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A Linear Programming Approach to Determine
the Normative Composition of Sedimentary Rocks1

V. N. Podkovyrov,2 O. V. Graunov,2,3 and R. L.Cullers4

The analysis of modal and normative composition of sedimentary rocks is widely used for studying
their sources and tectonic settings. The normative calculation of the mineral composition of rocks
in this study is formulated as a linear programming problem and is solved by means of the simplex
method. This enables both simultaneous and successive subtraction of a set of basic minerals from a
rock sample represented by its chemical composition{SiO2. . .LOI}. Such an approach provides a more
exact calculation of the contribution of basic minerals in the rock. This mathematical approach is used
to study two representative sets of sandstones and fine-grained rocks from a Meso- to Neoproterozoic
marginal basin of southeastern Siberia (Uchur–Maya region, Yakutia) and a Pennsylvanian-Lower
Permian uplifted continental block in Colorado, USA. The calculated normative mineral compositions
of the Siberian sandstones are consistent with the observed modal compositions. These sandstones
vary from K- Feldspar rich arkoses at the base of the sequence (the Uchur Group, lower Riphean)
to quartz arenites or lithic sandstones and wacke in transgressive successions of the middle-upper
Riphean. Arkoses and quartz arenites are dominant in Meso- to Neoproterozoic Siberia. These samples
represent craton interior uplifted basement and quartzose, recycled orogen provenance of a stable
craton in Rodinia. There are higher but consistent discrepancies between the calculated and observed
compositions for the Pennsylvanian to Lower-Permian arkoses and quartz arenites (Sangre de Cristo,
Belden, and Maroon Formations). The differences between the predicted and observed mineralogy
may be due to uncertainties in the modes in the matrix and cement of the sandstones. This normative
program should supplement modal calculations and provide better genetic constructions, especially in
case of matrix-rich sandstones.
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INTRODUCTION

The study of the primary mineral composition of sedimentary rocks is important
to understand the evolution of sources and environments of coarse-grained clastic
sequences (Condie, 1993; Dickinson, 1985; Dickinson and Suczek, 1979; Ingersoll
and others, 1984). The mineralogy of shales and siltstones reflects weathering
conditions and diagenesis and does not necessarily represent that of the source
(Cox and others, 1995; Cox and Lowe, 1996; Cullers, 1995, 2000; Cullers and
Podkovyrov, 2000). The chemical composition of shales and siltstones may be
used for source reconstructions (Nesbitt and others, 1996), but it requires evidence
from independent quantitative models including normative mineral composition
calculations especially in the case of more altered sediments.

The quantitative reconstruction of the primary minerals of sediments in sed-
imentary rocks may be estimated by the classic modes of thin sections or by joint
X-ray studies and microprobe analysis of the minerals. The normative mineral
decomposition of sedimentary rocks is based on chemical analyses of rocks, and
the normative calculations require more or less reliable assumption about (1) the
constituent minerals especially in the case of matrix- or clay-rich samples with
advanced diagenetic transformations and (2) a predetermined order of their sub-
traction, i.e. about degree of importance of those minerals for a given rock type
(Cohen and Ward, 1991; Cox and Lowe, 1996).

The purpose of this study is to develop the algorithm for the normative de-
composition proceeding from the most general approach to this problem as a
petrological mixing one. There are some studies devoted to special cases of the
same problem (see, e.g., Cox and Lowe, 1996, (p.558, Appendix); Rosen, Ab-
bysov, Migdisov, and Yaroshevsky, 2000; Rosen and Nistratov, 1984). In works
of such kind a calculation scheme of the normative analysis is suggested for some
particular cases (for instance a special type of rock). And according to this scheme
the supposed constituent minerals are subtracted each in turn from a rock sample.
Intended for a concrete case this scheme gives a good agreement of normative and
observed modal compositions. But when the order of mineral subtractions is not
obvious this approach does not allow to estimate the simultaneous contribution of
“competing” mineral phases (the phases including identical components such as
K2O in potassic feldspar and hydromica (illite)). The proposed approach to the
decomposition do not suffer from this disadvantage.

