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S U M M A R Y
A time-domain, spectral finite-element approach is presented for computing the electromag-
netic induction response of a 2-D heterogeneous conducting sphere to transient external current
excitation. This method is appropriate for determining the induced spatiotemporal electro-
magnetic signature at satellite altitudes associated with the upper and mid-mantle conductivity
heterogeneities. The new approach is based on an existing frequency-domain 2-D spectral
finite-element technique modified by the implementation of a time-stepping algorithm. To
validate the time-domain approach and the associated numerical code, transient responses of
concentrically and eccentrically nested spheres to ring-current excitations are computed using
the inverse Fourier transform of analytical and semi-analytical, frequency-domain solutions.
We show that the time-domain approach is particularly appropriate when the external cur-
rent excitation has a transient feature. Compared with the frequency-domain method, it may
significantly reduce the computation time while maintaining the time resolution.

Key words: electrical conductivity, electromagnetic induction, explicit time differencing,
linear finite elements, spherical harmonics.

1 I N T RO D U C T I O N

Electrical conductivity is an important deep-Earth physical prop-
erty, the spatial variations of which contain fundamental information
concerning geodynamic processes such as the subduction of slabs,
the ascent of mantle plumes and the convection of anomalously hot
mantle material. The electrical conductivity of the upper to mid man-
tle is conventionally studied using frequency-domain geomagnetic
induction techniques. The traditional approach involves the estima-
tion of surface impedances from land-based observatory recordings
of geomagnetic time variations in the period range of several hours
to several days. The underlying electrical conductivity is extracted
from the measured impedances by means of forward modelling
and inversion. The task is difficult, however, since the observatory
network is sparse and irregularly distributed over the globe, while
the time-series themselves are intermittent and of highly variable
quality.

At the present time, there exists an unprecedented opportunity
to use satellite magnetometer records to improve our knowledge of
global electrical conductivity. The recently launched Oersted (1999
February) and CHAMP (2000 July) satellites are returning high-

∗On leave from: Department of Geophysics, Faculty of Mathematics and
Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech
Republic.

precision vector and scalar measurements of the geomagnetic field
from low-Earth orbits. A magnetic satellite such as Oersted (e.g.
Neubert et al. 2001) samples both the spatial and the temporal vari-
ations associated with fluctuating magnetospheric, ionospheric and
internal current systems. Unlike land-based observatories, satellites
acquire data with no regard for oceans and continents, hemispheres
or political boundaries. Satellite induction data are more difficult to
analyse than their terrestrial counterparts, which show only temporal
variations.

To quantitatively model 3-D induction effects in the geomag-
netic field at satellite altitudes, a transient 3-D electromagnetic in-
duction in a heterogeneous sphere needs to be simulated. Several
techniques are available to model the geomagnetic response of a
3-D heterogeneous sphere in the Fourier-frequency domain, each
based on a different numerical method: spherical thin-sheet analy-
sis (Fainberg & Singer 1980; Kuvshinov et al. 1999a), finite-element
analysis (Everett & Schultz 1996; Weiss & Everett 1998), integral-
equation analysis (Kuvshinov et al. 1999b), finite-difference anal-
ysis (Uyeshima & Schultz 2000) and spectral finite-element
analysis Martinec (1999). Progress has also been made in estimat-
ing frequency-domain responses from satellite data (Didwall 1984;
Oraevsky et al. 1993; Olsen 1999). The methods commonly average
out spatial geomagnetic variations. To better utilize the full informa-
tion content of satellite induction data, and thus enhance resolution
of conductivity variations in the Earth’s mantle, a spatiotemporal
analysis of geomagnetic induction is required.
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In this paper, we will modify the existing frequency-domain 2-D
hybrid spectral finite-element approach Martinec (1997) by the im-
plementation of a time-stepping algorithm and model the transient
geomagnetic response of a 2-D heterogeneous sphere directly in the
time domain. The main purpose of this paper is to present the new
time-domain, spectral finite-element approach in a transparent way.
We will also validate the theory and associated numerical code by
comparing the numerical results with a semi-analytical solution to
1-D and 2-D forward modelling of transient electromagnetic induc-
tion in a heterogeneous sphere consisting of a radially and axially
symmetric configuration of nested spheres.

2 C L A S S I C A L A N D W E A K
F O R M U L AT I O N S O F T H E
E L E C T RO M A G N E T I C I N D U C T I O N
P RO B L E M

Our intention is to study the response of a conducting spherical
Earth with an axisymmetric electrical conductivity distribution to
an external electromagnetic excitation. This problem can be formu-
lated mathematically as an initial, boundary-value problem for the
magnetic diffusion equation. Martinec (1997) solved this problem
in the Fourier-frequency domain using the spectral finite-element
approach. In the following sections, we will modify this approach
to compute the electromagnetic response in the time domain.

