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S U M M A R Y
A non-equilibrium statistical theory of multidomain thermoremanent magnetization (TRM)
is developed, which describes thermal magnetization changes as continuous inhomogeneous
Markov processes. The proposed theory relies on three very general physical properties of
TRM: (a) The probability that a magnetization state Sj is transformed during an infinitesimal
temperature change into state Si depends only on external conditions and on Sj, but not on
previously assumed states. (b) Due to time inversion symmetry of the Maxwell equations,
the magnetic energies are invariant with respect to inversion of all spins in zero field. (c)
The probability that an energy barrier between two magnetization states is overcome during
a thermal process is governed by Boltzmann statistics. From these properties, the linearity of
TRM with field is derived for generic multidomain particle ensembles. The general validity
of Thellier’s law of additivity of partial TRM’s in weak fields is established and a method
for proving a large class of similar additivity laws is developed. The theory allows consistent
treatment of blocking and unblocking of remanence in multidomain particle ensembles and
naturally explains apparent differences between blocking and unblocking temperatures.

Key words: remanent magnetization, rock magnetism, thermomagnetic analysis, transdomain
changes.

1 I N T RO D U C T I O N

The thermoremanent magnetization (TRM) of natural rocks is the
most important geophysical archive for information about direc-
tion and intensity of the Earth’s magnetic field in former times.
Thermoremanence data are used to reconstruct the details of plate
tectonics as well as the history of the geodynamo. Especially
for the measurement of palaeointensities of the Earth’s magnetic
field it is a major problem that a reliable theory of TRM exists
only for single-domain (SD) particle ensembles (Néel 1949). The
magnetic fraction in natural rocks, however, consists mainly of mul-
tidomain (MD) or so called pseudo-single domain (PSD) particles,
which—with respect to the problems treated here—can be regarded
as small MD particles.

Physical theories of MD TRM so far mainly focus on very spe-
cial cases like that of rectangular particles with one domain wall
(Néel 1955; Schmidt 1973). In order to deal with more realistic
applications, a number of theories have been proposed, which ei-
ther radically extrapolate results from the above two domain model
(Shcherbakov 1981; Dunlop & Xu 1994; Xu & Dunlop 1994) or are
based on analogies between MD TRM and physical phenomena like
quasi single domain moments (Verhoogen 1959; Halgedahl 1991)
or spin glasses (Shcherbakov et al. 1993; Ye & Merrill 1995).

Experimental results indicate that TRM acquisition is essentially
a stochastic process which requires statistical physics for its de-
scription. Repeated microscopic observations of the same TRM ac-

quisition process leave the particle in different domain structures at
room temperature (Halgedahl 1991). Observations of magnetization
states of natural large MD magnetite at different temperatures proved
that domain wall position and average domain width vary consider-
ably with temperature (Heider et al. 1988; Heider 1990; Ambatiello
et al. 1999). This also indicates that, besides domain wall pinning,
domain nucleation is of major importance during TRM acquisition
(Moon & Merrill 1985), especially in MD particles with low in-
ternal stress (Muxworthy 2000). These and similar experiments, as
well as micromagnetic calculations for small PSD particles (Enkin
& Dunlop 1987; Enkin & Williams 1994; Winklhofer et al. 1997)
lead to the conclusion that the magnetic energy landscape of MD
particles contains many local minima with statistically distributed
energy barriers between them. Therefore, one has to take into ac-
count that transitions between domain states are induced not only by
systematic influences but also by random thermal fluctuations. As a
consequence, the correct theoretical description of thermal magne-
tization processes should be based on concepts of non-equilibrium
statistical physics.

In order to understand the systematic trends behind the results of
the last decade of experimental investigation, purely mathematical
or phenomenological models have recently been developed. They
describe coherently the outcome of many experimental facts of MD
TRM (Shcherbakova et al. 2000; Fabian 2000). These models can be
used for first order modelling of measurement procedures, but their
physical background is not understood. Therefore it is difficult to
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estimate the conditions for their validity. The purpose of this article
is to establish a physical theory of MD TRM which consistently
explains the experimental observations by means of non-equilibrium
statistics.