METHOD

The mixing problem can be considered as a topic of linear programming.
For formulation of the mathematical model of the problem, let us suppose that a
sample of a rock is represented by a sequence of the mass contents ofr oxides:
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(m1, m2, . . . ,mr ). Also, each mineral from a fixed set (basis) ofs minerals, which
are assumed to enter into the rock, is represented by the same rock-forming oxides.
We shall characterizej th mineral (j = 1, 2, . . . s) by a sequence of numbers (t1 j ,
t2 j , . . . , tr j ) whereti j is the molecular weight of thei th oxide in that mineral. If
xj is the number of moles of the j th mineral included in a sample then obviously
the following system of inequalities take place:

ti 1x1+ ti 2x2+ · · · + tisxs ≤ mi , i = 1, 2, . . . , r (1)

A solution of this system (x1, x2, . . . , xs) should naturally satisfy the condition
of nonnegativityxj ≤ 0 for j = 1, 2, . . . , s. The system of inequalities (1) has an
infinite number of solutions and it is necessary to enter some criterion of optimality
for choice among these solutions. Let us enter additional variablesy1, y2, . . . , yr

such that the inequalities (1) will be transformed to system of the following linear
equations:

ti 1x1+ ti 2x2+ · · · + tisxs + yi = mi, i = 1, 2, . . . , r (2)

Thus allyi ≥ 0 and in our caseyi means the residual of thei th oxide after sub-
tracting the basic minerals in quantityx1, x2, . . . , xs moles from the rock. Now
the task can be formulated to find such solution (x1, x2, . . . , xs, y1, . . . , yr ) of the
system (2) which is subject to the constraintsxj ≥ 0, yi ≥ 0 ( j = 1, 2, . . . , s; i =
1, 2, . . . , r ) and minimizes the sum

∑r
i=1 yi . And it is a problem of linear program-

ming. Such a problem has been investigated thoroughly and there are algorithms
for its solution (for example, see Josephson, 1964).

The system (2) can be transformed to a dimensionless form. For this purpose
the coefficients atxj in each equation of the systems (2) are divided by the sum
f j = t1 j + t2 j + · · · + tr j + l j and so on for all j (j = 1, 2, . . . , s) where the quan-
tity l j is a total molecular weight of H2O and other volatile components included
in the formula of thej th mineral. Thus the quantityf j represents a molecular (for-
mula) weight of thej th mineral. Now the unknown variables should be considered
as taking new form namelyx′j = f j x j ( j = 1, 2, . . . , s). These variables represent
mass contents of the appropriate minerals in a sample. Dividing both sides of
Eq. (2) by the sum of allmi transforms the right side of the system (2) to rel-
ative weight valuesbi = mi /6mj . Evidently the collection of quantitiesbi (i =
1, 2, . . . , r ) is a customary bulk chemical analysis. Let the new coefficients of the
system beai j = ti j / f j and the unknownsxi , yi signify the quantitiesx′i /6mj and
yi /6mj . Then finally the problem is formulated to find the solution of the system
of the equations

ai 1x1+ ai 2x2+ · · · + aisxs + yi = bi , i = 1, 2, . . . , r (3)
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such that allxi and yi are nonnegative and the value
∑r

i=1 yi is minimized. Of
course this choice of an object function is arbitrary to some extent but it seems to
be most natural. Other object functions are mentioned below.

Such a formulation of the problem provides both a successive (as in Rosen
and others, 1984, 2000) and parallel (simultaneous) process of subtraction of the
normative minerals from the chemical analysis of rock. In the first case some
priority among minerals of the basis should be established depending for exam-
ple on the type of rock. The minerals having a higher priority are subtracted
first. For subtracting the next minerals the same problem is solved with a new
set of coefficientsai j calculated for these minerals and new right-hand side of
system (3). The remains of sample oxides after the previous stage (i.e., part
(y1, . . . , yr ) of the previous solution) are the right-hand side of the new sys-
tem. The parallel process means simultaneous subtraction of several minerals
of equal priority. In this case if some minerals have in their formula identical
oxides, the algorithm of the solution provides an optimum distribution of these
oxides between “competing” minerals in the sense of a minimum of the sum of
the residuals of oxides. Certainly it is possible to combine these both processes,
in other words at some stages of a successive process to subtract several minerals
simultaneously.

