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Abstract

In this study, sensitivities of 10 land-surface schemes (LSS) to five prescribed model parameters (i.e. the maximum soil

moisture content (MSMC), effective available water content (EAWC), Clapp-Hornberger B parameter, leaf area index (LAI),

and minimum stomatal resistance) are investigated based on the fractional factorial analysis method. The sensitivities of four

model responses (i.e. evapotranspiration, total runoff, sensible heat flux, and soil moisture in the total zone) are evaluated as

functions of these five parameters considering both individual and parameter interaction effects. To facilitate these sensitivity

analyses, which are conducted for three hydroclimatic scenarios, two indices are introduced along with a criterion for measuring

relative parameter effects. The two new indices are single response effect index and multiple response effect index. Results

show that for the majority of LSS, the four model responses are generally most sensitive to the MSMC parameter, followed by

the Clapp-Hornberger B parameter under the three different hydroclimatic scenarios. The effects of MSMC, the Clapp-

Hornberger B parameter, and EAWC on the model responses are generally much larger than those of LAI and minimum

stomatal resistance among most of the 10 schemes. This implies that the variations associated with the soil properties possibly

due to the measurement uncertainties and/or spatial heterogeneity may play a more significant role in partitioning water and

energy budgets than those associated with vegetation properties in the current generation of land-surface model

parameterizations. Results also show that large sensitivities of model responses exist in relation to the choice of LSS when

using the same parameter values, and in relation to the hydroclimatic scenario when using the same parameter and LSS. The

differences can be sometimes quite large. In addition, the effects of parameter interactions are generally weaker than those of

single parameters. The preliminary conclusions obtained from this study offer some insight on why large response differences

between schemes occurred every time in the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS)

phases 1, 2(a), 2(b), and 2(c) intercomparison studies, and perhaps on why each scheme performs better at its own testing site(s)

than at the PILPS sites.
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1. Introduction

A series of experiments have been conducted under

the framework of the Project for Intercomparison of
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Land-surface Parameterization Schemes (PILPS) in

the past. Our current study is an extension of the

PILPS Phase (2c) Red-Arkansas River Basin exper-

iment (Liang et al., 1998; Lohmann et al., 1998; Wood

et al., 1998). In this paper, 10 land-surface schemes

(LSS) are intercompared through sensitivity analyses

under three different hydroclimate conditions in the

Red-Arkansas River Basin.

The goal of PILPS, as embodied in the different

phases of PILPS intercomparison studies, is to under-

stand and improve the parameterizations of the current

generation of land-surface schemes used for climate

and numerical weather prediction studies. The philos-

ophy of PILPS was addressed by Henderson-Sellers

et al. (1993, 1995). In the intercomparison studies, the

participating land-surface schemes were provided

with identical forcings and values of common model

parameters. Their outputs were then intercompared

among themselves and/or with available observations.

The PILPS studies conducted in the past have shown

that there are a variety of discrepancies among the

existing land-surface schemes, and that no scheme has

always performed significantly better than others in all

of the aspects examined (e.g. Shao et al., 1996; Chen

et al., 1997; Liang et al., 1998; Lohmann et al., 1998;

Wood et al., 1998; Pitman et al., 1999). Attempts to

trace back to the responsible mechanisms that caused

those discrepancies proved to be very difficult if not

entirely impossible. Also, we argue that it may not be

appropriate to conduct the cause–effect analyses

between model parameters and individual pieces of

model parameterizations without taking into account

of the entire model structures as a whole. The main

reasons are that land-surface schemes are highly non-

linear systems, and that they differ from each other in

model structures. For example, the same individual

parameterizations (e.g. using Penman – Monteith

approach for evapotranspiration could result in quite

different evaporation patterns and parameter sensi-

tivities if the soil moisture is parameterized differ-

ently) may perform quite differently when connected

with different parameterizations/structures. Therefore,

we argue that it would be more meaningful to relate the

sensitivities of model responses on parameters to

individual models than to individual parameteriza-

tions. In this paper, we attempt to conduct a series of

systematic investigations and intercomparisons of

model sensitivities on selected model parameters to

understand possible sources that caused the disagree-

ments among the PILPS participating schemes. The

sensitivity analyses reported here are based on the

PILPS-2C Red-Arkansas River Basin experiment

from 10 participating schemes. In the past, few

sensitivity intercomparison analyses have been con-

ducted among a relatively large number of models.

The technique of sensitivity analysis has been

widely used by modelers as an effective approach in

individual model studies for potential improvements.

Through sensitivity analysis, responses of a model to

changes of different parameters can be investigated

(e.g. Jacobs and DeBruin, 1992; Sun and Bosilovich,

1996; Bastidas et al., 1999) and relative importance of

each parameter can be identified. Large differences in

energy and water fluxes among models in the PILPS

intercomparisons may be, in part, due to the different

degrees of sensitivities of different models to the

uncertainties associated with the model parameters.

The traditional sensitivity analysis method of

varying one-factor-at-a-time is a powerful approach

and has been widely used for sensitivity studies of

individual models with great success (e.g. Wilson

et al., 1987a,b; Liang, 1994; Pitman, 1994; Gao et al.,

1996, Sun and Bosilovich, 1996). One of the

important advantages of this approach (i.e. varying

one-factor-at-a-time) is its availability to investigate

incremental sensitivity of each parameter on a studied

quantity over its parameter range where the non-

linearity effect of each single parameter on the studied

quantity can be examined. Sun and Bosilovich (1996)

showed a valuable study on the incremental sensi-

tivity effects of each studied parameter on the

planetary boundary layer and surface layer by

applying this method. The disadvantage of this

approach is that it is difficult to carry out efficient

comparisons among a large number of schemes. In

addition, this approach (i.e. varying one-factor-at-a-

time) is not quite efficient in identifying effects of

potential parameter interactions. Other methods used

for the sensitivity analysis of LSS, where parameter

interactions are not efficiently considered as briefly

reviewed by Bastidas et al. (1999), include the Fourier

amplitude sensitivity test (Collins and Avissar, 1994),

and the regionalized sensitivity analysis method

(Fransk et al., 1997).

Bastidas et al. (1999) presented a valuable new

approach (called Bastidas et al. approach hereafter) to
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study model parameter sensitivities on latent and

sensible heat fluxes, soil moisture, and ground

temperature for BATS (Biosohere – Atmosphere

Transfer Scheme) with data from the ARM-CART

grassland site (5 months of data) and a semiarid site

(1 year of data) in the Sonoran Desert, Arizona,

respectively. Their new approach partitions the

feasible parameter space (consisting of specified

reasonable ranges of each studied model parameter)

into behavioral and non-behavioral sets based on

Pareto ranking, and performs Kolmogorov–Smirnov

test to study the integrated effects of each parameter to

multiple model responses (e.g. latent flux, sensible

flux, soil moisture, and ground temperature). The

main advantage of this approach is its ability to

consider parameter interactions and the sensitivities of

multiple model responses to parameters. The main

disadvantage of this approach is its complexity in

implementation, and thus may not be a good candidate

for conducting sensitivity analyses among a large

number of schemes.

Fractional factorial analysis is a method that can

deal with partially the effects of parameter inter-

actions. This method is much simpler to implement by

different LSSs than the Bastidas et al. approach, and

thus is a good candidate for conducting sensitivity

intercomparison studies among a large number of

schemes. As demonstrated by Henderson-Sellers

(1993) for BATS and Liang (1994) for VIC, the

fractional factorial analysis method (Box et al., 1978)

may reveal not only potential interactions among

parameters, but also the effects of different parameters

on the energy and water budgets of the models.

Similar to Henderson-Sellers (1993) and Liang

(1994), Arendt et al. (1996) applied the factorial

analysis framework to study the interactions of energy

and moisture transfer processes of two relatively

simple land-surface models used in general circula-

tion models. The two land-surface models are simple

non-vegetated models with a configuration of single-

layer (Bucket type) and a configuration of double-

layer, respectively. Hu and Islam (1996) also applied

the fractional factorial experiment framework to study

the importance and sensitivity of interactions between

land-surface and atmosphere through uncoupled and

coupled modes. Comparing with the approach by

Bastidas et al. (1999), the main advantage of the

fractional factorial analysis method is its simplicity.

The effectiveness of the fractional factorial method in

dealing with parameter interactions is between the

approach of varying one-factor-at-a-time and the

approach by Bastidas et al. (1999). The main

disadvantage of the fractional factorial analysis

method is that it cannot deal sufficiently with the

non-linearity of a parameter or parameter combi-

nations on model simulated quantities. Also, similar

to the approach by Bastidas et al. (1999), the

fractional factorial method has a drawback of

obtaining sensitivities that may be contributed by

unwanted combinations of parameter values within

the parameter feasible space. In the Bastidas et al.

approach, for example, the sensitivity result may be

due to a combination of porosity at value of 0.33 (sand

type) and the Clapp-Hornberger B parameter at 10.8

(clay type), since both 0.33 for porosity and 10.8 for

Clapp-Hornberger B parameter are within the speci-

fied feasible parameter space used in the study

(Bastidas et al., 1999). In the fractional factorial

method, similar unwanted combinations could also be

present. However, this drawback may not be as

serious as it sounds when a model is applied to large

spatial scales. This is because at large scales, each

computational unit may include multiple soil classes,

and also large intraclass variability may be expected.

