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Gassmann fluid substitutions: A tutorial

Tad M. Smith∗, Carl H. Sondergeld‡, and Chandra S. Rai‡

ABSTRACT

Fluid substitution is an important part of seismic
attribute work, because it provides the interpreter
with a tool for modeling and quantifying the vari-
ous fluid scenarios which might give rise to an ob-
served amplitude variation with offset (AVO) or 4D
response. The most commonly used technique for
doing this involves the application of Gassmann’s
equations.

Modeling the changes from one fluid type to another
requires that the effects of the starting fluid first be re-
moved prior to modeling the new fluid. In practice, the
rock is drained of its initial pore fluid, and the moduli
(bulk and shear) and bulk density of the porous frame
are calculated. Once the porous frame properties are
properly determined, the rock is saturated with the new

pore fluid, and the new effective bulk modulus and den-
sity are calculated.

A direct result of Gassmann’s equations is that the
shear modulus for an isotropic material is independent
of pore fluid, and therefore remains constant during the
fluid substitution process. In the case of disconnected or
cracklike pores, however, this assumption may be vio-
lated. Once the values for the new effective bulk modulus
and bulk density are calculated, it is possible to calculate
the compressional and shear velocities for the new fluid
conditions.

There are other approaches to fluid substitution (em-
pirical and heuristic) which avoid the porous frame cal-
culations but, as described in this tutorial, often do not
yield reliable results. This tutorial provides the reader
with a recipe for performing fluid substitutions, as well
as insight into why and when the approach may fail.

INTRODUCTION

Fluid substitutions are an important part of any seismic at-
tribute study, as they provide the interpreter with a valuable
tool for modeling various fluid scenarios which might explain
an observed amplitude variation with offset (AVO) anomaly. A
common empirical approach for modeling velocity-porosity re-
lationships was proposed by Wyllie et al. (1956, 1958) and later
modified by Raymer et al. (1980). The most commonly used
(and theoretically sound) approach at seismic frequencies is
based on the work of Gassmann (1951), which relates the bulk
modulus of a rock to its pore, frame, and fluid properties.

Unfortunately, many users of Gassmann’s theory never de-
velop an understanding of the strengths and weaknesses of the
model, simply because of the widespread reliance on commer-
cially available software. The purpose of this tutorial is to guide
the reader through practical Gassmann fluid substitution, and
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to highlight some of the commonly encountered caveats and
pitfalls inherent to the modeling process. By understanding the
equations and processes discussed in this tutorial, the reader
should be able to program a spreadsheet or build a user pro-
gram to perform fluid substitutions on a routine basis. We also
include a simple case study from the deepwater Gulf of Mexico,
using wireline log data.

As with any technology, recognition of pitfalls and the abil-
ity to diagnose and solve difficult problems comes with time
and experience. Consequently, care should always be exercised
when performing fluid substitutions, and experienced users
should be consulted.

BACKGROUND

Modeling the effects of mineral composition, porosity, and
fluid on seismic velocities is generally based on a combination
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Gassmann Fluid Substitutions 431

of empirical relationships and theoretical formulations. Em-
pirical approaches attempt to establish relationships between
porosity, fluid velocities, and the velocity of the rock matrix,
and generally involve regression analyses of core or log mea-
surements (e.g., Wyllie et al., 1956, Raymer et al., 1980, Han
et al., 1986; Eberhart-Phillips, et al., 1989). However, these re-
lationships are not based on physical principles and generally
do not work well for fluid substitution modeling.

The most commonly used theoretical approach for fluid
substitutions employs the low-frequency Gassmann theory
(Gassmann, 1951). Gassmann’s equation relates the saturated
bulk modulus of the rock to its porosity, the bulk modulus of
the porous rock frame, the bulk modulus of the mineral matrix,
and the bulk modulus of the pore-filling fluids:

Ksat = K ∗ +

(
1− K ∗

Ko

)2

φ

Kfl
+ (1− φ)

Ko
− K ∗

K 2
o

, (1)

where Ksat= the saturated bulk modulus (undrained of pore
fluids), Ko= the bulk modulus of the mineral matrix, Kfl= the
bulk modulus of the pore fluid, K ∗ = the bulk modulus of
the porous rock frame, (drained of any pore-filling fluid), and
ø= porosity.