Let us assume that a conducting sphere G with electrical conduc-
tivity σ approximates a heterogeneous Earth. Let the surrounding
region of G be a perfect insulator, representing the Earth’s atmo-
sphere in the near-space environment. The model G is excited by
a specified source of external origin. The magnetic induction B0

outside the Earth (the subscript 0 denotes vacuum) is simply the
negative gradient of the magnetic scalar potential U ,

B0 = −grad U outside G, (1)

where U satisfies the Laplace equation in the vacuum outside G. We
assume that the external electromagnetic sources are axisymmetri-
cally distributed. U is therefore an axisymmetric scalar and can be
represented in terms of zonal scalar spherical harmonics Y j(ϑ):

U (r, ϑ, t) = a
∞∑
j=1

[( r

a

) j
G(e)

j (t)+
(a

r

) j+1
G(i)

j (t)

]
Y j (ϑ) for r ≥ a,

(2)

where r, ϑ and ϕ are spherical coordinates and G(e)
j (t) and G(i)

j (t)
are the time-dependent, zonal spherical harmonic coefficients of the
external electromagnetic sources and the magnetic field generated
by the induced eddy currents in G, respectively. Note that the ax-
isymmetric geometry allows us to abbreviate the notation and drop
the azimuthal index m = 0 for spherical harmonics.

Using the gradient formula for spherical harmonics (Varshalovich
et al. 1989), the magnetic induction in the vacuum (r ≥ a) reads as

B0(r, ϑ, t) = −
∞∑
j=1

[√
j(2 j + 1)

( r

a

) j−1
G(e)

j (t)Y j−1
j (ϑ)

+ √
( j + 1)(2 j + 1)

(a

r

) j+2
G(i)

j (t)Y j+1
j (ϑ)

]
, (3)

where Y j−1
j (ϑ) and Y j+1

j (ϑ) are the zonal spheroidal vector spheri-
cal harmonics. For the following considerations, it is convenient to
express the magnetic induction B0 in terms of the toroidal vector
potential A0 such that B0 = rot A0. Using the rotation formulae for
vector spherical harmonics Varshalovich et al. (1989), the spherical

harmonic representation of the toroidal vector potential in a vacuum
is

A0(r, ϑ, t) = ia
∞∑
j=1

[√
j

j + 1

( r

a

) j
G(e)

j (t)

−
√

j + 1

j

(a

r

) j+1
G(i)

j (t)

]
Y j

j (ϑ), (4)

where i = √−1 and Y j
j (ϑ) are the zonal toroidal vector spherical

harmonics.
In this paper, we will confine ourselves to Earth models with an

axially symmetric distribution of electrical conductivity, that is

σ = σ (r, ϑ) in G. (5)

For the axisymmetric geometry of external sources and the conduc-
tivity model, it is advantageous to formulate the initial, boundary-
value problem of the global-scale electromagnetic induction in the
Earth in terms of the toroidal vector potential. The classical mathe-
matical formulation is as follows. Find the toroidal vector potential
A ∈ C2(G) × C1(〈0, ∞)) such that B = rot A and

1

µ
rot rot A + σ

∂A

∂t
= 0 in G, (6)

div A = 0 in G, (7)

n × rot A = b0 on ∂G, (8)

where the conductivity σ ≥ 0 is a continuous function in G, σ ∈
C(G), µ > 0 is the constant permittivity of vacuum, and b0(ϑ , t) ∈
C2(∂G) × C1(〈0, ∞)) is the tangential component of magnetic
induction B on the external surface ∂G at time t ≥ 0,

b0 := n × B0|∂G , (9)

and n is the normal to ∂G. At the internal interfaces, where the
electrical conductivity changes discontinuously, the continuity of the
tangential components of magnetic induction end electric intensity
are required (Weaver 1994 , eqs 1.82 and 1.83). The various function
spaces are listed in Table 1.

Let us turn our attention to the weak (variational) formulation of
the problem. We first introduce the solution space V as

V := {f | f ∈ L2(G), rot f ∈ L2 (G), div f = 0 in G} . (10)

Following Martinec (1997), the weak formulation of the initial,
boundary-value problem, eqs (6)–(8), consists of finding the po-
tential A ∈ V × C1(〈0, ∞)) such that at a fixed time it satisfies the
following variational equality:

a(A, δA) + b(A, δA) = F(δA) ∀δA ∈ V, (11)

Table 1. List of function spaces used.

C(G) Space of the continuous
functions defined in G

C1(〈0, ∞)) Space of the functions for which the classical
derivatives up to first order
are continuous on the
interval 〈0, ∞)

C2(G) Space of the functions for which the classical
derivatives up to second order
are continuous in
the domain G

L2(G) Space of square-integrable functions in the domain G
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where the sesquilinear forms a(· , ·), b(· , ·) and the functional
F(·) are defined as follows:

a(A, δA) := 1

µ

∫
G

(rotA · rot δA) dV, (12)

b(A, δA) :=
∫

G
σ (r, ϑ)

(
∂A

∂t
· δA

)
dV, (13)

F(δA) := − 1

µ

∫
∂G

(b0 · δA) d S, (14)

and A = Re A − iIm A. We can see that the assumptions imposed
on the potential A are weaker in the weak formulation than in the
classical formulation. Moreover, the assumptions on the electrical
conductivity σ and the boundary data b0 can also be made weaker
in the latter formulation. It is sufficient to assume that the electrical
conductivity is a square-integrable function in G, σ ∈ L2(G), and
the boundary data at a fixed time is a square-integrable function on
∂G, b0 ∈ L2(∂G) × C1(〈0, ∞)).