It is necessary to remark that the volatile components (H2O, CO2, etc.) in-
cluded in chemical formulas of some minerals of the basis may produce some
inaccuracy in the final result. They may insert some inaccuracy in the end result.
For correct consideration of the problem it would be necessary to add to the system
of inequalities (1) similar inequalities for volatiles and to solve the problem taking
into consideration the extended system. But it is not possible because in the usual
chemical analyses the volatile components enter as a total value of LOI. Therefore
there is nothing but to assume that for any solution of the problem (2) these “not
added” inequalities would be satisfied, or in other words that volatile components
in a rock sample are in abundance.

This remark seems to be important because consideration of these oxides in
the formulas of minerals (valuel j in the formula forf j ) and actually ignoring them
in the analysis can result in a breach of normalization of the solution, i.e. the sum
of components of the solution will differ from a unit. It is easy to show that this
will not happen if just the “solid” part of the mineral formula is considered (forf j

proposedl j =0) and a chemical analysisis renormalized to a unit. Or else, because
only relative values of the contents of basic minerals in rock are of interest, the
final solution must be normalized.

Attempts to consider the problem of decomposition over mineral basis as an
optimization problem within the scheme of the linear model (a vector sample is
represented as a linear combination of vectors describing minerals from a basis) had
been undertaken before (Leontyev and Karpov, 1975; Predovsky and Martynov,
1980; Wright and Doherty, 1970). Some measure of approximation of a vector
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(the chemical analysis of rock) by a linear combination of predefined vectors
(a mixture of the basic minerals) is characteristic for this class of problems and its
value depends on the difference between these vectors.

As such measure Leontyev and Karpov (1975) used the maximal value of
component misfit of the above vectors. Minimization of the sum of squares of all
component misfits (the least squares method) is used in Predovsky and Martynov
(1980). Besides the computational difficulties which happen with these both ap-
proaches to the problem another shortcoming can be pointed out—these models
permit negative solutions. In the context of the problem the negative proportions
of mineral phases have no reality.

The models considered by Wright and Doherty (1970) and Banks (1979) do
not possess this disadvantage. In both works, the authors impose a constraint of
nonnegativity upon that part of possible solution which relates to mineral content,
i.e. (x1, . . . , xs), but the residuals (y1, . . . , yr ) are allowed to be of either sign.
And the latter is the most important distinction between the present approach and
theirs5.

If it could be assumed that a considered rock in itself is a mixture of a definite
set of minerals and only computational errors lead to discrepancy between the
rock and some linear combination of these minerals then the both models can be
employed (the fitting problem). Moreover it is not very important which object
function is used namelyL2—the sum of the squares of the residuals (Wright and
Doherty, 1970) orL1—the sum of the absolute values of the same residuals (Banks,
1979). Really these functions are tightly connected with each other by the relations
(1/
√

r )L1≤ √L2≤ L1) and it can be seen that minimization one of them results
in minimization another. In practice the upper assumption is rather uncertain. In
the case of a real rock it seems more realistic to get a notion about the principal
minerals forming this rock type than about the whole mineral composition. In
our approach, if after subtraction of a mixture of these principal minerals by any
optimal method there remain some components (oxides) of the chemical analysis
then we can try to construct another mixture of some minor minerals. It seems
that the question about a “hierarchy” of minerals in some set cannot be passed
over by examining a sufficiently numerous basic minerals and assembling them
for some rock type. A priori equivalence attributed to basic minerals may result in
distortions of the true geological situation.