Application of this equation is a two-part process, whereby
we first determine the bulk modulus of the porous rock frame
(the bulk modulus of the rock drained of its initial pore-filling
fluid, also referred to as the “dry frame” bulk modulus), after
which we calculate the bulk modulus of the rock saturated with
any desired fluid.

When applying equation (1) to core measurements, it is im-
portant to recognize that the “dry frame” bulk modulus, K ∗,
represents the “dry frame” property of the rock with a small
amount of moisture present (see Clark, et al., 1980). In prac-
tice, these values would come from controlled humidity-dried
core samples. Predicted velocities will be too fast if the porous
rock frame is assumed to be absolutely dry. In this tutorial,
rather than confuse the reader by referring to the “dry frame”
properties, we instead refer to the “porous rock frame”.

Model assumptions

Application of Gassmann’s equation is based on several as-
sumptions. First, the model assumes that the rock is homo-
geneous and isotropic, and that the pore space is completely
connected. This assumption is violated if the rock framework
is composed of multiple minerals with large contrasts in elas-
tic stiffness (Berge, 1998), or if it composed of preferentially-
oriented anisotropic minerals (Brown and Korringa, 1975).
Fortunately, Gassmann’s equation is free of assumptions about
pore geometry, although the pore system must be connected
and fluids must be moveable. However, when multiple pore
types are present in a rock, it is often necessary to use more
complex models (Berryman and Milton, 1991; O’Connell, 1984;
Berryman and Wang, 2000). Note that many of the assump-
tions regarding pore connectivity and pore type are probably
violated in low-porosity rocks. Carbonate rocks, in particular,
may be problematic due to the diverse pore types often ob-
served in thin section and the low connectivity of these pores.

Second, Gassmann’s equation is valid only at low enough
frequencies such that pore pressures are equalized over a
length scale much greater than a pore dimension and much
less than the wavelength of the passing seismic wave. For high
frequencies, original formulations presented by Biot (1956,
1962) should be used. At sonic logging frequencies, Gassmann
may or may not be applicable (Berryman, 1999), although re-
liable results are often obtained for clean sands with high ef-
fective porosities, such as those encountered in the deepwater
Gulf of Mexico. Unreliable results often occur when apply-
ing Gassmann’s equation to low-porosity or shaley sands or to
carbonate rocks. This is because basic assumptions regarding
frequency or pore connectivity are violated.

In this tutorial, we focus on simple application of equation (1)
and assume that all the model assumptions are met. Additional
pitfalls and sources of error are discussed in a later section.

DEFINITIONS

Prior to delving into Gassmann, we must first define and
briefly discuss the bulk and shear moduli of the rock, as well
as the bulk modulus of the pore-filling fluid. In addition, we
must also discuss techniques for mixing complex mineralogies
and multiple fluids. For excellent and comprehensive reviews
of rock and fluid properties, the reader is referred to Batzle
and Wang (1992), Castagna et al. (1993), Mavko et al. (1998),
and Wang (2001).

Rock properties

Gassmann’s equation relates the saturated bulk modulus of
the rock (Ksat) to its porous frame properties and the proper-
ties of the pore-filling fluid [equation (1)]. The bulk modulus,
or incompressibility, of an isotropic rock is defined as the ratio
of hydrostatic stress to volumetric strain. Values for bulk mod-
ulus can be obtained either by dynamic laboratory measure-
ments of velocities or from analysis of wireline log data (typical
static measurements for the moduli violate the assumption of
infinitesimal strain, and should be avoided for fluid substitu-
tion purposes). Whether from dynamic velocity measurements
or from wireline log data, we can relate the bulk modulus of
a rock, Ksat, to its compressional velocity, shear velocity, and
bulk density through the following relationship:

K = ρB

(
V2

p −
4
3

V2
s

)
, (2)

where ρB is the bulk density of the rock, Vp is its compressional
velocity, and Vs is its shear velocity. Note that this equation is
easily rewritten and solved for Vp. If velocity and density mea-
surements are used to calculate Ksat from wireline log data, the
resulting value will be the bulk modulus of the rock saturated
with the in-situ pore fluid. If velocity measurements are made
on controlled humidity-dried core samples, the calculated bulk
modulus will represent the bulk modulus of the porous rock
framework, K ∗.

The shear modulus (G), or shear stiffness, of a rock is defined
as the ratio of shear stress to shear strain. As with the bulk
modulus, it can be determined by laboratory tests or analysis
of wireline log data, and is given by the following equation:

G = ρBV2
s . (3)
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432 Smith et al.