Consequently, the cross-class soil parameter combi-

nation described above may actually occur in real

applications at large scales. It is worth mentioning that

the disadvantage of the fractional factorial analysis

method in dealing with the sensitivities of multiple

model responses to parameters (compared to the

approach by Bastidas et al. (1999)) is partially

overcome by using multiple response effect index

(MREI) that is introduced in this study.

In a brief summary, each of the three methods (i.e.

varying one-factor-at-a-time method, Bastidas et al.

approach, and the fractional factorial analysis

method) has its own strengths and weaknesses.

Despite its limitations, overall, the fractional factorial

analysis method seems to be a good feasible candidate

for conducting the sensitivity comparison studies with

10 different LSSs due to its simplicity and other

comparable good features.

There were 16 land-surface schemes participated

in the PILPS(2c) Red-Arkansas experiment, but

only 10 schemes had their sensitivity model runs

available for conducting the analyses here. Table 1
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lists the names and relevant information of the 10

schemes. The general background of Red-Arkansas

experiment was described by Wood et al. (1998). A

brief description of the fractional factorial analysis

method and the experiment design are provided in

Section 2. In Section 3, two new indices based on the

fractional factorial analysis method are introduced to

effectively identify the model parameters that have

significant effects on single and multiple model

responses, respectively. In Section 4, sensitivity

experiments and results among 10 participating

models are systematically analyzed. Conclusions are

presented in Section 5.

2. Factorial design and sensitivity experiments

For extensive and comprehensive description of

the fractional factorial designs, readers are referred to

the work by Box et al. (1978) and Montgomery

(1991). In this section we will only briefly review the

methodology of the fractional factorial design to keep

the paper self-contained.

In contrast to varying ‘one-factor-at-a-time’

method, the factorial analysis method allows for

the effects of a parameter to be estimated at several

levels of other parameters. Thus, it can provide, in

a relatively efficient way, a picture of the

sensitivity of model responses to a parameter that

is valid over a range of experimental conditions.

A full factorial design can simultaneously consist

of all combinations of levels of different par-

ameters. Suppose we have two parameters X and Y ;

each can take values at two levels. Denote the two

levels of each parameter by ‘ þ ’ for high level and

‘ 2 ’ for low level, respectively. The factorial

design of these two parameters can be easily

illustrated with the matrix shown in Tables 2a and

2b. Only four experiment runs are needed to

evaluate all of the effects of X and Y ; and their

interactions, XY :

Following Box et al. (1978), one can construct a

calculation matrix (e.g. Table 2b) and calculate the

effects of each parameter as follows

Ek
j ¼

XN

i

SijV
k
i

P
ð1Þ

Table 1

List of participating models, five common parameters and four model evaluated quantities

Names References Parameters (factors) Quantities evaluated

BASE (BS) Desborough and Pitman (1998) 1. Maximum soil moisture content (MSMC) 1. Annual evapotranspiration

BATS (BA) Yang and Dickinson (1996),

Dickinson et al. (1993)

2. Effective available water content (EAWC) 2. Annual total runoff

CAPS (CP) Ek and Mahrt (1991), Mahrt

and Pan (1984)

3. Clapp-Hornberger B 3. Annual mean sensible heat flux

ISBA (IB) Noilhan and Mahfouf (1996),

Mahfouf and Noilhan (1996)

4. LAI 4. Annual mean soil moisture

in total zone

MOSAIC (MC) Koster and Suarez (1996) 5. Minimum stomatal resistance

NCEP (NC) Chen et al. (1996)

PLACE (PL) Wetzel and Boone (1995)

SPONSOR (SP) Shmakin et al. (1993)

SEWAB (SE) Mengelkamp et al. (1999)

VIC-3L (VC) Liang et al. (1994, 1996a,b, 1999)

Table 2a

Design matrix for a full two-level two-parameter factorial analysis.

The ‘ þ ’ and ‘ 2 ’ signs represent high and low levels of each

parameter, respectively

Run Parameter

X Y

1 þ 2

2 2 2

3 2 þ

4 þ þ

X. Liang, J. Guo / Journal of Hydrology 279 (2003) 182–209 185



where Ek
j is the mean effect of the parameter in

column j on the kth model response Vk; Si;j represents

the sign in column j and row i of the matrix, N is

the total number of experimental runs conducted,

P is the number of þ signs in each column of the

design matrix, and Vk
i is the value of the kth model

response Vk obtained from the ith experimental run.

From Eq. (1), it can be seen that a positive value of

Ek
j implies that over a specified parameter range,

model response Vk will increase, in an average sense,

if the parameter in column j increases. On the

contrary, a negative value of Ek
j implies that the

model response Vk will decrease if the parameter in

column j increases. Therefore, a complete matrix E ¼

Ek
j (k ¼ 1; 2;…; q; j ¼ 1; 2;…; p; where q is the total

number of model responses, and p is the total number

of parameters under investigation) of a scheme

provides a general picture of its response behaviors

with respect to different parameters. Such a matrix is

referred to as E matrix in this study. The Ek
j elements

of E matrix with different schemes can be used to

evaluate the scheme differences quantitatively and

qualitatively. In addition, a two-level n-parameter

experiment needs 2n number of experimental runs.

A land-surface model generally involves many

parameters for different processes, and different

models may have different groups of parameters. As

the number of parameters increases, the size of the

experiment becomes large. Data interpretation also

becomes much more cumbersome, particularly when

interactions are present. Categorizing of model

parameters is thus often necessary in experiment

designs. The fractional factorial experiment is thus

often adopted in practice.

In PILPS-2c, the sensitivity experiments were

conducted on eight model parameters by each LSS.

Of the eight parameters, the first five parameters are

common to all of the schemes except for MOSAIC

which does not use the parameter of minimum

stomatal resistance. The five common parameters

represent the characteristics of soil and vegetation

(see Table 1). The remaining three parameters are

related to the soil or vegetation properties, and are

determined by each participating group. Thus, the

three remaining parameters will not be the focus of

this study. In the past, different sensitivity studies

conducted with different models using different data

sets sometimes show contradictory sensitivity results

to the same model parameters. For example, Wetzel

and Chang (1988) and Siebert et al. (1992) showed

more sensitivity to the amount of soil water content

than to vegetation, and Wilson et al. (1987a) found

soil texture to be the most sensitive parameter, while

Jacquemin and Noilhan (1990) found vegetation

cover to be the most sensitive surface parameter.

Therefore, it is important to investigate the relative

sensitivities of a model response to the five common

soil and vegetation related parameters among the

different LSSs that use the same data sets. If a

parameter is identified to be the most sensitive one to

a model response for a scheme in this study, for

example, it implies that this parameter is more

sensitive than the other four common parameters

and their parameter interactions. The identified

parameter is not necessarily the most sensitive one

to the scheme among all the parameters and their

interactions.

In conducting the PILPS-2c sensitivity exper-

iments by each LSS group, each of the eight

parameters was pre-assigned values at two levels

that were obtained by ^35% perturbation around its

average (nominal) value. Table 3 shows the nominal

values of the five common parameters. It is worth

mentioning that this pre-assigned range (i.e. ^35%)

does not imply that it is the exact uncertainty range

associated with each parameter, although it is

consistent with the uncertainty ranges or measurement

errors of the commonly selected parameters (e.g.

Clapp-Hornberger B parameter (Dingman, 2002))

except for porosity and wilting point. For example,

the uncertainty associated with porosity measurement

at a point is generally around a range of ^15%

(Dingman, 2002). The reason of taking porosity to be

^35% is because the uncertainty for the average

Table 2b

Calculation matrix for a full two-level two-parameter factorial

analysis

Run Parameters Model responses

X Y XY V1 V2 · · ·Vk· · ·

1 þ 2 2 V1
1 V2

1 · · ·Vk
1 · · ·

2 2 2 þ V1
2 V2

2 · · ·Vk
2 · · ·

3 2 þ 2 V1
3 V2

3 · · ·Vk
3 · · ·

4 þ þ þ V1
4 V2

4 · · ·Vk
4 · · ·
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maximum soil moisture content (MSMC) of each

model grid is much larger than ^15%. Due to the

fixed soil depth used in some LSS models, we thus

artificially enlarge the porosity uncertainty level in

order to represent a reasonable uncertainty range of

the average MSMC for each model grid. For a similar

reason, the uncertainty level of the wilting point is

assigned to be ^35% to represent the uncertainty

range for effective available water content (EAWC)

for each model grid. For comparison purpose, the

sensitivity results of VIC where a perturbation level of

^15% for the porosity and wilting point, respectively,

are also included in this study. The results of VIC with

all five parameters perturbed by ^35% are rep-

resented by ‘VC1’, and the ones with porosity and

wilting point perturbed by ^15% are represented by

‘VC2’ in all of the plots. It should be noticed that the

objective of this intercomparison sensitivity analysis

is to study the sensitivities of the model responses to

each model parameter under the same level of

uncertainty, rather than the sensitivities to each

parameter under different parameter ranges (i.e. the

range of possibility) that are associated with different

soil and vegetation types. Other model parameters

such as the albedo, roughness length, and displace-

ment height are taken to be the same among all of the

participating models, and the fraction of vegetation

coverage is specified as 100% or equivalent to 100%.