3 S P H E R I C A L H A R M O N I C
PA R A M E T R I Z AT I O N

For the axisymmetric geometry of external sources and the con-
ductivity model, Martinec (1997) showed that the induced electro-
magnetic field is axisymmetric and the associated toroidal vector
potential is an axisymmetric vector. It may be represented in terms
of zonal toroidal vector spherical harmonics Y j

j (ϑ). Their explicit
forms are as follows (Varshalovich et al. 1989):

Y j
j (ϑ) := −i Pj1(cos ϑ)eϕ, (15)

where P j1(cos ϑ) is the associated Legendre function of degree j
and order m = 1, and eϕ is the spherical base vector in the ϕ-
direction. An important property of the functions Y j

j (ϑ) is that they
are divergence-free:

div
[

f (r )Y j
j (ϑ)

]
= 0, (16)

where f (r ) is a differentiable function.
The required toroidal vector potential A and test functions δA

can be expressed in terms of the functions Y j
j (ϑ) as follows:

{
A
δA

}
=

∞∑
j=1

{
A j

j (r, t)

δA j
j (r )

}
Y j

j (ϑ), (17)

where A j
j (r , t) and δA j

j (r ) are spherical harmonic expansion coef-

ficients. The divergence-free property of functions Y j
j (ϑ) implies

that both the toroidal vector potential A and test functions δA are
divergence-free. Therefore, the parametrization (17) of potentials
A and δA automatically satisfies the requirement on the functions
from the solution space V to be divergence-free.

Spherical harmonic parametrizations of the sesquilinear forms
a(· , ·), b(· , ·) and the functional F(·) are Martinec (1997)

a(A, δA) = 1

µ

∞∑
j=1

j+1,2∑
�= j−1

∫ a

0
R�

j (A; r )R�
j (δA; r )r 2 dr, (18)

b(A, δA) =
∫ a

0
E(A, δA; r )r 2 dr, (19)

F(δA) = − ia2

µ

∞∑
j=1

√
j( j + 1)

[
G(e)

j (t) + G(i)
j (t)

]
δA j

j (a), (20)

where R�
j (A; r ) are the radial parts of the rot of A,

R j−1
j (A; r ) = i

√
j + 1

2 j + 1

(
d

dr
+ j + 1

r

)
A j

j (r ),

R j+1
j (A; r ) = i

√
j

2 j + 1

(
d

dr
− j

r

)
A j

j (r ), (21)

and E denotes the angular part of the ohmic energy,

E(A, δA; r ) = 2π

∫ π

0
σ (r, ϑ)

∞∑
j1=1

∂ A
j1
j1

(r, t)

∂t
Pj1,1(cos ϑ)

×
∞∑

j2=1

δA j2
j2

(r )Pj2,1(cos ϑ) sin ϑdϑ.
(22)

4 T O RO I DA L E L E C T R I C I N T E N S I T Y

The solution of the electromagnetic initial, boundary-value problem
must satisfy yet another boundary condition that the toroidal com-
ponent of electric intensity must pass through the Earth’s surface
continuously,

E = E0 on ∂G, (23)

where E and E0 are the toroidal electric intensities in model G and
the vacuum, respectively. Because of the axially symmetric config-
uration of electrical conductivity and external sources, the toroidal
electric intensity can be written as the negative time derivative of
the toroidal vector potential, E = −∂A/∂t . In view of this, the
boundary condition (23) can alternatively be expressed in the form

A = A0 on ∂G. (24)

Substituting for the spherical harmonics representation of A from
eq. (17) and for A0 from eq. (4) results in the formula for unknown
coefficients G(i)

j (t), which are expressed in terms of the prescribed
spherical harmonics G(e)

j (t) of external sources and the coefficients
A j

j (a, t) of the required solution:

G(i)
j (t) = j

j + 1
G(e)

j (t) + i

a

√
j

j + 1
A j

j (a, t). (25)

The last relation enables us to eliminate the unknown coefficients
G(i)

j (t) from the system of eqs (11). The modified system has the
form

a1(A, δA) + b(A, δA) = F1(δA) ∀δA ∈ V, (26)

where the new sesquilinear form a1(· , ·) and the new functional
F1(·) are expressed in terms of the original quantities and the coef-
ficient A j

j (a, t) as follows:

a1(A, δA) = a(A, δA) + a

µ

∞∑
j=1

j A
j

j (a, t)δA j
j (a), (27)

F1(δA) = − ia2

µ

∞∑
j=1

√
j

j + 1
(2 j + 1)G(e)

j (t)δA j
j (a). (28)

There is a difference in principle between the original eq. (11) and
the modification (26) in prescribing the boundary data on the exter-
nal surface ∂G. Eq. (11) requires the prescription of the horizontal
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components of the total magnetic induction in a vacuum on ∂G.
Inspecting the functional F(·) in eq. (20) shows that this require-
ment leads to the necessity to define linear combinations G(e)

j (t) +
G(i)

j (t), j = 1, 2, . . . , as input boundary data for solving eq. (11).
In contrast to this scheme, the functional F1(·) on the right-hand
side of eq. (26) only contains the spherical harmonic coefficients
G(e)

j (t), see eq. (28). Hence, to solve eq. (26), only the spherical har-
monic coefficients G(e)

j (t) of the external electromagnetic source are
to be prescribed while the spherical harmonic coefficients G(i)

j (t) of
the induced magnetic field within the Earth are determined after
solving eq. (26) by means of relation (25). The former scheme is
advantageous in the case where there is no possibility of separating
the external and internal parts of surface magnetic induction obser-
vations by spherical harmonic analysis. The latter scheme can be
applied if such an analysis can be carried out or in the case when the
external magnetic source is defined by a known physical process.