The shear modulus, G, is also frequently represented by the
symbol µ.

If velocities are in kilometers per second and densities are
in grams per cubic centimeter, the resultant moduli (K and G)
will be in gigapascals (GPa). It is important to recognize that
the saturated bulk modulus of a rock may be sensitive to the
composition of the pore-filling fluid, whereas the shear modu-
lus is insensitive to pore fluid [that is, Gdry=Gwet (Biot, 1956;
Berryman and Milton, 1991; Berryman, 1999)] . Thus, the shear
modulus does not vary during the course of a fluid substi-
tution. This understanding is fundamental to application of
Biot-Gassmann theory in general, and Gassmann’s equation
specifically.

A fourth equation is also necessary for performing fluid sub-
stitutions. This equation describes the relationship between the
fluid density (ρfl), porosity (φ), grain density of the rock matrix
(ρg), and the rock bulk density (ρB):

ρB = ρg(1− φ)+ ρflφ. (4)

This equation is also easily rewritten and solved for porosity.

USING GASSMANN’S EQUATION

Before we begin fluid substitution using equation (1), we
must first determine (1) the porosity of the rock, φ, (2) the
properties of the fluids (Kfl, ρfl) that occupy the pore space,
(3) the bulk modulus of the mineral matrix (K0), and (4) the
bulk modulus of the porous rock frame (K ∗). All four compo-
nents may be defined or inferred through laboratory measure-
ment or analysis of wireline log data.

Porosity

Porosity is routinely calculated from core data or from anal-
ysis of wireline log data [equation (4)] is rewritten and solved
for porosity. Because logging tools do not directly measure
porosity or bulk density, calibration of the log-derived poros-
ity to measured core porosity is highly desirable, and in some
instances (e.g., when dealing with complex lithologies or low-
porosity rocks) may significantly alter the results of a fluid sub-
stitution. Core calibration may also be particularly important
if the formation is invaded by drilling fluids.

Fluid properties

Prior to performing a fluid substitution, we must also know
something about the bulk modulus and density of the in-situ
pore-filling fluid, as well as those of the new fluid we wish
to model. Three approaches are commonly used for deter-
mining these values: (1) the properties are measured directly
(at reservoir temperatures and pressures) from pore fluids re-
covered from the reservoir, (2) the properties are calculated
from equations of state (see McCain, 1990; Danesh, 1998), or
(3) the properties are calculated from an empirical calcula-
tor (e.g., Batzle and Wang, 1992). Note that typical laboratory
analyses of reservoir fluids yield the isothermal properties of
the fluid bulk modulus, whereas wave propagation involves
the adiabatic properties. Generally, the difference between the
two is small unless the fluid has a relatively high gas-oil-ratio
(GOR). For additional detailed information on the behavior
of fluids, the reader is referred to McCain (1990), Batzle and
Wang (1992), and Danesh (1998).

Because there typically are two or more fluid phases occupy-
ing the pore space of a reservoir rock, we must calculate a bulk
modulus and density of the individual fluid end members, and
then mix the fluids according to the following physical rules.
Gassmann’s equation assumes all the pore space is connected
and pore pressure is equilibrated throughout the rock. Thus,
the assumptions of a homogeneous fluid, uniformly distributed
throughout the pore space, allows the bulk modulus of the fluid
mixture to be calculated via the isostress, or Reuss, average:

Kfl =
[ n∑

i=1

Si

Ki

]−1

, (5)

where Kfl is the bulk modulus of the fluid mixture, Ki is the bulk
modulus of the individual phases, and Si is their saturation.
For a simple two-component hydrocarbon-water system, this
equation becomes

Kfl =
[

Sw
Kw

+ (1− Sw)
Khc

]−1

, (6)

where Sw is the water saturation, Kw is the bulk modulus of
the water, and Khc is the bulk modulus of the hydrocarbon.
This equation is easily expanded to account for additional fluid
phases.

For the fluid density, a simple volumetric mix of the end-
member components is used to calculate the density of the
fluid mixture:

ρfl =
n∑

i=1

Siρi , (7)

where Si is the saturation of the individual components, and ρi

is the density of the individual components. For a simple two-
component hydrocarbon-water system, this equation becomes:

ρfl = Swρw + (1− Sw)ρhc, (8)

where ρw is the density of water, and ρhc is the density of the
hydrocarbon. As with equation (6), this equation is easily ex-
panded to include additional fluid phases.