As discussed earlier, a full factorial experiment of

eight-parameters at two-levels would require 28 ¼ 256

different model runs. However, the number of 256

model runs is unpractical and often unnecessary. As

argued by Box et al. (1978) and Henderson-Sellers

(1993), higher-order factor interactions are often

unlikely to be significant, and could be disregarded

by conducting fractional factorial analysis where only

a fraction of the full factorial experiment model runs is

needed. It should be pointed out that when a fractional

factorial design is employed, certain tradeoff exists

between the loss of information about higher order

interactions and the number of experimental runs. In

this study, a fractional factorial experiment design with

a resolution of 4 is used. Such a design ensures that any

single parameter effects on model responses will not be

confounded with the effects of any two parameter

interactions due to the reduction of model runs (Box

et al., 1978). However, the single parameter effects can

be confounded with three parameter interactions and

two parameter interactions can be confounded with

other two parameter interactions, and so on. With such

a fractional factorial experimental design, only 16

model runs are required for each model. The

calculation matrix corresponding to such an exper-

imental design is shown in Table 4 which has the same

meanings as the columns shown in Table 2b under the

category of parameters. It should be mentioned that the

calculation matrix shown in Table 4 would guarantee a

design with resolution 4 in 16 model runs and thus is

preferred (Box et al., 1978).

According to the 16 model-run fractional factorial

experiment design, each modeling group was asked to

conduct three sets of the 16 model runs associated

with three different hydroclimatic conditions at three

locations in the Red-Arkansas River Basin (Wood

et al., 1998). At each location, each model runs to its

equilibrium states to reduce the effects of initial

conditions to the minimum extent. Among the three

different hydroclimatic sites, one has much larger

amount of annual precipitation than the other two

(Fig. 1). The three sites are referred to as ‘wet’ (N33.5,

W94.5; forest), ‘dry-1’ (N37.5, W97.5; cultivation)

and ‘dry-2’ (N35.5, W100.5; grassland), respectively.

The two drier sites (i.e. dry-1 and dry-2) have different

monthly precipitation distributions. A relatively long

dry period is found at dry-1 site (e.g. from August to

February of next year). The reason to study the

sensitivity analyses of each model under the three

different hydroclimatic conditions is that land-surface

schemes can be calibrated at only limited locations,

but they are expected to work well at other locations

in the global where the soil and vegetation conditions

and the climate conditions could be quite different.

Table 3

The nominal values of the five common soil and vegetation

parameters

Parameter

names

Location 1

(wet),

nominal

Location 2

(dry-1),

nominal

Location 3

(dry-2),

nominal

Soil porosity 0.47 0.47 0.46

Wilting point 0.11 0.12 0.10

Clapp-Hornberg B 4.37 4.83 4.31

LAI Varied

monthly

Varied

monthly

Varied

monthly

Minimum stomatal

resistance (s/m)

100 70 110
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Hence, we must pay attention not only to the effects of

soil and vegetation properties, but also the effects of

climate conditions on model processes that

may dominate under different climate conditions

in calibrating, modifying, and validating LSSs. If

the effects of model parameters of a LSS on model

responses are quite different under different climate

conditions, attention needs to be paid to the model’s

validations under different climate conditions. This is

because the model may behave quite differently

even if the soil and vegetation properties are similar

under those different hydroclimatic conditions.

Fig. 1. Distribution of monthly precipitation at three different locations in the Red-Arkansas River Basin.

Table 4

Calculation matrix of the two-level eight-parameter factorial design. The meaning of each parameter index is given in Table 1

Model runs Parameters and parameter-combinations

(1) (2) (3) (4) (5) (6) (7) (8) (1)(2) (1)(3) (1)(4) (1)(5) (2)(3) (2)(4) (2)(5)

1 2 2 2 þ þ þ 2 þ þ þ 2 2 þ 2 2

2 þ 2 2 2 2 þ þ þ 2 2 2 2 þ þ þ

3 2 þ 2 2 þ 2 þ þ 2 þ þ 2 2 2 þ

4 þ þ 2 þ 2 2 2 þ þ 2 þ 2 2 þ 2

5 2 2 þ þ 2 2 þ þ þ 2 2 þ 2 2 þ

6 þ 2 þ 2 þ 2 2 þ 2 þ 2 þ 2 þ 2

7 2 þ þ 2 2 þ 2 þ 2 2 þ þ þ 2 2

8 þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ

9 þ þ þ 2 2 2 þ 2 þ þ 2 2 þ 2 2

10 2 þ þ þ þ 2 2 2 2 2 2 2 þ þ þ

11 þ 2 þ þ 2 þ 2 2 2 þ þ 2 2 2 þ

12 2 2 þ 2 þ þ þ 2 þ 2 þ 2 2 þ 2

13 þ þ 2 2 þ þ 2 2 þ 2 2 þ 2 2 þ

14 2 þ 2 þ 2 þ þ 2 2 þ 2 þ 2 þ 2

15 þ 2 2 þ þ 2 þ 2 2 2 þ þ þ 2 2

16 2 2 2 2 2 2 2 2 þ þ þ þ þ þ þ
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The transferability of model parameters in such cases

may become very complicated.

Four model responses are selected to evaluate the

effects of the five common model parameters. They

are annual evapotranspiration (mm), annual total

runoff (mm), annual mean sensible heat flux

(W/m2), and annual mean soil moisture in the total

zone (mm/mm), respectively. Note that different

model sensitivities may be expected, to the five

common model parameters, if the models’ responses

were evaluated at a diurnal or seasonal time-scales.

However, the approach used here can be easily

applied to other time-scales.

3. Identification of primary parameters

One of the important objectives of conducting the

sensitivity analyses is to identify the most sensitive

parameters (called primary parameters here) to the

model responses, since these primary parameters could

play critical roles in model performance and improve-

ment. Therefore, it is important to identify whether any

changes of the values in a parameter j; for example, has

any significant effect (i.e. sensitivity) on the model

response Vk based on the mean effect Ek
j estimated by

Eq. (1). In the previous fractional factorial sensitivity

studies (e.g. Henderson-Sellers, 1993; Hu and Islam,

1996), primary parameters were identified as a group of

‘outliers’ using a quantity of multiple times of standard

deviation (i.e. ^ns) as a criterion in the selection

process, where thestandarddeviation ðsÞwasevaluated

through an iteration procedure, and n is a positive

number. Effects that were greater than the above

selected criterion were identified as outliers, and the

corresponding parameters were considered to have

significant effects on the model responses. A disadvan-

tageof thisoutliermethodis that forsituationswhere the

available sample size used to calculate the standard

deviation is small, the estimated standard deviation

could be significantly distorted which would conse-

quently obscure objective selections of the primary

parameters. In fact, the sample size is usually small

because the number of parameters to be examined

together with their non-confounding parameter inter-

actions is not large. Also, the outlier method may not be

able to identify any outliers if the effects of most of the

parameters (including parameter interactions) are

significant but few effects fall into the category of

‘experiment errors’. Arendt et al. (1996) identified

parameters to be sensitive if they lie outside four times

of the root mean square error range. The root mean

square error is also evaluated through an iteration

procedure, following the work of Henderson-Sellers

(1993). As pointed out by Arendt et al. (1996), their

method works reasonably well if a large number of

parameter effects is minor and only a small number

deviates from the normal probability line. However, if

the magnitudes of the parameter effects are spread more

equally, their method will not work well because the

root mean square error is often higher than even the

largest effect. Adjustments are then needed (Arendt

et al., 1996).