Thus, the first and essential stage in the problem of decomposition of the
chemical analysis of a rock sample over a normative basis should be to establish
a priority order in the set of normative minerals. In other words it is necessary
to point out the greater or lesser importance of a normative mineral for some

5The statistical speculations by Banks (1979) are of no account because the origins of them are not
proved for the subject of research. For instance the normal distribution that is a basis of his statistical
estimations takes place when components of a rock sample are independent. But it is doubtful to be
assumed for a real sample.



P1: GDX

Mathematical Geology [mg] pp867-matg-466179 July 15, 2003 10:47 Style file version June 25th, 2002

464 Podkovyrov, Graunov, and Cullers

type of rock. An example of such ordering for sedimentary rocks is given in
Rosen and Nistratov (1984). We use just this ordering in the further normative
calculations.

THE DATA AND GEOLOGICAL BACKGROUND

For the analysis of the method, two sets of sedimentary rocks have been ana-
lyzed for modal minerals in thin sections and for major element oxides. The major
elements were analyzed by atomic absorption (Shapiro and others, 1978) and X-ray
fluorescence with precision of most oxides better than±5–8%. The mineralogy
of the silt and sand fractions were determined by counting about 500 points in
immersion oils, partly stained for potassium feldspar (Cullers, Colorado samples)
or by counting in thin sections on the Andin integrated table (transect of 500–
600 grains, Podkovyrov, Uchur–Maya samples). For comparison, some samples
of sandstones and shales have been analyzed for mineral compositions by X-ray
and microprobe methods. The first example are of the Riphean–Vendian (Meso
and Neoproterozoic) sandstones from the southeastern Siberian craton sequences
in Russia. This Late Proterozoic cover sequence (3.5 to 15 km thick) from the
Uchur–Maya region of the southeastern Siberian platform spans a time interval of
about 1000 Ma (<1600 to 542 Ma). This sequence contains mostly shallow to open
shelf, epicratonic terrigenous and carbonate deposits with various compositions of
sandstones and shales (Cullers and Podkovyrov, 2000; Kotova and Podkovyrov,
2001; Semikhatov and Serebrykov, 1983). Arkoses and quartz arenites dominate
in these successions as a part of the Rodinia landmass. They represent interior,
uplifted basement and quartzose, recycled orogen provenance of a stable craton.

The degree of secondary transformations of the Uchur–Maya deposits varies
from moderate diagenetic alterations of Maya River rocks in the western portion
(2M1 and 1Md illite, chlorite with mixed layer illite-smectite, kaolinite, pyrophyl-
lite, calcite, and hematite association in shales) to a deeper burial in the Yudoma–
Maya depression shales to the east. The eastern deposits contain muscovite-
type mica, with minor chlorite, quartz, pyrophyllite, and hematite (Cullers and
Podkovyrov, 2000).

The Uchur–Maya samples represent predominate types of sandstones in the
sequence. The sandstones consist mostly of monocrystalline quartz and feldspar
with minor rock fragments (including polycrystalline and slaty quartz aggregates),
muscovite (or illite to muscovite phases), opaque minerals and 15–55% of matrix,
and cement composed mainly of illite, chlorite quartz, and carbonate (Tables 1, 2).
The modes in standard QFL diagrams (Dickinson and Suczeck, 1979) plot in the
transitional to interior craton region.The sandstones range from K-feldspar rich
in Lower Riphean successions (samples 54-32 to 59-17) to more plagioclase rich
in the less mature lithic arenites of the Middle Riphean Totta Formation (samples
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55-73 to 56-13). Sample 74-9 is from the weathering crust of the uppermost Totta
sequence, and it is a diagenetically altered, carbonaceous quartz arenite. The Upper
Riphean Ui Group samples are matrix rich, mostly plagioclase wackes (samples
85-3, 85-20) with abundant chlorite in the matrix. These samples are arkosic (10–
16% Or, 17–22% Pl, samples 86-5, 86-9, 104-43) and subarkosic to quartz, partly
carbonaceous arenites (samples 71-1, 71-12, 104-40, 104-47, Table 2).