5 F I N I T E - E L E M E N T A P P RO X I M AT I O N
OV E R T H E R A D I A L C O O R D I N AT E

We divide the range of integration 〈0, a〉 into P subintervals by the
nodes 0 = r1 < r2 < · · · < rP < rP+1 = a. The piecewise linear
basis functions defined by the relation ψ k(r i) = δki can be used as
the basis function of the Sobolev functional space W 1

2(0, a). Note
that only two basis functions are non-zero on the interval rk ≤ r ≤
rk+1, namely

ψk(r ) = rk+1 − r

hk
, ψk+1(r ) = r − rk

hk
, (29)

where hk = rk+1 − rk . Since both the unknown solution A j
j (r , t)

and test functions δA j
j (r ) are elements of this functional space, they

can be approximated by piecewise linear finite elements ψ k(r ),{
A j

j (r, t)

δA j
j (r )

}
=

P+1∑
k=1

{
A j,k

j (t)

δA j,k
j

}
ψk(r ). (30)

6 F R E Q U E N C Y- D O M A I N A N D
T I M E - D O M A I N S O L U T I O N S

We now present two approaches to solving the initial, boundary-
value problem of electromagnetic induction with respect to the time
variable t.

We first solve the variational equality (26) in the Fourier-
frequency domain assuming that all field variables have a harmonic
time dependence of the form eiωt .1 Denoting the Fourier image of
A by Â, the weak formulation of electromagnetic induction in the
frequency domain is described by the equation

a1(Â, δÂ) + iωb1(Â, δÂ) = F1(δÂ) ∀δÂ ∈ V, (31)

where the sesquilinear form b1(Â, δÂ) is defined by

b1(Â, δÂ) :=
∫

G
σ (r, ϑ)(Â · δÂ) dV . (32)

Having solved eq. (31) for Â, the solution is transformed back to
the time domain by applying the inverse Fourier transform.

Alternatively, the initial, boundary-value problem can be solved
directly in the time domain. We have several choices for representing

1The corresponding Fourier-transform equations are
f (t) = ∫ ∞

−∞ F(ω)eiωt dω, F(ω) = 1
2π

∫ ∞
−∞ f (t)e−iωt dt .

the time derivative of the toroidal vector potential A in the sesquilin-
ear form b(· , ·). For simplicity, we will choose the explicit Euler
differencing scheme Press et al. (1992):

∂A

∂t
≈ A(r, ϑ, ti+1) − A(r, ϑ, ti )

ti+1 − ti
=:

i+1A − iA


ti
, (33)

where iA denotes the values of A at discrete time levels t0 < t1 <

· · · < ti+1 < · · · . Eq. (26), which is now solved at each time level
t i, i = 0, 1, . . . , has the form

a1(i+1A, δA) + 1


ti
b1(i+1A, δA) = 1


ti
b1(iA, δA)

+ F1

(i+1
G(e)

j , δA
) ∀δA ∈ V, (34)

where the sesquilinear form b1(· , ·) is defined by eq. (32).

7 S P E C T R A L F I N I T E - E L E M E N T
S O L U T I O N

Finally, we are ready to introduce the spectral finite-element solution
to the initial, boundary-value problem of electromagnetic induction.
We construct the functional space

Vh =
{

δA =
jmax∑
j=1

P+1∑
k=1

δA j,k
j ψk(r )Y j

j (ϑ)

}
, (35)

where jmax and P are finite cut-off degrees. The Galerkin method
for approximating the solution to the problem (31) in the frequency
domain consists in finding Âh ∈ Vh such that

a1(Âh, δÂh) + iωb1(Âh, δÂh) = F1(δÂh) ∀δÂh ∈ Vh . (36)

The discrete solution Âh of the Galerkin system of linear alge-
braic equations will be called the frequency-domain, spectral finite-
element solution.

Likewise, the solution to the problem (34) in the time domain
at a fixed time t i+1 is approximated by i+1Ah ∈ V h satisfying the
equation

a1

(
i+1Ah, δAh

) + 1


ti
b1

(
i+1Ah, δAh

) = 1


ti
b1

(
iAh, δAh

)
+ F1

(
i+1G(e)

j , δAh

)
∀δAh ∈ Vh . (37)

The discrete solution i+1Ah of this system of equations is called the
time-domain, spectral finite-element solution.

Inspecting eqs (36) and (37) from a numerical point of view,
we can make the following remark. For a desired frequency ω

and time t i+1, the computation times required to set up the ma-
trices of the system of equations (36) and (37) are the same. More-
over, the computation time for calculating the sesquilinear form
b1(· , ·) on the right-hand side of eq. (37) is significantly shorter
than the time needed for solving this system of equations. Hence,
the computation time required for solving eq. (36) for a frequency
ω is slightly shorter, but comparable to the time needed for solving
eq. (37) at time t i+1.