In this study, we introduce two new indices to

evaluate the effects of model parameters on model

responses based on the mean effects obtained from

Eq. (1). Let us use ‘single response effect index

(SREI)’ and ‘multiple response effect index (MREI)’

to represent, respectively, the sensitivities of single

and multiple model responses to the model par-

ameters. The SREI of a model parameter is rep-

resented by its relative effect on a single model

response, while the MREI of a model parameter is

defined as a normalized score with respect to its

relative effects on multiple model responses. The

SREI of each parameter on a specified model response

(e.g. annual evapotranspiration) can be easily obtained

by calculating the relative effect of each parameter on

the specified model response as follows

SREIk
j ¼

lEk
j l

Ek
cr

ð2Þ

where SREIk
j is the relative effect of the jth parameter

on the specified kth model response, and Ek
cr can be

evaluated by the mean value ðEkÞ expressed below

Ek
cr ¼ Ek ¼

1

m

Xm

i¼1

lEk
i l ð3Þ

or by the mean–median value ðEk
m–medÞ which is

expressed as

Ek
med ¼ medianðlEk

1l; lEk
2l; lEk

3l;…; lEk
mlÞ ¼ lEk

l l

Ek
med21 ¼ lEk

l21l; Ek
medþ1 ¼ lEk

lþ1l

Ek
cr ¼ Ek

m–med ¼
1

3
ðEk

med21 þ Ek
med þ Ek

medþ1Þ ð4Þ
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where m is the maximum number of parameters

(including non-confounding parameter interactions)

used to calculate Ek or Ek
med (i.e. m ¼ 15 in this case

where individual parameters and two-parameter

interactions are included, but the confounded patterns

among two-parameter interactions are excluded), l

represents the median number over the total number of

m; and l 2 1 and l þ 1 are the left and right neighbors

of the median number. If m is an even number, l

represents the two in the middle, and l 2 1 and l þ 1

are again the two neighbors of the two numbers in the

middle. The absolute values of Ek
i are used in Eqs. (3)

and (4) to consider equally both the positive and

negative effects of each parameter or parameter

interaction on the specified kth model response. For

MREI, we first rank the relative effects (i.e. SREIs) of

the parameters that are selected for the sensitivity

study with respect to each single model response of

interest, then the relative effects (i.e. SREIs) of each

parameter is normalized over the selected multiple

responses (e.g. over four responses in this study),

which is expressed as

MREIj ¼
1

M

XM

k¼1

SREIk
j ð5Þ

where MREIj is the MREI for the jth parameter, and M

is the number of multiple responses (i.e. M ¼ 4 in this

study) used for calculating MREIj: The magnitudes of

MREIj ðj ¼ 1; 2;…;mÞ thus provide an integrated

sensitivity ranking among the investigated parameters

with respect to the selected multiple model responses.

From Eqs. (2)–(5), it can be seen clearly that the larger

the value of SREIk
j or MREIj (j ¼ 1; 2;…;m;

k ¼ 1; 2;…;M) is, the more sensitive the jth parameter

will be compared to other parameters with respect to

the selected single or multiple model responses. If

SREIk
j . 1 (or MREIj . 1) (j ¼ 1; 2;…;m;

k ¼ 1; 2;…;M), it implies that the sensitivity of the

kth single model response (or the multiple model

responses) to the jth parameter is greater than the

averaged sensitivity ðEkÞ or the mean–median sensi-

tivity ðEk
m–medÞ depending on which one is used for Ek

cr:

In this study, we use Ek
m–med because the value of Ek is

generally more significantly affected by extreme

values in the sample than Ek
m–med: The reason to use

Ek
m–med rather than Ek

med is to reduce the effects of large

‘jumps’ in the magnitudes of Ek
i (i ¼ med 2 1; med,

med þ 1) in the sample. Comparing with the criteria

evaluated using ^ns or using 4 £ root mean square

error, SREI could be less affected by the sample size,

the extreme values in the sample, and the situation of

large root mean square error. Also, the index of MREI

can reflect an integrated effect of a model parameter on

multiple model responses. In this study, we define that

a parameter or a parameter interaction is highly

sensitive (i.e. primary) to a specified single (multiple)

model response(s) if SREI (MREI) is equal to or

greater than 3, and is moderately sensitive if SREI

(MREI) is between 2 and 3. In other words, if a

parameter or a parameter interaction has its effect three

(2–3) times greater than the mean–median effect

among the parameters and parameter interactions, we

say that this parameter or parameter interaction is

highly (moderately) sensitive to the model response(s)

compared to others. It should be mentioned that the

criterion of the value of 3 (2–3) is somewhat

subjective, similar to the selection of the value n in

the ^ns approach (e.g. 3 or 4 in Henderson-Sellers,

1993, and 1 in Hu and Islam, 1996) and 4 in the root

mean square error approach by Arendt et al. (1996). A

more objective way could be to conduct a hypothesis

test. However, for sample sizes that are small, the

hypothesis test may not be a good candidate. In this

study, we use both SREI and MREI to evaluate the

relative importance of the model parameters of each

participating scheme with the criterion of 3 (2–3) and

Ek
cr ¼ Ek

m–med: SREI and MREI are, in a sense, similar

to the single- and multiple-criteria (Pareto ranking) of

the approach by Bastidas et al. (1999).

4. Experimental results and analyses

For a land-surface scheme, effects of specified

model parameters at a location can be represented by

an E matrix (i.e. Eq. (1)) which includes at least 20

elements (i.e. 4 model responses £ 5 common par-

ameters for a single parameter case). However, due to

the large number of E matrices (10 schemes £ 3

locations), we re-organized them based on Eqs. (1),

(2) and (5) so that more efficient intercomparison

studies can be carried out among the schemes. The

effects of the parameters and their interactions on

model responses for a specific scheme, and the

sensitivities of model responses of different schemes
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to the same parameters will be examined and analyzed

in this section.

4.1. Comparison of primary parameters

Primary parameters of a scheme play a critical role

in an overall performance of the scheme because these

parameters are the ones whose variations in magni-

tudes could significantly affect the model results.

Therefore, for the intercomparison study, it is

important to identify the common primary parameters

so that efforts could be made in the future to estimate

them more adequately.

As described in Section 3, primary parameters in

this study are identified as a group of single

parameters or parameter interactions whose SREIs

or MREIs to a specified single or multiple model

response(s) are equal to or greater than 3. Fig. 2 shows

the relationship of SREIs versus the five common

model parameters for each scheme for the four

individual model responses, respectively, at location

1 (i.e. the wet site). All the schemes have their own

sensitivity patterns similar to each other on the five

common model parameters with respect to the annual

evapotranspiration, runoff, and sensible heat flux,

except SEWAB whose SREI of MSMC is greater than

6 for the runoff, but less than 3 for the evapotranspira-

tion and sensible heat flux. Among the other nine

schemes (BASE, BATS, CAPS, ISBA, MOSAIC,

NCEP, PLACE, SPONSOR, and VIC-3L) whose own

patterns are similar for the evapotranspiration, runoff,

and sensible heat flux, seven (BATS, CAPS,

MOSAIC, NCEP, PLACE, SPONSOR, and VIC-3L)

have their SREIs of MSMC greater than 3, and six

(BATS, CAPS, MOSAIC, NCEP, PLACE, and VIC-

3L) have MSMC to be the most sensitive parameter

among the five common parameters with respect to

evapotranspiration, runoff, and sensible heat flux.

ISBA is the only scheme where none of the five SREIs

is sensitive enough to be even greater than 2. In other

words, all of the five common model parameters of

ISBA have similar effects that are not significantly

different from Ek
cr on each of the four model responses

(i.e. evapotranspiration, runoff, sensible, and soil

moisture in the total zone) at the wet site.

The sensitivity patterns to the annual mean soil

moisture in the total zone for the five common model

parameters vary largely from scheme to scheme, and

from the patterns to the other three model responses

(evapotranspiration, runoff, and sensible heat) within

the same scheme. It is important that such a large

sensitivity variation pattern to the soil moisture in the

total zone among the schemes is identified, since soil

moisture has significant impact on land–atmosphere

interactions. All of the 10 schemes have the parameter

of MSMC to be highly sensitive to the soil moisture in

the total zone, except for ISBA and NCEP. However,

in the case of NCEP, MSMC is the most sensitive

parameter among the five parameters and the SREI

value of MSMC is quite close to 3 (see Fig. 2d).

The next most sensitive parameter at the wet site is

the Clapp-Hornberger B parameter where six (BASE,

CAPS, MOSAIC, PLACE, SPONSOR, and SEWAB)

of the 10 schemes have their corresponding SREIs

greater than 3 for three model responses (evapotran-

spiration, runoff, and sensible heat flux). BASE and

SPONSOR are the two schemes where the Clapp-

Hornberger B parameter is the most sensitive

parameter over the model responses of evapotran-

spiration, runoff, and sensible heat flux. For the model

response of annual mean soil moisture in the total

zone, the parameter of Hornberger B is identified to be

highly sensitive only in three schemes (CAPS,

PLACE, and SEWAB).

The vegetation related parameters of leaf area

index (LAI) and minimum stomatal resistance are

highly sensitive to the model responses of evapotran-

spiration, runoff, and sensible heat flux for SPONSOR

(LAI) and SEWAB (minimum stomatal resistance).

For the annual soil moisture in the total zone, only the

minimum stomatal resistance of BATS shows to be

highly sensitive, while the LAI and minimum

stomatal resistance of SPONSOR and SEWAB are

no longer identified as the highly sensitive parameters.

Also, the sensitivity patterns of each scheme to the

five common model parameters are more diverse to

the model response of soil moisture than to the other

three model responses.