The central concept in the following line of reasoning is to re-
place the actual change in domain state during a thermal process by
a probability density over all possible domain changes. This allows
to keep track of two antisymmetric paths of domain change at the
same time. In zero field, antisymmetric paths have the same proba-
bility but produce opposite remanences. This, by the way, explains
why on average the remanence after zero field cooling is zero. Going
through the mathematical difficulties of linearly expanding the tran-
sition probabilities with respect to the external field is rewarded with
a proof of the linearity and additivity of weak field pTRMs. But also
the interpretation of blocking and unblocking of remanence is dif-
ferent in the statistical theory. It will be shown that the statistical
interpretation naturally explains the phenomena related to blocking
and unblocking processes which are very hard to interpret using
deterministic MD TRM theories.

2 S TAT I S T I C A L D E S C R I P T I O N
O F T H E R M A L M A G N E T I Z AT I O N
P RO C E S S E S

The following two subsections introduce the formal framework of
the statistical description and the main physical concepts. First a
thermal process is defined as a sequence of changes in either temper-
ature or field, but not in both simultaneously. The second subsection
gathers the fundamental facts about magnetization structures which
will be used later.

2.1 Definition of equitemporal thermal magnetization
processes

Any thermal magnetization process essentially is a thermo-viscous
process since the outcome depends, sometimes critically, upon cool-
ing or heating rates and also on residence times at temperatures and
fields.

It is possible to take into account all these time dependent ef-
fects in the proposed statistical theory. However, this leads to un-
necessary inconvenient formal efforts for the intended purpose.
Therefore, the presentation of the theory in the following is lim-
ited to equitemporal thermal magnetization processes with char-
acteristic time τ c. This means, that heating and cooling rates of
all temperature changes are equal to T C/τ c, where T C denotes the
Curie temperature. Moreover, all residence times are in the order
of τ c.

A T-H-process is defined as an equitemporal thermal magnetiza-
tion process which is composed of one or more steps, each of which
either changes field H or temperature T .

(1) A position Z = [T , H ] of a T-H-process is uniquely defined
by its temperature T and field H .

(2) The T-H-initial or paramagnetic position is ZC = [T C, 0]. At
this position samples have no ferromagnetic order and their mag-
netic memories are completely erased.

(3) A transition Zi → Zj between position Zi = [T i, H i] and Zj =
[T j, H j] is admissible only if either T i = T j or H i = H j. Syn-
chronous changes of temperature and field are explicitly excluded.

(4) A T-H-process P = Z 1 → · · · → Zn is a sequence of ad-
missible transitions.

2.2 Fundamental facts about changes of magnetization
structure during T-H-processes

A magnetic sample consists of a collection of magnetic particles
each of which has its own remanence states determined by its min-
eralogy, size, shape, surface properties, dislocation structure, in-
clusions, defects, twin boundaries and other properties. In order to
ensure repeatability of thermomagnetic experiments, the samples in
the following are assumed to be thermally stable. This means that
repeated measurements of thermal magnetization processes starting
from the paramagnetic position lead to the same results. Therefore,
neither chemical changes nor long-term diffusive after-effects must
occur at elevated temperatures. Despite the variety of remaining
possible influences, the following physical assertions can be made
about the magnetic structure of the MD sample.

(1) The magnetic particle ensemble can assume different posi-
tive irreversible states Si, i ∈ {1, . . . , N}. For each state Si there
exists an antisymmetric state S−i = −Si obtained by inversion of the
magnetic spin structure. The state S0 = −S0 denotes the disordered
paramagnetic state above T C.

(2) To each irreversible state S belongs a reversible region Rev(S)
of states, which can be reversibly reached from S by changes in field
and temperature. Typical examples for reversible processes are do-
main wall bowing, shift of unpinned walls or reversible rotation of
magnetization spins. Two states within the same reversible region
can be transformed into each other without energy dissipation, while
transformations between two different irreversible states always dis-
sipate energy.