8 VA L I DAT I O N

Before modelling the electromagnetic induction response of the
Earth with a realistic conductivity structure, we will, as a first step,
verify the time-domain, spectral finite-element approach against
other solutions to the forward problem of global-scale electromag-
netic induction in a heterogeneous spherical Earth. We therefore
compare our results with analytical and semi-analytical solutions
based on different methods of solution.
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8.1 A mathematical model of external sources
of a magnetic storm

We consider that the global-scale electromagnetic induction process
in the Earth is induced by an external magnetic storm. We first
introduce a simple mathematical model of its spatial and temporal
structure.
During large geomagnetic storms, charged particles in the near-
Earth plasma sheet are energized and injected deeper into the mag-
netosphere, producing the storm-time ring current. At mid-latitudes
on the Earth’s surface the magnetic potential due to this magneto-
spheric current has a nearly axisymmetric structure. It changes with
colatitude predominantly as the cosine of the colatitude, that is, as
the Legendre function P10(cos ϑ) (Eckhardt et al. 1963; Banks &
Ainsworth 1992). The time development of a magnetic storm also
follows a characteristic pattern. Its initial phase is characterized by
a fast intensification of the ring current with a timescale of several
hours. The following main phase of a storm, which can last as long
as 2–2.5 d in the case of severe storms, is characterized by the occur-
rence of multiple intense substorms, with the associated auroral and
geomagnetic effects. The final recovery phase of a storm is charac-
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Figure 1. Transient ring-current excitation function G(e)
1 (t) (in nT) with ring-current decay constant τ = 1 d (amplitude A = 0.01 nT s−1) and τ = 10 d (A =

0.001 nT s−1), respectively, and their Fourier spectra G(e)
1 (ω) (in nT s).

terized by an exponential relaxation of the ring current to its usual
intensity with a characteristic timescale of several days (Hultqvist
1973).

The complex structure of a magnetic storm will be described by a
simple mathematical model that characterizes the basic features of a
storm. The storm ring current is considered to be axisymmetric with
a P10(cos ϑ) spatial structure. Consequently, all spherical harmonics
of the external scalar magnetic potential are equal to zero except for
the first-degree coefficient G(e)

j (t). After the onset of a magnetic
storm at t = 0, the ring current quickly peaks and then decays
exponentially. This time evolution is described by the function

G(e)
1 (t) =

√
4π

3
Ate−t/τ , (38)

where
√

4π/3 is the inverse norm of P10(cos ϑ), A is the amplitude
and τ is the relaxation time describing the recovery phase of a mag-
netic storm. Values typical of a moderate to large geomagnetic storm
range from τ = 1 day to 1 week (McPherron 1995). The Fourier im-
age of G(e)

1 (t) has an analytical form given by (Ben-Menahem &
Singh 1981)
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G(e)
1 (ω) =

√
4π

3

A

2π

α2 − ω2 − 2iαω

(α2 + ω2)2
, (39)

where ω is the angular frequency and α = 1/τ .
Scaling the relaxation time τ by a factor of k, it can be shown that

the functions (38) and (39) satisfy the following properties:

G(e)
1

(
t

k
; k A,

τ

k

)
= G(e)

1 (t ; A, τ ),

G(e)
1

(
kω; k2 A,

τ

k

)
= G(e)

1 (ω; A, τ ). (40)

The scaling property in the time domain tells us that, scaling the t-
axis by a factor of k, two excitation functions of the form (38) with
relaxation times that differ by the factor k equal to each other if the
amplitudes of these functions are scaled by a factor of k. The scaling
property in the frequency domain can be interpreted analogously.
Fig. 1 shows the excitation function (38) and its Fourier image (39)
for two relaxation times, τ = 1 d (A = 0.01 nT s−1) and τ = 10 d
(A = 0.001 nT s−1). The scaling property (40) is clearly demon-
strated. If not specified otherwise, we will use τ = 10 d and A =
0.001 nT s−1 in the following test examples.

8.2 Homogeneous and two-layer spheres

The time-domain, spectral finite-element solution is first checked by
comparing it with analytical solutions for electromagnetic induction
in a homogeneous sphere and in a two-layer sphere. The relevant an-
alytical solution for the ϕ-component of the toroidal vector potential
in the frequency domain is

Aϕ(r, ϑ, ω) = − 3

2k

j1(kr )

j0(ka)
sin ϑ

√
3

4π
G(e)

1 (ω) (41)

for a homogeneous sphere with radius a and conductivity σ , where
k2 = −iωµσ . For a two-layer sphere, the solution is

Aϕ(r, ϑ, ω) =

− 3

2k1

j1(k1r ) + (k1, k2, b)y1(k1r )

j0(k1a) + (k1, k2, b)y0(k1a)
sin ϑ

√
3

4π
G(e)

1 (ω), (42)

where the inner sphere has radius b and conductivity σ 2 and the outer
sphere radius a and conductivity σ 1. Eq. (42) is valid in the outer
sphere, that is for radial distances b ≤ r ≤ a. We do not present an
analytical formula for the potential Aϕ in the inner sphere. In eqs (41)
and (42), j j(kr ) and yj(kr ) are the spherical Bessel functions of the
first and second kind, respectively Abramowitz & Stegun (1965),
while (k1, k2, b) is the reflection coefficient:

(k1, k2, b) := − k1 j0(k1b) j1(k2b) − k2 j1(k1b) j0(k2b)

k1 y0(k1b) j1(k2b) − k2 y1(k1b) j0(k2b)
, (43)

with k2
i = −iωµσ i , i = 1, 2. The corresponding r- and ϑ-

components of the magnetic induction B in the frequency domain
are

Br (r, ϑ, ω) = − 3

kr

j1(kr )

j0(ka)
cos ϑ

√
3

4π
G(e)

1 (ω),

Bϑ (r, ϑ, ω) = 3

2kr

kr j0(kr ) − j1(kr )

j0(ka)
sin ϑ

√
3

4π
G(e)

1 (ω) (44)

for a homogeneous sphere, and
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Figure 2. The real and imaginary parts of the surface magnetic-induction
storm responses Aϕ (a, ϑ , ω) (in nT m s), Br(a, ϑ , ω) and Bϑ (a, ϑ , ω)
(in nT s) of a sphere to ring current excitation. Three sphere configura-
tions are considered: (a) a homogeneous sphere with radius a = 6371 km
and electrical conductivity σ = 0.1 S m−1 (dashed lines), (b) a two-layer
sphere, in which the inner sphere has a radius b = 3500 km and conductivity
σ 2 = 10 s m−1 and the outer sphere radius a = 6371 km and conductiv-
ity σ 1 = 0.1 s m−1 (thin solid lines) and (c) eccentrically nested spheres
having the same geometrical and physical parameters as for the two-layer
sphere, but with the inner sphere now translated along the z-axis by d =
2700 km (thick solid lines). Results apply to the colatitude ϑ = 30◦. In all
figures, Aϕ is normalized by a real constant factor of 106 to simplify the
plotting.
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Figure 3. The surface magnetic-induction storm response function Aϕ (a, ϑ , t) (in nT m) at the colatitude ϑ = 30◦ as a function of time after the onset of a
magnetic storm (38) for four different numbers of spectral samples, Nω = 2M (dots connected by a thin line). The responses Aϕ (a, ϑ , t) are computed by the
inverse fast Fourier transform of the analytical solution (41) with a fixed frequency step 
ω = 5 × 10−8 rad s−1. The corresponding time step is calculated
according to relation 
t = 2π/Nω
ω. The inverse Fourier transform of the frequency-domain solution is compared with the time-domain solution (37) for
the cut-off degree jmax = 1, the number of finite elements P = 60, and time step 
t = 0.09 d (thick lines). The results apply to a homogeneous sphere of radius
a = 6371 km and conductivity σ = 0.1 s m−1.

Br (r, ϑ, ω) =

− 3

k1r

j1(k1r ) + (k1, k2, b)y1(k1r )

j0(k1a) + (k1, k2, b)y0(k1a)
cos ϑ

√
3

4π
G(e)

1 (ω),

Bϑ (r, ϑ, ω) = 3

2k1r

× k1r j0(k1r ) − j1(k1r ) + (k1, k2, b)[k1r y0(k1r ) − y1(k1r )]

j0(k1a) + (k1, k2, b)y0(k1a)

× sin ϑ

√
3

4π
G(e)

1 (ω) (45)

for a two-layer sphere (b ≤ r ≤ a). Fig. 2 shows the real and imag-
inary parts of the ϕ-component of the surface toroidal vector mag-
netic potential and the r- and ϑ-components of the surface magnetic
induction at colatitude ϑ = 30◦ as a function of angular frequency
ω for a homogeneous sphere (dashed lines) and a two-layer sphere
(thin solid lines).

The analytical solutions (41)–(45) in the frequency domain are
then transformed to time-domain solutions by applying the inverse

Fourier transform. Since the solutions in the time domain are rep-
resented by real and causal functions, the inverse Fourier transform
reduces to the cosine transform.2 To implement this transform nu-
merically, the limits of the Fourier images for ω → 0 need to be
specified. Taking into account the limits of the spherical Bessel func-
tions for the case when the argument approaches zero (Abramowitz
& Stegun 1965), we find that

lim
ω→0

⎧⎨
⎩

Aϕ(r, ϑ, ω)
Br (r, ϑ, ω)
Bϑ (r, ϑ, ω)

⎫⎬
⎭ =

⎧⎨
⎩

− 1
2 r sin ϑ

− cos ϑ

sin ϑ

⎫⎬
⎭ A

2πα2
(46)

for both a homogeneous and a two-layer sphere model.
We now consider the transient electromagnetic-induction re-

sponse of a homogeneous sphere of radius a = 6371 km and
conductivity σ = 0.1 S m−1 to the ring-current excitation (38) with
relaxation time τ = 10 d and amplitude A = 0.001 nT s−1. The
inverse Fourier transform of the frequency-domain solution (41) is