The samples with the highest clastic potassic feldspar and lowest plagioclase
in the Lower Riphean sandstones have X-ray data for samples 54-32 (40–45%
Or,<5% Pl) and 57-13 (30–40% Or, traces of Pl) that is in good agreement with
the norm calculations (Table 3). Moderate, but systematic discrepancies between
petrographically observed (Table 2) and calculated (Table 3) amount of K-mica
(illite) usually reflect higher K2O content in the 2M1 illite- to muscovite micas
(8.5–11.2% accordingly to microprobe data, samples 54-32, 59-17, 85-20) than the
6.6–7% in the accepted illite formula. The appearance of serpentine in calculated
compositions (Table 3, 0–9.52%) correlates to detected amounts using X-ray data
only for samples 57-13, 57-57, and 59-17. Samples with a high amount of observed
chlorite in the matrix (30% in 85-3 and 33% in 85-20, Table 2) have normative
amounts of chlorite that are close to the observed amount of chlorite (28% and
38.5%, Table 3). This suggests that these are good norm values for chlorite-rich
samples despite presence of some normative quantities of serpentine that is an
agreement with microprobe data (more high-Mg chlorite in samples compare with
chlorite composition in the base).

Concentrations of opaque minerals observed in the samples (Table 2) are
in good agreement with calculated goethite norms (Table 3). Several samples
analyzed by X-ray data have good agreement between norms and modes (e.g.,
5–7% magnetite and hematite in sample 74-29 comparably with 7% modal ore
minerals). Discrepancies may be observed between calculated norm and modal
amounts of glauconite because of lack of glauconite composition in the basis
(X-ray data of samples 56-13 and 104-43 suggest that they may contain<5%
glauconite each).

The second example includes sandstones of Pennsylvanian-Permian age,
Colorado, USA. A series of shales and sandstones found near the source from
the central Colorado (the Belden, Sangre de Cristo, and Maroon Formations)
were examined petrographically and were analyzed for major and selected trace
elements (Cullers, 2000) (Table 4, 5). Sediments of these formations were de-
rived from adjacent uplifts of mostly granitoid basement, and were deposited in
the north-south trending Colorado trough (De Voto, 1980; Lindsey, Clark, and
Soulliere, 1987). The Belden Formation consists mostly of dark shale was de-
posited in shallow marine or deltaic environment and also contains minor felds-
pathic sandstones and limestones (De Voto, 1980; Johnson, 1987). The Maroon
and Sangre de Cristo sequences up to 2000–4600 m in thickness consist of arkosic
sandstones, conglomerates, siltstones, and shales, deposited in arid conditions in
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Table 2. Modal Composition of the Riphean–Vendian Sandstones, Uchur–Maya Region, Southeast
Siberia

F Matrix and cement composition
Sample Total QFL Total matrix
number Q 0r Pl Lt grains (%) and cement Ill Chl Carb Opaq. Qu

54-32 44 31 6 4 85 15 3 0 0 2 10
54-45 31 15 6 4 56 44 0 0 30 1 14
57-13 27 38 4 3 72 28 14 1 0 5 8
57-15 25 32 2 5 64 36 24 3 0 2 7
58-11 40 24 8 5 77 23 10 0 0 2 11
58-15 46 10 9 3 68 32 9 4 10 3 6
58-16 25 15 15 5 60 40 9 0 5 4 22
59-17 8 20 15 2 45 55 18 3 18 4 11
55-73 50 2 15 6 73 27 12 0 0 5 10
74-29 30 0 17 5 52 48 18 2 0 7 11
56-13 42 0 16 7 65 35 14 0 3 3 15
74-9 62 0 0 6 68 34 0 0 26 0 8
71-12 32 8 10 5 55 45 4 0 35 1 5
71-1 43 5 11 6 65 35 11 1 15 2 6
85-3 29 4 15 9 57 43 2 30 2 1 8
85-25 17 3 20 10 50 50 11 33 1 0 5
86-5 48 10 17 5 80 20 6 3 0 3 8
86-9 33 16 20 6 75 25 9 0 9 2 5
104-40 72 0 1 8 81 19 15 1 0 1 4
104-43 23 10 22 8 63 37 20 2 0 4 11
104-47 45 1 15 4 65 35 25 0 0 4 6