(3) To each irreversible state S and each temperature T a magne-
tization m(S, T ) is assigned. For states S which can exist in zero field
at temperature T, m(S, T ) is defined such, that MS(T ) m(S, T ) de-
notes the remanence of the sample in the zero field state of Rev(S) at
temperature T . Here, MS(T ) refers to the saturation magnetization.
It follows that m(− S, T ) = −m(S, T ).

(4) The state of a sample after some T-H-process can be char-
acterized by a probability density vector ρi ≥ 0 which denotes the
probability that the irreversible state of the sample after this pro-
cess is Si. Since the sample is always in one of the possible states,∑N

i=−N ρi = 1. Note that ρi is a vector only in the mathematical,
not in the physical sense.

Fig. 1 sketches an example for a small number of domain states
within an MD particle. These domain states are the irreversible
states of this particle. While for a single particle it is an easy and
correct way to visualize the theoretical notion of ‘irreversible state’

S0

S1 S2 S3 S4 S5 S6

S-1 S-2 S 3- S 4- S 5- S 6-

Figure 1. An example of a simple system of different irreversible mag-
netization states within a single MD particle. State S0 is the paramagnetic
state without ferromagnetic order. States S−1, . . . , S−6 are inverse to states
S1, . . . , S6. The abstract notion of ‘state’ used in the text includes simple
systems like this, but also interacting ensembles of many magnetic particles
with different mineralogy.
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as ‘domain state’, one has to keep in mind that in general ‘irreversible
state’ refers to a huge collection of domain configurations in many
MD particles simultaneously and N will be astronomically large.
In the remaining article, a statement like ‘the sample is in state
Si’ means that it is in one of the states of Rev (Si) belonging to
the irreversible state Si. Especially, if the irreversible state doesn’t
change during a T -H -process, reversible changes may still occur.

2.3 Statistical description, transition matrix

During heating or cooling the material properties of the particles
vary. This considerably changes the topography of the magnetic en-
ergy landscape. Changes in magnetization structure occur as soon as
formerly too high energy barriers are overcome by thermal energy
during the temperature change. As thermal activation is involved
here, such transitions are essentially of a statistical nature. Typical
examples of sudden transitions between local energy minima are
unpinning of domain walls and nucleation or denucleation of mag-
netic domains. If more than one energy barrier becomes sufficiently
low at some temperature, it is impossible to predict which of the sev-
eral possible magnetization changes actually takes place. Yet, using
statistical physics it is possible to calculate the probability of each
transition and to infer the change in the probability distribution over
the irreversible states. If this probability distribution is known in the
initial T-H-position, the change in magnetization state induced by
some T-H-process can be described by means of a transition matrix.

For two adjacent T-H-positions Z = [T , H ] and Z ′ = [T ′, H ′]
the nonnegative transition matrix Mij(Z → Z ′) ≥ 0 denotes the
probability that the irreversible state Sj is transformed to state Si

by the process Z → Z ′. It follows that
∑

i Mi j = 1 for all j since
after the process the system must be in one unique state. Such a
matrix often is denoted as a stochastic matrix (Seneta 1973). The
probability density vector ρ(Z ) with

∑
i ρi (Z ) = 1 is changed by

the transition according to

ρ(Z ′) = M(Z → Z ′)ρ(Z ). (1)

Stochasticity of M ensures that again
∑

i ρi (Z ′) =∑
i, j Mi jρ j (Z ) = 1. State transitions are Markov processes

because the probability density after the transition depends only on
the initial probability density of irreversible states and not on the
previous history which describes how the initial probability density
was reached. For a T -H -process P = Z 1 → · · · → Zn consisting
of several steps, the transition matrix M(P) is the matrix product

M(P) = M(Zn−1 → Zn)M(Zn−2 → Zn−1) . . . M(Z1 → Z2). (2)

Application of (1) to the change of density induced by a small in-
crease of temperature [T , H ] → [T + �T , H ] yields

ρ([T + �T, H ]) − ρ([T, H ])

= (M([T, H ] → [T + �T, H ]) − Id) ρ([T, H ]), (3)

where Id denotes the identity matrix. Division by �T and taking the
limit �T → 0 results in the linear differential equation

