µC − (µA+ µC)/(µA
+ µC − µ3)2 = 0 if µ3∗ = µA+ µC − (µAµC)1/2. As min(µA, µC) ≤
(µAµC)1/2 ≤ max(µA, µC), the value ofµ3∗ ≥ min(µA, µC) is located, at least,
at the right bound of the segment. In this point,d2F/d(µ3)2|µ3∗ = −2(µA+
µC)/(µA+ µC − µ3∗)3 = −2(µA+ µC)/(µAµC)3/2 < 0, i.e., F(µ3) has a
maximum at the right bound. Without loss of generality, assume min (µA, µC) =
µA. Hence,

∑∗ ≤ F(µA) = 1.