Matrix properties

To calculate the bulk modulus of the mineral matrix, Ko, in-
formation on the composition of the rock must be available.
If core samples are available, mineral abundance may be de-
termined using conventional laboratory techniques [e.g., point
counting of thin sections, X-ray diffraction, or Fourier trans-
form infrared analysis (Sondergeld and Rai, 1993)]. In the ab-
sence of core data, lithology can be approximated from wire-
line logs by simple clay volume (Vclay) analysis and assuming
the two mineral end members are quartz and clay. For more
complex lithologies, however, other techniques must be ap-
plied which allow the volumetric abundance of the mineral
constituents to be estimated (e.g., deterministic techniques,
multilinear regression, neural networks, etc.).

Once the mineral abundances are determined, K0 is cal-
culated via application of Voigt-Reuss-Hill (VRH) averaging
of the mineral constituents [alternatively, Hashin-Shtrikman
(HS) averaging may be used (Hashin and Shtrikman, 1962)].
A VRH average is simply the average of the harmonic (Reuss
average) and arithmetic means (Voigt average) for the min-
eral constituents (Figure 1). If compliant minerals are located

D
ow

nl
oa

de
d 

05
/2

1/
13

 to
 1

30
.1

94
.2

0.
17

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Gassmann Fluid Substitutions 433

at grain contacts, it may be more appropriate to use a simple
Reuss average when calculating K0.

For a simple rock consisting of two minerals, this can be
expressed as

KReuss =
[

F1

K1
+ F2

K2

]−l

, (9)

KVoigt = [F1K1 + F2K2], (10)

Kvrh = 1
2

[KVoigt + KReuss], (11)

where F1 and F2 are the volumetric fractions of the two com-
ponents, and K1 and K2 are the bulk moduli of the two com-
ponents. Note that these equations may be readily expanded
to include additional mineral components. Values for the bulk
moduli of the most common sedimentary minerals are included
in Table 1. See Carmichael (1989) for a more comprehensive
list of seismic rock properties.

Frame properties

Prior to applying Gassmann’s equation, it is necessary to
determine the bulk modulus of the porous rock frame, K ∗. This
is the low-frequency, drained bulk modulus of the rock. Once
determined, K ∗ is held constant during the course of a fluid
substitution. Note that the shear modulus, G [(equation (3)],
is also a frame property of the rock and is therefore also held
constant during the typical fluid substitution process.

K ∗ may be derived either from (1) velocity measurements
on controlled humidity-dried core, (2) application of empiri-
cal relationships or effective medium theory (Budiansky and
O’Connell, 1976; Gregory, 1976; Murphy et al., 1993; Spencer
et al., 1994; Vernik, 1998; Wang, 2000, 2001), or (3) direct calcu-
lation from log data (Zhu and McMechan, 1990). When work-
ing with core data, it is important to recognize that velocities

FIG. 1. Matrix properties are often calculated using a
VRH-average, which is simply the average of the Reuss [equa-
tion (9) and Voigt equation (10)] averages of individual min-
eral end-member components. In this diagram, we mix pure
quartz with wet clay. The Voight mix is the “stiff” upper bound,
whereas the Reuss mix is the “weak” lower bound. The VRH
average is simply the average of the Voigt and Reuss bounds.
The VRH mixing scheme is used to determine the matrix bulk
modulus of the rock (i.e., the bulk modulus of the minerals with
no effective porosity present).

computed from completely dry samples will be too high. This is
because the first few monolayers of water chemically weaken
the rock (Clark et al., 1980). Thus, it is this slightly wet, or
drained, measurement of K ∗ which should be used when per-
forming Gassmann fluid substitutions on core data.

When working with wireline log data, one common approach
for determining K ∗ is to rewrite equation (1) such that (Zhu
and McMechan, 1990)

K ∗ =
Ksat

(
φKo

Kfl
+ 1− φ

)
− Ko

φKo

Kfl
+ Ksat

Ko
− 1− φ

. (12)

Thus, the saturated bulk modulus of the rock (Ksat) for the
in-situ conditions is first calculated using equation (2), and the
other terms (Kfl, Ko, and φ) are calculated using the processes
described above. For purposes of calculating K ∗, Kfl is the bulk
modulus of the pore-filling fluids under in-situ conditions. Note
that uncertainties in porosity, water saturation, fluid properties,
or lithology will lead to errors in the calculated value of K ∗.