∂ρ

∂T
([T, H ]) = µ(T, H )ρ([T, H ]), (4)

where

µ(T, H ) := lim
�T →0

M([T, H ] → [T + �T, H ]) − Id

�T
, (5)

is the infinitesimal generator of the Markov process. Sometimes (4)
is called the master equation of the non-equilibrium thermodynamic

system. In the same way, a small field step [T , H ] → [T , H + �H ]
leads to a master equation for field changes

∂ρ

∂ H
([T, H ]) = ν(T, H )ρ([T, H ]), (6)

with infinitesimal generator

ν(T, H ) := lim
�H→0

M([T, H ] → [T, H + �H ]) − Id

�H
. (7)

It must be stressed, that these infinitesimal generators depend on
cooling rate and residence times which for the sake of simplicity in
the present formulation are assumed to be constant.

3 T R A N S I T I O N M AT R I X I N W E A K
F I E L D S

The master equation for temperature change (4) cannot be directly
solved using matrix exponential functions, which are the standard
tool for homogeneous Markov processes in non-equilibrium ther-
modynamics where the variable is time instead of temperature.

In case of homogeneous Markov processes the transition probabil-
ities depend only upon temperature difference, which would require
the validity of

M([T, H ] → [T + �T, H ]) = M([0, H ] → [�T, H ]). (8)

This obviously is not true for MD ensembles where energy bar-
riers and accordingly the transition probabilities depend crucially
upon the absolute value of T . This case is therefore regarded as an
inhomogeneous Markov process.

The mathematical tools necessary to deal with inhomogeneous
Markov processes are given in Appendix A. In this section the tran-
sition matrix for a temperature change in a weak external field is
related to the zero-field transition matrix for the same temperature
change. Special attention is focused on the symmetry properties of
transitions between inverse states which are of crucial importance
for the subsequent line of reasoning.

Definition: A matrix M ∈ R
(2n+1)×(2n+1) is point symmetric if,

and only if, Mij = M−i− j for all indices i , j = −n, −n + 1, . . . , n
− 1, n. M is point antisymmetric if, and only if, Mij = −M−i− j for
all i , j .

One easily verifies the following properties:

(1) A linear combination of point (anti-)symmetric matrices is
again point (anti-)symmetric.

(2) The product of two point (anti-)symmetric matrices is point
symmetric.

(3) The product of a point symmetric and a point antisymmetric
matrix in any order is point antisymmetric.

Fundamental physical time inversion symmetry implies that in
zero field a transition Sj → Si has the same probability as the tran-
sition −Sj → −Si because inversion of the time arrow reverses
all spins and external fields, but leaves transition probabilities un-
changed. Consequently, zero field transition matrices are point sym-
metric. The main result of this section is, that the difference between
an in-field transition matrix and the corresponding zero-field tran-
sition matrix can be expanded into a Taylor series, the linear part
of which is point antisymmetric. This means that when a transition
Sj → Si becomes more likely within a small field, its inverse transi-
tion −Sj → −Si becomes more unlikely by the same amount. The
formal proof relies upon properties of solutions of homogeneous
systems of linear differential equations depending upon a parameter
h (field in this case), which are stated in the first part of Appendix A.
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Eij (max)
0

E (0)ij
H

Eij (max)
H

E (0)ij
0

Sj Si

Figure 2. Change of energy barrier due to a weak external field H . Note
that the change of barrier height results from both, the change of the energy
in the minimum state Sj and the change of the maximum energy.

The micromagnetic energy E(T , H , m) of the MD particle ensem-
ble is a function of temperature, field and of the combined magneti-
zation structure m of all particles. For fixed T and H it defines a real
valued functional on an infinite dimensional configuration space.
The local minima of E(T , H , m) coincide with the irreversible
states Si. During the transition from state Sj into Si an energy bar-
rier has to be overcome. In the following it will be calculated how
this energy barrier changes with respect to the zero-field case when
a weak field H is applied.