2The corresponding cosine transform is f (t) = 4
∫ ∞

0 ReF(ω) cos ωt dω.
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Figure 4. As in Fig. 3 but the response function Aϕ (a, ϑ , t) is computed by the time-domain approach (37) for four different time steps (dots connected by
a thin line). The thick lines correspond to the frequency-domain solution with the frequency step 
ω = 5 × 10−8 rad s−1 and with the number of spectral
samples Nω = 214.

computed numerically using the fast Fourier transform. For this cal-
culation, the frequency step 
ω and the number of spectral samples
Nω = 2M must be chosen. Inspecting Figs 1 and 2, we choose 
ω =
5 × 10−8 rad s−1 and plot the inverse fast Fourier transform of Aϕ(· ,
·, ω) for various Nω (see Fig. 3). As expected, the time resolution of
the resulting Aϕ(·, ·, t) increases with increasing number of spectral
samples Nω because of 
t = 2π/Nω
ω. Comparing Nω with the
number of time steps, N t, required to compute Aϕ(·, ·, t) by the
time-domain approach, N t = T /
t + 1, where T is a time interval
of interest, we find that, in order to determine the response function
Aϕ(·, ·, t) with a particular resolution 
t by the frequency-domain
approach, the corresponding function Aϕ(·, ·, ω) in the frequency
domain must be evaluated at a larger number of frequencies than
N t. That is, in general, Nω > N t for transient electromagnetic exci-
tations. For instance, the fourth panel in Fig. 3 shows that, in order
to obtain a resolution of 
t ≈ 0.09 d within the time interval T =
0–120 d, the response function Aϕ(·, ·, ω) must be evaluated at 214 =
16 384 frequencies, while the time-domain approach computes the
response function Aϕ(·, ·, t) in 1334 time instances. Moreover, the
difference between Nω and N t increases if the frequency resolu-
tion 
ω becomes finer. In view of this and the remark made after

eq. (37), we can say that the time-domain approach reduces the
computation time required for determining a magnetic-induction
response function to a transient excitation in comparison with
the frequency-domain approach. Depending on the spectral prop-
erties of the transient excitation function, this reduction may be
very significant. Note that the conclusion is opposite, that is Nω

< N t, or even Nω � N t for a monochromatic electromagnetic
excitation.

The above conclusion is independent of the relaxation time τ

of a magnetic storm (38) because of the relaxation-time scaling
property (40). For instance, if the relaxation time τ is k-times shorter
than in the previous example, the frequency step 
ω can be chosen
to be k-times larger in the frequency-domain approach, while the
number Nω chosen is the same. In the time-domain approach, the
time step 
t and the time interval T are chosen to be k times shorter,
which implies that N t is the same as above. For these choices, the
relative resolutions in the frequency domain, 
ω/Nω
ω, in the
time domain, 
t/T , and the numbers Nω and N t are the same as in
the previous example.

The approximation (33) of the time derivative is of first-order
accuracy in time. We have investigated the size of the time step

C© 2003 RAS, GJI, 155, 33–43

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Induction in a sphericalheterogeneous Earth 41

-250

-200

-150

-100

-50

0

0 20 40 60 80 100

Time after storm onset (day)

0

50

100

150

200

250

0 20 40 60 80 100

Time after storm onset (day)

Br Bθ

Figure 5. The surface transient magnetic responses Br(t) and Bϑ (t) (in nT) of a homogeneous conductive sphere (dashed lines), the two-layer sphere (thin
lines) and the eccentrically nested spheres (thick lines) at the colatitude ϑ = 30◦ after the onset of a magnetic storm. The parameters of sphere configurations
and of magnetic storm are the same as in Fig. 2.

-300

-200

-100

0

0 30 60 90 120

jmax=1

-300

-200

-100

0

0 30 60 90 120

jmax=2

-300

-200

-100

0

0 30 60 90 120

jmax=3

-300

-200

-100

0

0 30 60 90 120

Time after storm onset (day)

jmax=5

-300

-200

-100

0

0 30 60 90 120

Time after storm onset (day)

jmax=10

-300

-200

-100

0

0 30 60 90 120

Time after storm onset (day)

jmax=15

Figure 6. The convergence of the time-domain, spectral finite-element numerical solution (dashed lines) to the inverse Fourier transform of the semi-analytical,
frequency-domain solution (solid lines) for the eccentrically nested spheres model. The surface magnetic-induction storm response function Aϕ (a, ϑ , t) (in
nT m) at the colatitude ϑ = 30◦ as a function of time after the onset of a magnetic storm (38) is plotted for increasing value of the cut-off degrees jmax. The
number of finite elements in radial direction is fixed to P = 60. The parameters of the nested spheres configuration are the same as in Fig. 2.

C© 2003 RAS, GJI, 155, 33–43

 at Pennsylvania State U
niversity on M

ay 11, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


42 Z. Martinec, M. E. Everett and J. Velı́mský

needed to achieve a desired accuracy of the response functions in
time. Fig. 4 shows the response function Aϕ(a, ϑ , t) computed by the
time-domain approach for four different time steps. We can see that
Aϕ(a, ϑ , t) converges to the response computed by the frequency-
domain approach if the size of the time step is made finer. For
instance, the relative difference between the two responses for 
t =
0.09 d is less than 0.3 per cent.