Since porosity appears explicitly in equations (1) and (12), it
is tempting to use these equations to model porosity-velocity
relationships. Note, however, that the value of K ∗ depends, in
part, upon the porosity of the rock. Thus, porosity modeling
can only be accomplished if a relationship can be established
between the porous frame properties of the rock and poros-
ity (c.f., Budiansky and O’Connell, 1976; Murphy et al, 1993).
Thus, it is incorrect to use equations (1) and (12) for porosity
modeling without properly adjusting K ∗.

CALCULATING VELOCITIES

Assume we have calculated porosity (φ) along with the ma-
trix and frame properties of the rock (K0, K ∗, and G). This
allows us to use equation (1) to calculate a new saturated bulk
modulus for any desired fluid [the bulk modulus of a fluid can
be calculated using equation (5)].

Next, we must use equations (4) and (7) to calculate a new
bulk density for the rock. Once the new bulk density of the rock

Table 1. Bulk modulus, shear modulus, and bulk density of
common rock forming minerals.∗∗ Values are from Carmichael
(1989).

Bulk Modulus Shear Modulus Density
Mineral (GPa) (GPa) (g/cm3)

Quartz 37 44 2.65
“Average” 37.5 15 2.62

feldspar
Plagioclase 75.6 25.6 2.63

feldspar
clay variable variable variable
Pyrite 147.4 132.5 4.93
Hematite 100.2 95.2 5.24
Calcite 76.8 32 2.71
Dolomite 94.9 45 2.87
Siderite 123.7 51 3.96
Anydrite 44.8 29.1 2.98
∗Note that the bulk modulus of clay minerals are highly vari-
able. For more information on clay properties, see Wang et al.,
2001.
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434 Smith et al.

is calculated, we can rewrite equation (2) and calculate Vp:

Vp =

√√√√√Ksat + 4
3

G

ρB
. (13)

We also rewrite equation (3) and use the new bulk density to
calculate the new shear velocity:

Vs =
√

G

ρB
. (14)

Since the shear modulus, G, is held constant during the course
of a fluid substitution, we see from equation (14) that the shear
velocity of a gas sand will be faster than the shear velocity of
a brine sand. A summary workflow for Gassmann fluid substi-
tutions is included in Table 2.

CAVEATS AND PITFALLS

As with all models, certain assumptions are made during the
fluid substitution process (discussed earlier). Failure to under-
stand these assumptions, or simple application of the wrong
assumptions, can lead to unrealistic and potentially costly an-
swers. In this section, we review some of the additional pitfalls
and that may lead to incorrect models.

Invasion effects

When processing log data for seismic modeling, it is impor-
tant to evaluate the log response for the effects of invasion
(Alberty, 1994, Walls and Carr, 2001). Because water satu-
rations are typically computed from a deep resistivity device
(which looks several feet into the formation), calculated SW val-
ues most likely do not reflect the saturation seen by the sonic
and density logs, which have much shallower depths of investi-
gation. Thus, it may be necessary to apply invasion corrections
to the sonic and density response, if possible.

Invasion corrections require accurate estimates of water sat-
uration in the invaded zone (Sxo), as well as accurate estimates
of porosity. In addition, knowledge of the mud and forma-
tion fluid properties (K and ρ) is necessary. If these data are
available or can be reasonably estimated, it is possible to use
equation (4) and Gassmann’s equation [Equation (1)] to cor-

Table 2. Workflow for application of Gassmann’s equation.

1. Log edits and interpretation.
2. Shear velocity estimation (if necessary).
3. Calculate K and G for the in-situ conditions

[equations (2) and (3)].
4. Calculate K0 based on lithology estimates [VRH or HS

mixing; equations (9)–(11)].
5. Calculate fluid properties (K and ρ).
6. Mix fluids for the in-situ case according to Sw

[equations (5) and (7)].
7. Calculate K ∗ [equation (12)].
8. Calculate new fluid properties (K and ρ) at the desired Sw

[equations (5) and (7)].
9. Calculate the new saturated bulk modulus of the rock

using Gassmann [equation (1)].
10. Calculate the new bulk density [equation (4)].
11. Calculate the new compressional velocity [equation (13)].
12. Calculate the new shear velocity [equation (14)].

rect the log data. If homogeneous saturations are assumed, the
changes to the sonic data will be small (unless Sxo>∼90%).
Sonic corrections may be larger if patchy saturation is assumed
(Endres and Knight, 1989; Packwood and Mavko, 1995), or if
gas is unevenly distributed among pores of different shapes
(Knight and Nolen-Hoeksema, 1990; Castagna and Hooper,
2000).