From Fig. 2, it can be seen clearly that although the

individual sensitivity patterns of each scheme to the

five model parameters vary from each other, the four

model responses of the majority of the schemes are

most sensitive to the parameter of MSMC. Also, the

effects of MSMC, Clapp-Hornberger B, and EAWC

(i.e. soil related parameters) on the model responses

are generally much larger than those of LAI and
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Fig. 2. SREIs of the five common model parameters of each scheme with respect to the four individual model responses (i.e. a, b, c, and d) at the

wet site.
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minimum stomatal resistance (i.e. the vegetation

related parameters) among the majority of the

schemes. Although one may argue that the variation

range of porosity (0.306, 0.635) and wilting point

(0.072, 0.149) taken to be ^35% of their nominal

values may artificially exaggerate the effects of

MSMC and EAWC, we argue that the variation

range of ^35% for MSMC and EAWC is reasonable

and consistent with the natural variations of the two

parameters (i.e. MSMC and EAWC), and is in line

with the range of other parameters. Also, the ranges of

porosity (0.306, 0.635) and wilting point (0.072,

0.149) are consistent with the ranges used in other

sensitivity studies, for example, the one by Bastidas

et al. (1999) where their values vary over (0.33, 0.66)

for porosity and (0.088, 0.542) for wilting point,

respectively. In addition, varying both porosity and

wilting point by only ^15% while keeping the rest of

the three common parameters by ^35%, we show

with VIC scheme (VC2 in Fig. 2) that MSMC is the

most sensitive parameter to the model response of

sensible heat flux, and is the second most sensitive

parameter (only slightly less sensitive than the most

sensitive parameter of LAI) with respect to evapo-

transpiration and runoff.

If we agree on that each scheme’s individual

sensitivity patterns to the five common parameters are

a reflection, to some extent, of each scheme’s

integrated model structures (parameterizations), we

can see that with respect to evapotranspiration, runoff,

and sensible heat flux, CAPS, MOSAIC, and PLACE

have more similarities among their sensitivity patterns

than other schemes; and BATS, NCEP, and VIC are

relatively more similar to each other at the wet site.

Also, NCEP is similar to CAPS compared to other

schemes, although it is not as close as MOSAIC and

PLACE to CAPS. The patterns of BASE, ISBA,

SPONSOR, and SEWAB are quite different. Regard-

ing the soil moisture in the total zone, BATS,

MOSAIC, NCEP, and VIC have similar sensitivity

patterns to the five model parameters, while PLACE

and SPONSOR are similar to each other. The patterns

of BASE, CAPS, ISBA, and SEWAB are quite

different. The similarity and dissimilarity of the

sensitivity patterns among the schemes indicate the

importance of intercomparing the integrated effects of

the schemes, in addition to the intercomparison of

individual process/parameterization used by its

model.

Fig. 3a shows the relationship of MREIs (i.e. over

four integrated model responses of evapotranspira-

tion, runoff, sensible, and soil moisture) versus the

five common model parameters for each scheme at

location 1 (i.e. the wet site). From Fig. 3a, it can be

seen that the sensitivity patterns of MREIs of each

scheme to the five model parameters are similar to

those of SREIs shown in Fig. 2, except for BASE,

SPONSOR, and SEWAB. The main reason for these

three schemes to have quite different patterns is due to

their very different SREI patterns with respect to the

model response on soil moisture. The relationship

between SREI and MREI of each scheme on the five

common model parameters is similar to the ones

between single- and multiple-criteria (Pareto ranking)

of the approach by Bastidas et al. (1999).

One of the advantages of the factorial method is

that it can be used to test the effects of parameter

interactions in a simple and relatively efficient way. In

the current experiment design, a two-parameter

interaction could be confounded by some other two-

parameter interactions. Fig. 3b shows the relationship

of MREIs with seven independent two-parameter

interactions (i.e. none of them is confounded with

others) for each scheme at the wet site. Comparing the

magnitudes of MREIs in Fig. 3a and b, we can see

clearly that the effects of the parameter interactions on

the four integrated model responses are not as

important as the effects of the single model par-

ameters for the 10 schemes. Specifically, only CAPS

and PLACE have some of their MREIs greater than 3,

BASE has some of its MREIs between 2 and 3, and all

of the other seven schemes have their MREIs less

than 2. Among the MREIs that are greater than 2,

they are the two-parameter interactions between

MSMC–EAWC (BASE and PLACE), MSMC–

Clapp-Hornberger B (BASE, CAPS, and PLACE),

and EAWC–LAI (BASE and PLACE), in which

MSMC and Clapp-Hornberger B are the parameters

identified to be the two most sensitive ones among the

majority of the schemes. ISBA is the scheme that has

very similar values on MREIs for single and

parameter interactions at the wet site (see Fig. 3a

and b). In other words, both the five common

parameters and the seven interactions (except for the

combination of EAWC–Min. Resist.) in ISBA have
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similar degrees of sensitivities on the model

responses. The pattern of the parameter interactions

is another indicator of the differences of the model

integrated structures among the 10 schemes, since

parameter interactions could be partially affected by

the model structures (parameterizations), hydrocli-

matic conditions, and other unknown reasons. In this

study, it seems that the model responses of BASE,

CAPS, and PLACE could be more significantly

affected by the parameter interactions among the

five common parameters than the other schemes.

Ideally, one may want to eliminate or reduce the

effects of parameter interactions on model responses

because parameters with higher interactions may

suffer from identification problems more significantly.

Fig. 4 shows the same plots of SREIs as shown in

Fig. 2, but at location 2 (i.e. the dry-1 site). Unlike

Fig. 2 in which nine schemes (except for SEWAB)

have their own sensitivity patterns on the five

common model parameters similar to each other

with respect to the annual evapotranspiration, runoff,

and sensible heat flux, only six schemes (BATS,

CAPS, MOSAIC, PLACE, SPONSOR, and VIC) at

location 2 (dry-1 site) keep similar features (i.e. have

similar patterns). The other four schemes (BASE,

ISBA, NCEP, and SEWAB) have their patterns quite

Fig. 3. MREIs of the five common model parameters and their two-parameter interactions of each scheme at the wet site.
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Fig. 4. SREIs of the five common model parameters of each scheme with respect to the four individual model responses (i.e. a, b, c, and d) at the

dry-1 site.
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different in one or more model responses with respect

to the evapotranspiration, runoff, and sensible heat

flux. Among the six schemes (BATS, CAPS,

MOSAIC, PLACE, SPONSOR, and VIC), five

models (except for MOSAIC) have their patterns, in

a relative sense, similar to the corresponding ones at

location 1 (the wet site), while MOSAIC is quite

different. At the wet site, MOSAIC has its parameters

of MSMC and Clapp-Hornberger B to be highly

sensitive to the evapotranspiration, runoff, and

sensible heat flux, but has MSMC and the fifth

model parameter (not minimum stomatal resistance

for MOSAIC) to be highly sensitive at the dry-1 site.

The Clapp-Hornberger B parameter becomes the least

sensitive parameter with its magnitude of SREI much

smaller than 1 (Fig. 4a–c). NCEP would be identified

to have similar patterns among the evapotranspiration,

runoff, and sensible heat flux at dry-1 site if its SREI

of the Clapp-Hornberger B parameter to the sensible

heat flux did not increase to about 8.5 from less than 1

in the cases of evapotranspiration and runoff. BASE,

ISBA, and SEWAB have their sensitivity patterns

quite different at the dry-1 site. Unlike the wet site,

ISBA has its SREI of MSMC and EAWC greater than

3 with respect to the runoff at the dry-1 site, while its

SREIs are always less than 2 at the wet site. Unlike the

wet site, BATS has its SREIs at the dry-1 site to be

always less than 3, and only slightly greater than 2

sometimes. Although MSMC is still one of the most

sensitive parameters at the dry-1 site, only five

schemes have it identified as a highly sensitive

parameter and also only five schemes have it to be

the most sensitive one compared with seven and six,

respectively, at the wet site. Similar to the wet site, the

next most sensitive parameter is the Clapp-Hornber-

ger B parameter where four schemes (BASE, CAPS,

SPONSOR, and SEWAB) have their corresponding

SREIs greater than 3 on three model responses

(evapotranspiration, runoff, and sensible heat flux).

Similar to the wet site, the sensitivity patterns to

the annual mean soil moisture in the total zone for the

five common model parameters also vary widely

(even more diversely than that at the wet site) from

scheme to scheme, and from the patterns to the other

three model responses (evapotranspiration, runoff,

and sensible heat) within the same scheme. Also,

similar to the wet site, the Clapp-Hornberger B

parameter is identified to be highly sensitive only in

three schemes (CAPS, PLACE, and SEWAB) with

respect to the model response of soil moisture in total

zone. All of the 10 schemes, except BATS, ISBA and

NCEP, have the parameter of MSMC to be highly

sensitive to the soil moisture of the total zone. The

large values of SREIs to the soil moisture in total zone

for many schemes suggest that a small change in the

magnitudes of model parameters may result in large

relative changes in soil moisture since the soil may be

quite dry. BATS is the only scheme whose SREI of

MSMC at the dry-1 site is much less than that at the

wet site, suggesting that its soil moisture in the total

zone is more sensitive to MSMC at the wet site than

that at the dry-1 site.