Note.Q – total quartz, including polycrystalline; F – total feldspars; Lt – total lithic fragments, excluding
polycrystalline quartz; Or – orthoclase, Pl – plagioclase; Ill – total white mica as Illite; Chl – chlorite;
Carb – carbonate; Opaq – opaque minerals; Qu – quartz.

alluvial to near-shore environments (De Voto, 1980; Johnson, 1987; Lindsey, Clark,
and Soulliere, 1987).

Mineralogy has been determined on representative fine to coarse sandstones.
The modes in QFL diagrams (Dickinson and Suczeck, 1979) plot in the transitional
to interior craton region (Cullers, 2000). The sandstones of the Belden Formation
have a higher quartz content and quartz/total feldspar ration than do those of the
Sangre de Cristo and Maroon formations (Table 5). This suggests that detritus in
the Belden, including minor clastic micas and chlorite, was weathered enough to
have removed more of the feldspar from the original granitoid source than the
other two formations or was derived from recycled source. The Sangre de Cristo
and Maroon formations contain mostly arkosic sandstones with hematitic clay and
clay matrix and occasionally carbonate cement with little or no lithic fragments
(Table 5). Its quartz to total feldspar ratio are similar to those of granitoids or
granite gneisses, suggesting minimal weathering of these units (Cullers, 2000).
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Table 4. Chemical Composition of the Pennsylvanian Sandstones (Cullers, 2000)