Dry frame bulk modulus, K∗

Application of Gassmann’s equation is dependent upon ac-
curate determination of the porous frame properties of the
rock (K ∗ and G). In order to calculate the shear modulus, G,
it is only necessary to know the bulk density and shear veloc-
ity of the formation. However, in order to calculate the bulk
modulus of the porous rock frame, certain assumptions must
be made about the matrix and fluid properties (see previous
discussion). Thus, K ∗ is interpretive, in part, and errors in either
matrix or fluid properties will lead to errors in the calculated
value for K ∗. Indeed, in many cases with complex lithology,
K ∗ may be negative (a physical impossibility) or unrealisti-
cally large. Sources of anomalous K ∗ values may be when (1)
porosities or matrix properties are incorrect, (2) fluid proper-
ties are incorrect (McLean and Alberty, 2001), or (3) initial
assessments of water saturation are incorrect. A technique we
recommend for evaluating K ∗ is to compute the ratio of K ∗ to
G. For clean sands, this ratio is usually close to 1 (Spencer et al.,
1994; Wang, 2001), whereas for shaley sands it may approach
2–3. Theoretical models, as well as empirical observations, sup-
port this behavior (Budiansky and O’Connell, 1976; Nur et al.,
1995; Wang, 2001) (Figure 2). Note that this approach may not
work for sands with complex mineralogy or in carbonate rocks.
Indeed, Ramamoorthy and Murphy (1998) show that the K ∗/G
ratio can vary substantially in carbonates.

Patchy saturation

A typical application of Gassmann’s equation assumes that
all fluid phases are immiscible and homogeneously distributed
throughout the pore space (homogeneous saturation). These
assumptions are thought (expected) to be satisfied in systems
which have come to equilibrium over geologic time. However,
this equilibrium distribution of phases may be disturbed dur-
ing drilling, production, and water flooding, and the return to
equilibrium may require time frames longer than those en-
countered during logging or between seismic surveys used in
4D monitoring. Thus, it is reasonable to expect that fluids might
not be uniformly or homogeneously distributed throughout the
pore space in a reservoir or borehole (Brie et al., 1995). Further-
more, in water-wet rock, water is preferentially drawn into the
smaller size pores and cracks, leaving the larger voids or pores
preferentially occupied by the hydrocarbons. This may lead to
a segregation of phases and, perhaps more importantly, the in-
ability of pore pressures to equilibrate in the time scale of wave
propagation. Thus, conditions can and probably do exist where
water and hydrocarbon distribution are not uniform and the
application of the Reuss average for fluid mixture properties
is inadequate. This class of nonuniform phase distributions is
sometimes referred to as “patchy saturation,” and can be mod-
eled if the following assumptions are made: (1) the shear mod-
ulus does not vary as a function of pore fluid; (2) the fluids are

D
ow

nl
oa

de
d 

05
/2

1/
13

 to
 1

30
.1

94
.2

0.
17

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Gassmann Fluid Substitutions 435

spatially distributed in aggregates whose dimensions are much
smaller than the seismic wavelength; and (3) the different pore
fluid “patches” have dimensions which do not allow fluid pres-
sure equalization during the time scale of wave propagation.
Hill (1963) and Berryman and Milton (1991) have developed
the formalism for estimating the effective bulk modulus under
these conditions:

Keff =

 n∑
i=1

xi(
Ki + 4

3
G

)

−1

− 4
3

G, (15)

where n= the number of patches with different fluid content,
xi = the volume fraction of the i th patch, G= the shear modu-
lus of the rock, Ki = the bulk modulus of the rock completely
saturated with the i th fluid, and Keff= the effective bulk mod-
ulus of the rock.