The vegetation related parameters of LAI and the

5th model parameter are highly sensitive to the model

responses of evapotranspiration, runoff, and sensible

heat flux for MOSAIC (not minimum stomatal

resistance) and SPONSOR (LAI). For the annual

soil moisture in the total zone, only LAI and minimum

stomatal resistance of VIC shows to be highly

sensitive, while the 5th parameter of MOSAIC and

the LAI of SPONSOR are no longer identified as the

highly sensitive parameters. Similar to the wet site,

the sensitivity patterns of the model response of soil

moisture to the five common model parameters are

more diverse than those to the other three model

responses among the schemes.

From Fig. 4, it can be seen clearly again that in

general MSMC is most sensitive among the five

common parameters, and that the soil related

parameters (i.e. MSMC, Clapp-Hornberger B, and

EAWC) are more sensitive than the vegetation related

parameters (LAI and minimum stomatal resistance)

among the majority of the schemes. For the dry-1 site,

the sensitivity patterns of VC1 and VC2 (having

porosity and wilting point varying by ^15% only) are

similar on the four model responses, and MSMC is the

most sensitive parameter, in both VC1 and VC2, with

respect to the model responses of evapotranspiration,

runoff, and sensible heat flux.

The wider range of the sensitivity patterns at the

dry-1 site, compared to the wet site, suggests that

differences among the integrated model structures

(parameterizations) are greater in handling the land-

surface processes under dry conditions than that under

wet conditions. From Fig. 4, we can see that with

respect to the evapotranspiration, runoff, and sensible
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heat flux, CAPS, MOSAIC, and PLACE are no longer

more similar to each other than to others in their

sensitivity patterns; and so is true for BATS, NCEP,

and VIC whose patterns are also quite different from

each other at the dry-1 site. Except for the model

response of sensible heat flux, the patterns of NCEP

and CAPS are also no longer similar to each other at

the dry-1 site. ISBA and VIC seem to be the two

schemes whose patterns are relatively similar to each

other on the model responses of evapotranspiration,

runoff, and soil moisture in the total zone at the dry-1

site, although the SREI patterns of ISBA and VIC to

the sensible heat flux are quite different. Regarding

the soil moisture in the total zone, BATS and NCEP

are the two schemes whose SREI patterns are not

highly sensitive to any of the five common model

parameters. However, such a phenomena does not

occur in NCEP regarding the other three model

responses.

Fig. 5a shows the same plots of MREIs as shown in

Fig. 3a, but at location 2 (dry-1 site). From Fig. 5a, it

can be seen that the sensitivity patterns of MREIs to

the five model parameters are similar to those of

SREIs (except for the patterns on soil moisture)

Fig. 5. MREIs of the five common model parameters and their two-parameter interactions of each scheme at the dry-1 site.
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shown in Fig. 4 among six schemes (BATS, CAPS,

ISBA, MOSAIC, PLACE, and SPONSOR), while

three schemes (BASE, SEWAB, and VIC) have their

MREI patterns similar to their corresponding SREI

patterns of the soil moisture in total zone due to

relatively much higher values of SREIs of the model

response on soil moisture in these three schemes.

From Fig. 5a, it can be seen clearly again that MSMC

is highly sensitive to the integrated four model

responses in nine (except for BATS) out of 10

schemes at the dry-1 site, similar to that at the wet site.

The second most sensitive parameter at the dry-1 site

is again the Clapp-Hornberger B parameter which is

highly sensitive to the model integrated responses in

five (BASE, CAPS, PLACE, SPONSOR, and

SEWAB) out of 10 schemes. EAWC is the third

most sensitive parameter that is highly sensitive to the

integrated model responses in four (BASE, MOSAIC,

PLACE, and VIC) out of 10 schemes. The two

vegetational related parameters (LAI and minimum

stomatal resistance) are identified to be highly

sensitive only in two schemes, that is in MOSAIC

for its 5th model parameter (not minimum stomatal

resistance, see explanation in Section 2) and in

SPONSOR for LAI. Comparisons between VC1 and

VC2 also show that the two vegetational related

parameters are not as sensitive as the soil related

parameters to the integrated model responses at the

dry-1 site, although they become moderately sensitive

in VC2 from VC1 (see Fig. 5a). However, the patterns

of VC1 and VC2 are similar (see Fig. 5a).

Fig. 5b shows the relationship of MREIs and seven

two-parameter interactions for each scheme at

location 2 (i.e. the dry-1 site). Comparing the

magnitudes of MREIs in Fig. 5a and b, we can see

clearly again that the effects of model parameter

interactions on the four integrated model responses

are not as important as the effects of the single model

parameters among most of the 10 schemes. However,

comparing with the wet site (Fig. 3b), more schemes

(three schemes (BASE, CAPS, and MOSAIC) versus

two (CAPS and PLACE at the wet site)) show higher

sensitivities to the two-parameter interactions. More

specifically, BASE has its MREIs of MSMC–EAWC

and EAWC–LAI parameter interactions greater than

3, CAPS has its MREI of MSMC–Clapp-Hornberger

B parameter greater than 3, and MOSAIC has its

MREIs of MSMC–EAWC, MSMC–5th parameter,

and EAWC–Clapp-Hornberger B parameter inter-

actions greater than 3. In addition, there are six

MREIs of two-parameter interactions that are between

2 and 3 at the dry-1 site while only four such MREIs at

the wet site. Such a comparison between Figs. 3 and 5

seems to suggest that parameter interactions could

become more significant at the dry site than at the wet

site. This could be due to the model structures

(parameterizations) of each scheme where the pro-

cesses for arid climate are represented more differ-

ently than their counterparts under moist climate.

These results show some consistency with the findings

by others (e.g. Gedney et al., 2000; Gan and Biftu,

2002). It should be mentioned that the results

presented here do not imply that other models do

not have or have less parameter interactions, but that

other schemes have less two-parameter interactions

among the tested five common model parameters.

However, these schemes may have significant par-

ameter interactions among other model parameters.

The SREI and MREI sensitivity patterns of eight

schemes (CAPS, ISBA, MOSAIC, NCEP, PLACE,

SEWAB, SPONSOR, and VIC) at the dry-2 site are

between their counterparts at the wet and dry-1 sites

(some schemes are closer to the dry-1 site while others

are closer to the wet site). However, the SREI and

MREI sensitivity patterns of BASE and BATS are

different at all of the three sites. These results suggest

that BASE and BATS are more sensitive to the

hydroclimatic conditions comparing to the other eight

schemes with respect to the five common model

parameters.

It is worth mentioning that the sensitive parameters

identified here for BATS are generally consistent with

the results from other sensitivity studies (e.g.

Henderson-Sellers, 1993; Hu and Islam, 1996;

Bastidas et al., 1999), despite the differing ranges of

how the same parameters were allowed to vary, the

different number of parameters studied, and even

the different sensitivity assessment methods used in

the different studies. For example, the parameter of

porosity has been shown to be highly sensitive in all of

the previous studies (Henderson-Sellers, 1993; Hu

and Islam, 1996; Bastidas et al., 1999), and depth of

root zone to be highly sensitive in the studies by both

Hu and Islam (1996) and Bastidas et al. (1999). In the

study by Bastidas et al. (1999), BATS is also shown to

be sensitive to the parameters of the depth of top soil
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layer, minimum stomatal resistance, and the Clapp-

Hornberger B parameter. In addition, similar features

of BATS of having different sensitivities of model

responses to the same model parameters under

different hydroclimatic conditions are reported by

Bastidas et al. (1999) in their studies for the Tucson

semiarid site and the ARM-CART grassland site.

Henderson-Sellers (1993) showed similar results for

BATS using fractional factorial analysis method with

the criterion of ^ns over three sites (i.e. tropical,

temperate, and polar environments) with artificially

constructed atmospheric forcing data. These results

show that the findings from this study on BATS are in

good agreement with the results from other studies.

In summary, the analyses here have shown that the

effects of model parameters are very complicated

among the schemes. Although there is no such a single

parameter that is always dominant for all schemes at

all of the three sites, and the sensitivities of model

responses to the five common parameters could vary

widely among the 10 schemes and at the three

different sites for the same scheme, results here

suggest that MSMC is the most sensitive parameter

among the five common parameters, and that the soil

related parameters (i.e. MSMC, Clapp-Hornberger B,

and EAWC) are more sensitive than the vegetation

related parameters (i.e. LAI and minimum stomatal

resistance) among the majority of the 10 schemes.