Sample
number SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI

SDC-1 45.4 0.77 13.1 5.64 0.15 5.53 11.45 1.06 3.47 0 13.76
SDC-2 50.6 0.72 14.6 5.61 0.12 4.92 6.72 1.16 4.90 0 10.52
SDC-3 36.0 0.51 8.72 5.29 0.35 5.31 20.62 0.89 2.37 0 19.73
SDC-4 60.7 0.60 13.5 2.66 0.17 2.40 6.49 2.87 4.44 0 6.69
SDC-5 67.0 0.41 13.5 3.74 0.047 2.24 2.14 3.13 4.69 0 3.06
SDC-6 65.2 0.71 14.8 5.34 0.027 3.03 0.87 3.22 4.95 0 2.50
SDC-7 59.5 0.95 16.6 6.57 0.036 4.14 0.80 2.79 5.65 0 3.13
SDC-8 60.3 0.92 17.3 6.03 0.030 3.96 0.73 2.39 5.65 0 3.37
SDC-9 55.1 0.90 14.4 5.59 0.10 3.77 5.96 2.37 4.79 0 7.45
SDC-10 49.1 0.70 12.4 6.59 0.19 3.44 10.36 2.28 3.87 0 10.71
SDC-11 55.4 0.77 13.0 5.42 0.11 3.69 7.20 2.43 4.08 0 8.38
SDC-12 53.7 0.81 13.1 5.31 0.15 2.41 8.69 2.99 4.19 0 8.25
SDC-13 51.6 0.55 10.8 3.12 0.24 1.76 13.22 2.65 3.62 0 12.27
SDC-18 53.7 0.59 6.4 2.01 0.32 2.14 15.94 0.10 2.43 0 5.54
SDC-19 62.4 0.64 12.9 2.83 0.094 2.55 5.39 3.23 3.12 0 5.97
SDC-20 50.1 0.78 12.1 4.56 0.096 5.05 9.16 1.06 3.96 0 12.46
SDC-21 63.1 0.45 13.5 3.17 0.076 1.58 4.56 3.69 4.09 0 4.90
SDC-22 57.8 0.83 12.3 4.28 0.33 2.44 7.31 3.24 2.78 0 8.08
SDC-23 55.5 0.65 10.3 5.09 0.17 2.40 10.32 0.93 2.81 0 11.14
SDC-24 62.0 0.89 14.0 5.32 0.12 3.28 3.44 2.18 3.65 0 5.46
SDC-25 72.9 0.65 12.0 4.77 0.061 0.94 0.38 3.49 3.67 0 1.04
SDC-26 60.6 0.76 11.7 4.86 0.084 4.59 3.69 1.97 4.09 0 7.19
SDC-27 53.0 0.82 15.7 7.32 0.12 4.53 3.16 1.54 6.43 0 7.51
SDC-28 57.6 0.81 13.2 5.37 0.19 3.85 4.19 2.62 4.75 0 7.28
BS-2B 48.8 1.00 19.5 10.32 0.02 6.05 1.00 0.47 3.04 0 9.83
BS-2A 55.2 0.86 19.3 6.73 0.032 4.12 1.92 0.51 4.28 0 6.95
BS-1B 68.5 0.43 7.9 4.01 0.040 2.33 7.10 2.32 0.17 0 7.59
BS-1A 58.6 1.07 17.6 4.53 0.013 2.61 2.07 0.52 2.56 0 10.61
BS-3B 65.6 0.75 14.7 8.52 0.017 2.84 0.52 3.22 0.38 0 3.41
BS-3A 46.9 1.13 21.7 5.72 0.029 3.62 5.02 0.81 3.93 0 11.47
BS-10A 65.1 0.49 10.3 2.78 0.024 5.28 4.00 0.74 3.62 0 7.97
BS-10B 51.7 0.27 5.9 1.49 0.060 5.94 13.82 0.97 3.16 0 16.81
BS-15 24.9 0.41 9.5 2.80 0.063 12.67 19.22 0.27 0.74 0 29.51
BS-16A 91.0 0.17 3.8 2.63 0.067 0.15 0.10 0.03 0.87 0 1.50
BS-16B 31.6 0.59 13.1 4.69 0.086 9.08 13.90 0.12 3.63 0 22.49
M1A 61.1 0.63 12.5 3.14 0.10 0.77 8.34 4.37 2.00 0 6.96
M1B 60.4 0.62 12.7 4.21 0.12 1.36 7.02 3.87 2.49 0 6.84
M2A 65.8 0.63 10.2 3.71 0.052 1.87 6.94 1.64 1.95 0 7.68
M2B 69.5 0.69 10.2 3.37 0.068 1.37 5.24 1.83 2.03 0 6.15
M2D 60.8 0.36 13.8 2.72 0.11 1.20 5.55 2.32 4.03 0 8.25
M3 69.1 0.68 10.8 2.99 0.098 1.34 4.82 2.68 2.93 0 5.15

Note.0 – not analyzed.
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The comparison between observed (Table 5) and calculated (Table 6) com-
positions for arkoses and quartz arenites (Sangre de Cristo, Belden, and Maroon
Formations) display higher but consistent discrepancies than those for the Uchur–
Maya sandstones. Concentrations of quartz and plagioclase observed in the samples
(Table 5) are in good agreement with the calculated norms. The observed potas-
sic feldspar content are higher likely due to uncertainties in total matrix, cement
and hematitic clay determination in thin sections as well as secondary sericite oc-
currence in potassic feldspar grains. Broad variations in calculated and observed
carbonate (Tables 5 and 6) concentrations are in concordance and calculated norms
seems to be more realistic, although it demands independent checking. These dis-
crepancies are attributed mostly to uncertainties in opaques minerals determination
in thin section.

Thus, calculated compositions for the Pennsylvanian to Lower-Permian
arkoses and quartz arenites (Sandre de Cristo, Belden, and Maroon Formations)
are about the same as observed in thin sections. These normative compositions
suggest a more plagioclase-rich granitoid source and more intense weathering for
the sandstones in the Belden Formation than in the Maroon and Sangre de Cristo
formation that is in good agreement with geochemical data (Cullers, 2000).