The transient responses Br(t) and Bϑ (t) of the homogeneous
sphere, the two-layer sphere and the eccentrically nested spheres (we
will deal with this configuration in the next section) at the external
surface r = a and for colatitude ϑ = 30◦ are shown in Fig. 5 for
the ring-current excitation described by eq. (38). The comparison
of Figs 1 and 5 shows that the induced eddy currents persist for
longer times after the storm onset than does the ring current. Fig. 5
also shows that the effect of the inner sphere in the two-layer sphere
model on both the radial, Br(t), and the polar, Bϑ (t), responses is
small, because the frequency with the largest response corresponds
to that which makes the skin depth roughly equal to the radius of
the inner sphere. In contrast, the effect of the inner sphere in the
eccentrically nested-sphere model is dominant, particularly at later
times.

8.3 Eccentrically nested spheres model

The 2-D validation of the time-domain, spectral finite-element solu-
tion is based on a semi-analytical solution of electromagnetic induc-
tion in a sphere with an eccentrically nested spherical inclusion Ev-
erett & Schultz (1995). It is formulated in terms of the ϕ-component
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Figure 7. As Fig. 6. but for various numbers P of finite elements with the cut-off degree fixed to jmax = 15.

of the toroidal vector potential, which satisfies the scalar Helmholtz
equation. This equation is valid for low-frequency magnetic fields
inside source-free regions of the Earth with no spatial variation in
the electrical conductivity. The magnetic induction in the inner and
outer spheres, respectively, is expressed as truncated series of scalar
spherical wavefunctions, the eigenfunctions of the scalar Helmholtz
equation. The coefficients of the series expansions are determined
from the continuity conditions of the tangential components of mag-
netic induction at the interface between the spheres, and the tangen-
tial and normal components of the magnetic induction at the Earth’s
surface. For further details, see Everett & Schultz (1995).

Fig. 2 (thick solid lines) shows the real and imaginary parts of
the ϕ-component of the surface toroidal vector magnetic potential
and the r- and ϑ-components of the surface magnetic induction
at colatitude ϑ = 30◦ as a function of angular frequency ω for
the axially symmetric configuration of eccentrically nested spheres.
The frequency-domain, semi-analytical response functions are then
transformed to the time domain by the inverse Fourier transform and
compared with the time-domain, spectral finite-element numerical
response functions.

In Fig. 6, we change the cut-off degree jmax of the spherical har-
monic expansion (35) of the toroidal vector potential A from jmax =
1 to jmax = 15 (the number P + 1 of the finite elements in the ra-
dial direction is fixed, P = 60) and plot the time evolution of the
ϕ-component of the surface toroidal vector potential A at colati-
tude ϑ = 30◦ as a function of time after the onset of a magnetic
storm of the form (38). The time-domain, spectral finite-element
solutions (dashed lines) are checked by comparing them with the
eccentrically nested-sphere solutions, computed semi-analytically
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in the frequency domain and inverted to the time domain by the in-
verse fast Fourier transform (solid lines). It is evident that the time-
domain, spectral finite-element solution converges to the eccentri-
cally nested-sphere solution as the cut-off degree jmax increases. For
example, at jmax = 15 (and P = 60), the relative difference between
the two solutions is less than 1 per cent.

In Fig. 7, we illustrate a complementary test: we change the num-
ber P + 1 of linear finite elements in the radial direction and fix the
cut-off degree jmax of the spherical harmonic expansion of the vec-
tor potential A, jmax = 15. We again observe that the time-domain,
spectral finite-element solution quickly converges to the eccentri-
cally nested-sphere solution as P increases.

9 C O N C L U S I O N

The time-domain, spectral finite-element approach provides us with
a powerful tool for the forward modelling of the electromagnetic-
induction response of a spherical heterogeneous Earth to transient
external current excitation. This approach is particularly appropri-
ate when the spatial position of an observer is changing with time,
such as the magnetometer on a satellite, or if the external source of
electromagnetic induction has a complicated spatial and temporal
distribution. In this paper, we have demonstrated this fact for a 2-D
case when the electrical conductivity and external sources of elec-
tromagnetic variations are axisymmetrically distributed and when
the external current excitation has a transient feature similar to that
of a magnetic storm. The theory and numerical code, which have
been tested by comparison with the analytical solution to electro-
magnetic induction within two concentrically nested spheres and
with the Everett–Schultz semi-analytical solution to electromag-
netic induction within two eccentrically nested spheres may serve
as a means of validating 3-D spherical-geometry forward modelling
codes, e.g. the finite-element method (Everett & Schultz 1996) and
the finite-difference method (Uyeshima & Schultz 2000).

By extending the present approach, the transient electromagnetic
induction in a 3-D heterogeneous sphere will become possible to
model. The major advantage of the axisymmetric configuration, the
fact that the vector potential A reduces to a scalar quantity Aϕ ,
no longer exists for a 3-D geometry. The vector potential is no
longer unidirectional and, therefore, it must be represented not only
by zonal but also tesseral and sectoral spherical vector harmonics.
However, there are no major difficulties in implementing a time-
stepping method in the existing 3-D hybrid spectral finite-element
method (Martinec 1999) or in the fully 3-D finite-element method
(Everett & Schultz 1996). Work on these implementations is now in
progress.
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