4.2. Comparison of the effects of single parameters

Figs. 6–9 show relative effects of each of the five

common parameters to the four model responses,

respectively, at the three different sites (i.e. one wet

and two dry sites). The relative effect is calculated as a

ratio of the effect obtained from Eq. (1) for a

parameter on a model response to its corresponding

annual mean model response in which all of the model

parameters are taken at their nominal values. From

Figs. 6–9, it can be seen clearly again that MSMC has

relatively greater relative effects on the four model

responses (i.e. evapotranspiration, runoff, sensible,

and soil moisture in the total zone) than the other four

common parameters. Also, the order of magnitude

(from the largest to smallest) of the relative effects of

MSMC is from runoff, soil moisture in the total zone,

sensible, to evapotranspiration. The reason to have

the largest relative effects on runoff is due to its small

amount at the nominal condition. CAPS and PLACE

have their relative effects greater than 150% at all

three sites, and BASE and NCEP have their effects

greater than 150% at the dry-2 site. BASE has

negligible relative effect at the dry-1 site while

MOSAIC has its relative effect close to 120% which

is the largest relative effect for MOSAIC at the three

sites. SPONSOR has the smallest relative effects at all

three sites among the 10 schemes (see Fig. 7a). For

situations where other factors are unchanged, increase

in MSMC would decrease the amount of surface

runoff in general (especially at the wet site), while its

effect on subsurface flow could be more complicated.

Fig. 7a shows that the increase of MSMC decreases

the total amount of runoff (surface and subsurface

runoff combined) for all of the 10 schemes and at all

three sites. Such a negative effect of MSMC also holds

for sensible heat flux (Fig. 8a) for all schemes and at

all three sites, although the order of magnitude is

much smaller (mostly less than 30%). BASE is the

scheme that has positive relative effect at the dry-1

site. However, the magnitude is very small (less than

5%) and could be considered as within the ‘uncer-

tainty range’. The reason for sensible heat flux has the

negative effect with the increase of MSMC is

probably related to the increase of the capability of

storing water within the soil column, and thus an

increase of soil moisture level. The higher soil

moisture content could then lead to higher evapo-

transpiration which results in the decrease of sensible

heat flux to keep the energy budget balanced.

Comparing Figs. 6a and 8a, it can be seen that the

positive feedback of MSMC on evapotranspiration

has similar magnitude of negative feedback on

sensible heat flux. Fig. 9a shows that the positive

feedback of MSMC has the second largest effects on

the soil moisture in the total zone. ISBA has negative

feedback for the dry-1 site, but it is very small and

could be considered as within the uncertainty range.

Figs. 6–9 imply qualitatively that all of the 10

schemes have correct response directions with the

change of MSMC where the increase in evapotran-

spiration and soil moisture, and the corresponding

decrease in total runoff and sensible heat flux keep the

energy and water budgets balanced within the system.

However, quantitatively, large differences of the

relative effects of MSMC on evapotranspiration,

runoff, sensible heat flux, and soil moisture exist
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Fig. 6. Relative effects of each of the five common parameters to annual evapotranspiration at the three sites.
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Fig. 7. Relative effects of each of the five common parameters to annual runoff at the three sites.
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Fig. 8. Relative effects of each of the five common parameters to annual mean sensible heat flux at the three sites.
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Fig. 9. Relative effects of each of the five common parameters to annual mean soil moisture in the total zone at the three sites.
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among the schemes and among the three different

locations for the same scheme (Figs. 6–9).

Different patterns of the relative effects associated

with the three locations are present among the

schemes. For MSMC, for example, its effect on

annual evapotranspiration among the 10 schemes may

be grouped into three different patterns: (1) largest

effect at location 1 (i.e. wet site) and smallest effect at

location 2 (i.e. dry-1 site) (BATS, CAPS, MOSAIC,

NCEP); (2) largest effect at location 3 (i.e. dry-2 site)

and smallest effect at location 2 (dry-1 site) (BASE,

ISBA, PLACE, SPONSOR, VIC-3L); and (3) largest

effect at location 3 (i.e. dry-2 site) and smallest effect

at location 1 (i.e. wet site) (SEWAB). The first two

patterns include nine schemes, and both have smallest

relative effects at location 2 (dry-1 site) which has the

lowest annual total precipitation and longest dry

period. A qualitative explanation is that there is not

much water available for evapotranspiration at

location 2 (dry-1 site) (Fig. 1). The variation of

MSMC at this location, therefore, would not pose a

significant change in evapotranspiration. Thus, it has

the smallest change in evapotranspiration with respect

to the change in MSMC among the three locations.

Although many factors may be responsible to the

large differences in the sensitivities of model

responses to the same parameter (e.g. MSMC) at the

different locations, the forcings at the three locations

certainly play a significant role in resulting large

different relative effects of MSMC on the evapotran-

spiration. This is because the variation of MSMC is

the same at the three locations, and that the values of

MSMC and other soil parameters at the three locations

are similar to each other as shown in Table 3. Other

factors that may play a significant role in contributing

to such large difference of model sensitivity on the

evapotranspiration are the vegetation parameters of

LAI and minimum stomatal resistance (see Table 3).

Also, model structures (parameterizations) of each

scheme in which different processes (e.g. wet

processes versus dry processes) are represented may

certainly play an important role. More detailed studies

are needed to identify the relative roles of the

forcings, vegetation parameters, and model structures

in this regard. Results (Figs. 6–9) show again that for

the same scheme, same parameters do not necessarily

present similar sensitivities under different hydrocli-

matic conditions.

Comparing with the effects of MSMC on the

evapotranspiration, the relative effects of the Clapp-

Hornberger B parameter and EAWC are generally

smaller among the participating schemes, and the

effects of LAI and minimum stomatal resistance are

even smaller (Fig. 6b–e). Most schemes have positive

feedback on the evapotranspiration with the Clapp-

Hornberger B parameter but SEWAB, which has

negative feedback at all three sites (ISBA’s negative

feedback is very small and thus can be ignored). Five

schemes (BASE, BATS, CAPS, PLACE, and VIC)

have a pattern with the largest relative effect at the

dry-2 site and the smallest at the dry-1 site, while

MOSAIC and NCEP have the largest relative effect at

the wet site and the smallest at the dry-1 site. For

EAWC which represents a critical soil moisture level

below which plants cannot take any water for

transpiration, all the schemes have negative feedback

on the evapotranspiration with an increase of EAWC

because more water is retained in the soil column but

not available for transpiration. ISBA, PLACE,

SPONSOR, and VIC have similar patterns at the

three sites where the largest relative effects occur at

the dry-2 site, although the magnitudes of individual

relative effects vary widely among these schemes.

Such a pattern indicates that the soil moisture level

among these four schemes at the dry-2 site could be

closer to the originally assigned EAWC value than

that at the other two sites. Increasing the EAWC value

would then make the soil moisture level below the

critical state for vegetation to transpire at the dry-2

site, and thus significantly reduce the transpiration

amount which results in a large relative effect on the

evapotranspiration at the site. However, the increase

of EAWC does not necessarily have the largest

relative effect on the soil moisture change in the total

zone at the dry-2 site as shown in Fig. 9b. BASE,

BATS, CAPS, MOSAIC, and NCEP have the largest

relative effects at the wet site, also with the

magnitudes of the effects varying over a wide range

among the schemes. Such a pattern implies that the

soil moisture level at the wet site could be closer to the

originally assigned EAWC value than that at the other

two sites for these five schemes. Thus, an increase in

EAWC may be just large enough to stop the

transpiration and hence results in the largest relative

effect at the wet site for these schemes compared to

the other two sites. Again, the increase of EAWC does
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not necessarily have the largest relative effect on the

soil moisture change in the total zone for these

schemes at the wet site as shown in Fig. 9b. From

Fig. 9b, it can be seen clearly that the change of

EAWC has the largest relative effect on the change of

soil moisture at the dry-1 site for most schemes. The

reason that the relative effects of EAMC on

evapotranspiration is the smallest for most of the

schemes at the dry-1 site could be that the soil

moisture at this site is very dry and the change of

EAMC would not be able to affect the switch for

starting or stopping transpiration in a significant way.

From these results, it can be seen clearly the binary-

type of effect of EAWC on modeled evapotranspira-

tion. Therefore, the estimation of soil moisture level

and the prescribed value of EAWC (associated with

the wilting point) would become critically important.

Despite of the support of the binary-switch physics for

EAWC (wilting point), we suggest to examine the

possibilities of expressing EAWC (associated with

wilting point) as a function of a range rather than one

distinct value to be switched on and off, due to many

uncertainties associated with the soil property

measurements, root zone distributions, vegetation

parameters, and so on.