CONCLUSION

The quantitative reconstruction (norm calculation) of the primary mineral
composition of sedimentary and metasedimentary rocks should agree with the
results of actual mineral compositions of the investigated rocks (using modal,
X-ray or statistically representative microprobe analyses). Disagreement between
the norms and modes may arise with an increase in the amount of unknown minerals
in the matrix and cement of the rocks or because of the lack of minerals in the
normative calculation. The latter is due to the norms in sedimentary rocks being
calculated from an ordered mixture of primary and secondary minerals from the
accepted basis. The authors express his gratitude to Dr S. Henley for valuable
remarks and proof reading of the paper. RLC thanks the crew of the nuclear
reactor of Kansas State University for irradiating the samples and for use of their
equipment.
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APPENDIX: SEQUENCE OF NORM CALCULATION

The set of basic minerals is represented in this table as molecular proportions
of oxides in each mineral

SiO2 TiO2 Al2O3 FeOa MnO MgO CaO Na2O K2O P2O5

Qu 1 0 0 0 0 0 0 0 0 0
Ab 6 0 1 0 0 0 0 1 0 0
An 2 0 1 0 0 0 1 0 0 0
Or 6 0 1 0 0 0 0 0 1 0
Ill 16 0 6.5 1 0 1 0 0 2 0
Kln 2 0 1 0 0 0 0 0 0 0
Mnt 24 0 5 0 0 2 0 1 0 0
Chl 1 0 1 1 0 1 0 0 0 0
Rt 0 1 0 0 0 0 0 0 0 0
Ilm 0 1 0 1 0 0 0 0 0 0
Gt 0 0 0 1.1 0 0 0 0 0 0
Cal 0 0 0 0 0 0 1 0 0 0
Dol 0 0 0 0 0 1 1 0 0 0
Sd 0 0 0 1 0 0 0 0 0 0
Ank 0 0 0 1 0 0 1 0 0 0
Mgs 0 0 0 0 0 1 0 0 0 0
Srp 2 0 0 0 0 3 0 0 0 0
Ap 0 0 0 0 0 0 3 0 0 1

aTotal Fe as FeO.

where Qu – quartz (SiO2); Ab – albite (Na2O, Al2O3, 6SiO2); An – anortite
(CaO, Al2O3, 2SiO2); Or – orthoclase (K2O, Al2O3, 6SiO2); Ill – illite (2K 2O, FeO,
MgO, 6,5Al2O3, 16SiO2); Kln – kaolinite (Al2O3, 2SiO2); Mnt – montmorillonite
(Na2O, 2MgO, 5Al2O3, 24SiO2); Chl – chlorite (FeO, MgO, Al2O3, SiO2); Rt –
rutile (TiO2); Ilm – ilmenite (FeO, TiO2); Gt – goethite (1.1FeO); Cal – cal-
cite (CaO); Dol – dolomite (CaO, MgO); Sd – siderite (FeO); Ank – ankerite
(FeO,CaO); Mgs – magnesite (MgO); Srp – serpentine (3MgO, 2SiO2); Ap –
apatite (3CaO, P2O5).
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The consequent stages of mineral subtraction (after Rosen and Nistratov,
1984)

I. Determination of rock type using Al/other elements ratios according to
the first column in Table 1 (Rosen and Nistratov, 1984).

II. Subtraction of Rt and Ap from a sample, exploring TiO2 and P2O5

content.
III. Subtraction of minerals according to the type of rock:

1). Type 1 : Ab+ An; Or;
2). Type 2 : Ab+ An; Or+ Ill;
3). Type 3 : Ab+ An; Or+ Ill + Chl;

In cases 2) and 3) if CaO> 0.2 Na2O (in molar quantities, as accepted for
plagioclase formula), for subtraction is used CaO molar content equal 0.2 Na2O.

4). Type 4 : Ill; Ab+ An + Mnt + Chl
5). Type 5 : Ill+ Mnt + Chl; Kln

IV. The remnants of oxides are distributed among other minerals from the
set accordingly to the scheme in Table 2 in Rosen and Nistratov (1984).
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