Importantly, Hill (1963) demonstrated that equation (15)
holds for general aggregates, where the shear modulus is the
same for all constituents. In addition, the Backus (1962) av-
erage for isotropic layers having a constant shear modulus re-
duces to equation (15). Note that nonuniform saturation will
have no effect on the calculated shear velocity, because the
shear modulus of a rock is independent of the pore-filling fluid
under the conditions discussed above. Incorporating nonuni-

FIG. 2. Model-based and empirical relationships between the shear modulus, G, and the porous frame bulk
modulus, K ∗. The self-consistent models of Budiansky and O’Connell (1976) and the critical porosity models
of Nur et al. (1995) yield similar results and suggest that K ∗/G should be greater than 1 for shaley sands. The
empirical result of Wang (2001) is also included for comparison. His data show that the K ∗/G ratio should be
approximately equal to 1. Note that for shaley sands and low porosity sands, many of the assumptions discussed
in this tutorial are violated.

form saturation into the Gassmann modeling allows us to con-
tinue to ignore the details of the pore geometry. However, mi-
crostructural details can exist which lead to preferential fluid
segregation that can not be adequately modeled using either
simple Gassmann or patchy saturation (e.g. Endres and Knight,
1989; Castagna and Hooper, 2000).

Figure 3 shows the effect of patchy (nonhomogeneous) satu-
ration on a high-porosity (30%) sand and a lower-porosity sand
(19%); both examples are from wireline log data. The percent
difference between patchy and homogeneous saturation for
both scenarios is shown in Figure 3c. For the lower-porosity
sand case, the difference between patchy and homogeneous
saturation is less than 5%, whereas the difference approaches
12% for the higher-porosity sand case (when Sw approaches
∼80%). Clearly, it becomes important to consider the potential
effects of patchy saturation for high-porosity sands (Figure 3b),
although it will be most problematic for the case of low gas sat-
uration (Sw ≈ 80%). Thus, consideration of nonuniform versus
homogeneous saturation may become particularly important
when applying invasion corrections to wireline log data and in
modeling time-lapse seismic responses.

Internal consistency and saturation modeling

Fluid substitution models should always be carefully eval-
uated for quality and internal consistency. For instance, when
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436 Smith et al.

oil or gas is substituted into a brine sand, bulk densities should
always decrease and shear velocities should always increase
(assuming no adjustments were made to K ∗, G, or porosity).
If the expected changes in Vs or density are not observed to
occur or if the magnitude of change is not what is expected,
errors must exist in one or more of the input parameters. For
density and shear velocity, these errors will most likely be in
grain density or porosity.

FIG. 3. Homogeneous versus nonhomogeneous saturation for
a gas-brine system. (a) High-porosity sand, (b) low-porosity
sand, and (c) percent difference plot. Both models are de-
rived from wireline log data. Note from (c) that patchy sat-
uration may be particularly problematic at low gas saturations
(Sw ≈ 0.80). Patchy saturation [or other dispersion mecha-
nisms (Brie et al., 1995; Castagna and Hooper, 2000)] may also
be important to consider when correcting wireline sonic logs
for invasion.

To aid as a quality-control check on fluid substitutions and
in order to best understand how velocities and densities should
vary for any given sand, it is often instructive to generate
saturation models, where Gassmann’s relationships are used
to calculate Vp, Vs, and ρB as a function of water saturation
(Figure 4). These types of models are particularly important
for understanding the rare case when compressional velocities
for a gas sand are faster than those for oil in the same sand
(Figure 4b). This situation can occur when the bulk density de-
creases at a faster rate than the saturated bulk modulus as gas
saturation is increased.

CONVENTIONAL APPLICATION

Conventional application of Gassmann’s equation provides
the interpreter with a powerful tool for evaluating the various
fluid scenarios which might give rise to an AVO anomaly (e.g.,
Sbar, 2000). In this paper, we use velocities and densities from
a gas sand in a deepwater Gulf of Mexico well to illustrate
conventional application of Gassmann’s equation (Figure 5).
Using the processes described in this paper, we replace the

FIG. 4. Saturation models generated using Gassmann’s equa-
tion. (a) High-porosity sand from the deepwater Gulf of
Mexico, (b) low-porosity sand from South America. Note the
small differences between the gas and oil case at low water
saturations (Sw < 0.30). Also note from (b) that the gas sand
velocity at low values of Sw is actually faster than the oil sand
velocity.
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Gassmann Fluid Substitutions 437

in-situ gas with brine (Figure 5). Inferred fluid properties are
included in Figure 5.

Large differences are observed in the density and compres-
sional velocity response between gas and brine, whereas much
smaller differences are observed in shear velocity. Note, how-
ever, that the shear velocity for gas is faster than the shear ve-
locity for brine. Examination of equation (14) shows that this
behavior is to be expected. Also note from this figure that the
calculated porous frame bulk modulus [K ∗, calculated using
Equation (12)] is nearly equal in value to the shear modulus.
This is to be expected for clean quartz sands.