The positive and negative model responses of each

scheme to the five common model parameters are

qualitatively correct for all of the schemes except for

SEWAB sometimes. The relative effects of LAI and

minimum stomatal resistance on the evapotranspira-

tion, runoff, sensible, and soil moisture in the total

zone are smaller than those of MSMC, Clapp-

Hornberger B, and EAWC for most of the schemes

(Figs. 6–9), although VIC has larger relative effects,

in general, on the four model responses by LAI and

minimum stomatal resistance than those by the Clapp-

Hornberger B parameter. Such results may imply

again that variations associated with the soil proper-

ties possibly due to either measurement uncertainties

and/or spatial heterogeneity may play a more

significant role in partitioning water and energy

budgets than those associated with vegetation

properties for most schemes. Note that the parameter

of roughness length is not considered here to be

part of the vegetation properties, but a surface

property. Although hydraulic conductivity is not

explicitly considered in this study, its effects are

partially represented through the Clapp-Hornberger B

parameter and MSMC, both of which are related to

soil textures. Our analyses also showed that large

response sensitivities exist in relation to the hydro-

climatic conditions when using the same parameters

and the same LSS for the majority of the current

generation of LSSs. This implies that a scheme that

performs well at its calibrated location may perform

poorly at other locations under different hydroclimatic

conditions if the scheme is not re-calibrated. There-

fore, when all of the schemes are assigned to the same

model parameter values and the same atmospheric

forcings for a location that are different from the ones

based on which the models were calibrated, their

energy and water fluxes could respond quite differ-

ently. This is because the assigned parameter values at

the location could be quite different from the best

values each model should use for that location, and

because the different degrees of sensitivity of each

model has to the parameter variations resulted from

the assigned values. This may explain why large

differences occurred every time in the PILPS phase 1,

2(a), 2(b), and 2(c) intercomparison studies, and

perhaps why each scheme performs better at its own

testing sites than at the PILPS sites. However, it may

be expected that a LSS that considers spatial

variabilities of soil, vegetation and atmospheric

forcings would perform better because its model

parameters could be less sensitive. This argument is

partially evidenced by the study of Koren et al. (1999)

where the values of model parameters vary less when

the model that considers spatial variabilities is applied

to different spatial scales. More concrete and solid

studies are needed in this aspect to test our hypothesis.

Our ongoing study with VIC-3L in this respect may

offer some insight in the future.

4.3. Comparison of the effects of parameter

interactions

Similarly to the results shown in Figs. 3b and 5b,

the significance of the relative effects of the seven

two-parameter interactions (figures not shown) on

the four model responses (evapotranspiration,

runoff, sensible heat flux, and soil moisture in total

zone) is much smaller than those of the single

parameters shown in Figs. 6–9. Among the seven

two-parameter interactions, only BATS (MSMC–

EAWC, EAWC–LAI), PLACE (MSMC–EAWC,
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MSMC – Clapp-Hornberger B, EAWC – LAI),

SEWAB (MSMC–Clapp-Hornberger B), and VIC

(EAWC–minimum stomatal resistance) have their

two parameter interactions comparable or slightly

smaller than their corresponding single parameter

effects on evapotranspiration at one or more sites. Here

the ‘corresponding single parameter effect’ is taken

from the one out of the two parameters (i.e. the two

parameters that constitute the two-parameter inter-

actions) that has higher relative effect on evapotran-

spiration at each site. For the model response of runoff,

BASE, CAPS, PLACE (MSMC–Clapp-Hornberger

B), BASE and PLACE (MSMC–LAI, EAWC–

Clapp-Hornberger B, EAWC–LAI), BASE, CAPS,

and PLACE (EAWC–minimum stomatal resistance),

PLACE (MSMC–minimum stomatal resistance),

and BATS (MSMC–EAWC) have comparable rela-

tive effects to their counterparts at one or more sites.

For the sensible heat flux, BATS, ISBA, and PLACE

(MSMC – EAWC), BASE, ISBA, PLACE, and

SEWAB (MSMC – Clapp-Hornberger B), ISBA

(EAWC – Clapp-Hornberger B), BATS, CAPS,

ISBA, and PLACE (EAWC – LAI), and CAPS,

NCEP, and VIC (EAWC–minimum stomatal resist-

ance) have comparable relative effects to their single

parameter counterparts at one or more sites. For the

soil moisture in the total zone, BASE (MSMC–

EAWC, MSMC–LAI), BATS (MSMC–minimum

stomatal resistance), BATS and NCEP (EAWC–

LAI), and BASE, BATS, and ISBA (EAWC –

minimum stomatal resistance) have comparable

relative effects to their single parameter counterparts

at one or more sites. Due to the page limitation, all of

the plots of these relative effects of the two-parameter

interactions on each of the four model responses are

not shown.

The effects of interactions vary among different

climate conditions, and have different patterns among

the schemes. However, comparing to the effects of

single parameters, the effects of the interactions are

again generally small. It is worth mentioning that

Figs. 3b and 5b show the overall significance of the

parameter interactions at two different locations based

on MREIs; while the significance of the parameter

interactions discussed here are expressed as the

relative effects on the four individual model responses

at each of the three locations (figures not shown).

5. Conclusions

In this intercomparison study, we investigate the

sensitivities of model responses (i.e. evapotranspira-

tion, total runoff, sensible heat flux, and soil moisture

in the total zone) to five common model parameters

(i.e. MSMC, EAWC, Clapp-Hornberger B parameter,

LAI, and minimum stomatal resistance) and their

interactions under three different climate conditions

for 10 land-surface schemes. The sensitivities of the

four model responses are evaluated based on two

newly introduced indices (SREI and MREI) along

with a criterion for measuring relative parameter

effects. The index of SREI is used to indicate the

effect of a parameter or parameter interaction on a

single model response relative to a specified average

level (e.g. the mean–median level is used in this

study). If the effect of a model parameter or parameter

interaction is three times or higher than the mean–

median level, the parameter or parameter interaction

is identified to have significant effect on the specified

model response. The index of MREI is used to

indicate the effect of a parameter or parameter

interaction on a combination of selected multiple

model responses (e.g. on four model responses in this

study). Again, a parameter or a parameter interaction

is identified to have significant effect on a combi-

nation of four model responses if its corresponding

MREI is equal to or greater than 3. Also, the

sensitivities of model responses to each parameter

and parameter interaction are investigated by using

the criterion of relative effects. The major conclusions

from this study are as follows:

(1) MSMC has the largest effect and the Clapp-

Hornberger B parameter has the second largest

effect on most of the four model responses

among most of the 10 schemes based on the

criteria of SREI, MREI, and the relative effects.

The effects of MSMC, Clapp-Hornberger B

parameter, and EAWC are generally more

significant than those of LAI and minimum

stomatal resistance among most of the 10

participating schemes. This implies that the

variations associated with the soil properties

possibly due to the measurement uncertainties

and/or the spatial heterogeneity may play a more

significant role in partitioning water and energy
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budgets than those associated with vegetation

properties for the majority of the current

generation of land-surface model parameteriza-

tions. In addition, the sensitive parameters

identified in this study on BATS are generally

consistent with the results from other sensitivity

studies (e.g. Henderson-Sellers, 1993; Hu and

Islam, 1996; Bastidas et al., 1999), despite the

differing ranges of how the same parameters were

allowed to vary, the different number of par-

ameters studied, and even the different sensitivity

assessment methods used in the different studies.

(2) Under different hydroclimatic conditions, most

of the 10 LSSs have quite different sensitivities

of model responses to the same model par-

ameters. Similar results are also reported by

Bastidas et al. (1999) for BATS at the Tucson

semiarid site and at the ARM-CART grassland

site. Henderson-Sellers (1993) showed similar

results for BATS using fractional factorial

analysis method with a criterion of ^ns over

three sites (i.e. tropical, temperate, and polar

environments) with artificially constructed

atmospheric forcing data. This study also shows

that different schemes could have quite different

degrees of sensitivities to the same model

parameter, resulting in different sensitivity pat-

terns under the same hydroclimatic conditions.

(3) The effects of parameter interactions are

generally much smaller than those of single

parameters. However, for some schemes, the

parameter interactions are significant and can

play an important role in the sensitivities of

model responses to the model parameters.

Also, results show that there are more

significant parameter interactions and more

differences in the sensitivity patterns at the

dry sites than those at the wet site. This

suggests that there are more differences among

the 10 schemes in their model structures

(parameterizations) under arid conditions than

under moist conditions.

The preliminary conclusions obtained above may

provide some insights on why large response

differences between schemes occurred every time in

the PILPS phases 1, 2(a), 2(b), and 2(c) intercompar-

ison studies, and perhaps on why each scheme

performs better at its own testing site(s) than at the

PILPS sites. However, a LSS that considers spatial

variabilities of soil, vegetation and/or atmospheric

forcings may perform better because its model

parameters may be less sensitive as partially evi-

denced by Koren et al. (1999). Also, this sensitivity

study may suggest that when developing a method-

ology for transferring parameters from data rich areas

to data sparse areas, not only should the character-

istics of soil and vegetation be considered in the

parameter transferring formulations, but also the

climate conditions (e.g. external forcings) to partially

compensate for the weaknesses of model structures

(parameterizations) that are used to describe different

processes in each scheme. Some of the changes

associated with different climate conditions might

also be reflected by the vegetation and soil properties.

Finally, it should be mentioned that results

presented in this study are subject to annual scales.

Different sensitivity results may be obtained if diurnal

or seasonal scales are used as the model responses.

For example, the effects of LAI and minimum

stomatal resistance may become much more signifi-

cant to surface fluxes if monthly scale is used. Also,

the feedback of the planetary boundary layer on the

sensitivity results is not accounted for in this study.

Therefore, the sensitivities of model responses to

some model parameters may be altered from those

reported here if the study was to be conducted under a

coupled mode between the LSSs and atmospheric

models (e.g. Jacobs and DeBruin, 1992).
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