In Figure 6, we cross-plot acoustic impedance and Poisson’s
ratio. We note from this that the brine sands and shale are

FIG. 5. Gas sand from a deepwater Gulf of Mexico well (water depth is approximately 1000 m). In relatively
high-porosity rocks such as these, there is a large contrast between the gas and brine response. Also included in
this plot are curves showing the shear modulus, G, and the dry frame bulk modulus, K ∗. Note that K ∗ is nearly
equal to G for sands with low clay contents, whereas it may be much higher than G for shaley sands.

distinct from the gas response. In the analysis of actual seis-
mic data, it is this deviation from the brine and shale “back-
ground” trend which will allow us to identify gas or oil anoma-
lies (see Castagna and Swan, 1997). Construction of this type
of crossplot from petrophysical data also allows us to quantify
the difference between different fluid scenarios. It is also com-
mon to replace Poisson’s ratio in these crossplots with elas-
tic or shear impedance (Connolly, 1999; Vernik and Fisher,
2001).

Simple interface models are also constructed for this sand
(Figure 7) using Shuey’s three-term approximation (Shuey,
1985). Notice that the in-situ gas case generates a positive
class III AVO response (negative gradient), whereas the brine
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438 Smith et al.

case generates a negative AVO response (positive gradient).
In both cases, large differences in intercept are observed.

The interface models shown in Figure 7 are derived from in-
terval averages calculated from the log data, and therefore rep-
resent a single point reflection with infinite half-spaces above
and below the reflector. This allows us to develop an under-
standing of the AVO response these rocks are capable of gen-
erating in the absence of complications resulting from sand
thickness and geometry, seismic frequency, and the shape of
the seismic wavelet. Unfortunately, the response calculated
from these simple interface models is not always representa-
tive of the observed response. Thus, we must scale up our data
to the seismic bandwidth for a direct comparison to seismic
data.

Figure 8 is a comparison of the offset synthetic response for
both gas and brine. For these models, a simple bandpass filter
was applied with a frequency spectrum of 5–10–40–50 HZ. Note
that the AVO response is still observed at the seismic band-
width. Clearly, AVO (and other AVO-based attributes) could
be used to help differentiate gas and brine for this particular
example. Caution should always be used, however, when com-
paring these types of models to the actual seismic gathers, as
improper processing of the seismic data can significantly alter
the amplitude response of the data.

CONCLUSIONS

Gassmann’s equations provide the seismic interpreter with
a powerful framework for evaluating various fluid scenarios

FIG. 6. Acoustic impedance versus Poisson ratio crossplot of
the well data shown in Figure 5. Brine sands and shale can
be used to define the “background” trend against which gas
anomalies may be quantified (Castagna and Swan, 1997). The
magnitude of deviation from the shale and brine sand “back-
ground” will be variable, and is largely dependent on rock type
and quality. For low-porosity sands, small differences are typ-
ically observed between the “background” trend and the gas
response.

which might give rise to an observed seismic anomaly. We
have attempted in this tutorial to provide the reader with a
practical understanding of the “nuts-and-bolts” behind con-
ventional application of Gassmann. However, this technology
is often perceived as being “black box,” and is frequently ap-
plied via commercial software packages without much knowl-
edge of how the calculations are being made or where the
potential pitfalls may occur. In particular, invasion correc-
tions and proper determination of the porous frame properties
(in particular, K ∗) are critical for generating internally con-
sistent and meaningful results. Failure to be aware of these
problems can, and frequently does, lead to models which are
wrong. Once reliable models are obtained, the user can quan-
tify the differences between the hydrocarbon and brine case
by crossplot analysis, interface modeling, and offset synthetic
analysis.
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FIG. 7. Interface models [Shuey’s three-term approximation
(Shuey, 1985)] for the sand shown in Figure 5. Note that large
differences in intercept and gradient are observed between the
gas and brine cases. The in-situ response is for gas, and is calcu-
lated using the measured velocities and density from wireline
log data. The brine response is calculated using Gassmann’s
equation. RHOB= bulk density.
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Gassmann Fluid Substitutions 439

FIG. 8. Offset synthetics for gas and brine over the interval shown in Figure 5. Both models use the same color
scale. These models show that even at the seismic bandwidth (5–10–40–50 HZ), a strong AVO response is
generated for gas.
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