Let SH
ij (t) for t ∈ [0, 1] denote the optimal transition path between

two states Sj and Si when cooling from T to T − �T in an external
field H . Thus SH

ij (0) = SH
j ∈ Rev(Sj) and SH

ij (1) = SH
i ∈ Rev(Si).

Along this transition path the magnetic energy in field H is denoted
by EH

ij (t) and the magnetization by M s(T )mH
ij (t). From the sketch

in Fig. 2 it can be seen that the zero-field energy barrier for this
transition is �E0

i j = E0
i j(max) − E0

i j (0). For the in-field transition we
obtain in first order

E H
i j(max) = E0

i j(max) + Hµ0 Ms(T )m0
i j(max), (9)

where m0
i j(max) is the zero-field magnetization in the state with energy

E0
i j(max). Accordingly

�E H
i j = �E0

i j + Hµ0 Ms(T )
(
m0

i j(max) − m0
j

)
. (10)

For the transition between S− j and S−i we obtain by symmetry that
S0

−i− j (t) = −S0
i j (t) and m0

−i− j (t) = −m0
i j (t). Therefore

�E H
−i− j = �E0

i j − Hµ0 Ms(T )
(
m0

i j(max) − m0
j

)
. (11)

According to Boltzmann statistics, a small change �E in energy
barrier height changes the transition probability p0 into p0 e−�E/kT .
In the above case, each matrix coefficient of the in-field transition
matrix

M H := M([T, H ] → [T − �T, H ]) (12)

is obtained by first multiplying the corresponding coefficient of M0

by the appropriate exponential factor, which leads to

AH
i j = exp

(
q(T )H�m0

i j

)
M0

i j , (13)

where �m0
i j = m0

i j(max) − m0
j and q(T ) = µ0 M s(T )/kT . To finally

obtain MH from AH , it must be ensured that
∑

i M H
i j = 1. Thus, in

first order in H the in-field transition matrix is

M H
i j = AH

i j∑
i AH

i j

≈ M0
i j − q(T )H

(
M0

i j

∑
k �m0

ik M0
ik − �m0

i j M0
i j

)
. (14)

In the limit �T → 0, the first order form of the infinitesimal gener-
ator µ(T , H ) is obtained from the last expression as

µi j (T, H ) ≈ µi j (T, 0)
(
1 + q(T )H�m0

i j

)
= µi j (T, 0) + Hαi j . (15)

Here the matrix αi j = q(T )�m0
i jµi j (T , 0) is point antisymmetric,

i.e. αi j = −α−i− j . Of course, the same infinitesimal generator is
obtained when the heating step T → T + �T is considered.

Theorem 1 of Appendix A contains the formal solution of the
master eq. (4) for the expansion of the infinitesimal generator to first
order in H . From this solution it can be inferred that for a process
[T , 0] → [T ′, 0] there is a point antisymmetric matrix Rij(T , T ′) =
−R−i− j (T , T ′) such that in first order approximation

M([T, H ] → [T ′, H ]) = M([T, 0] → [T ′, 0]) + H R(T, T ′). (16)

In addition to changes in temperature, the description of par-
tial thermoremanences requires matrices M([T , 0] → [T , H ]) and
M([T , H ] → [T , 0]) which switch the external field on or off. In
linear approximation without viscous effects, small field changes in-
duce only reversible magnetization changes according to Rayleigh’s
law. However, when residence times in the order of τ c are considered,
also weak applied fields modify the viscous transition probabilities.
In the second part of Appendix A it is shown that in this case a
non-zero linear term in the expansion of M([T , 0] → [T , H ]) may
occur and that this term again is point antisymmetric.

4 T H E L I N E A R I T Y O F T R M I N W E A K
E X T E R N A L F I E L D S

Linearity of TRM(H) in sufficiently small fields is experimen-
tally well established for SD particle ensembles, even though in
strongly interacting synthetic magnetite, TRM acquisition is non-
linear above 50 µT (Dunlop & Argyle 1997). Also for most natural
rocks containing PSD or MD particles TRM acquisition is linear in
weak fields (Day 1977; Carlut & Kent 2002). Apparent exceptions
occur for moon rocks containing large MD iron crystals (Dunn &
Fuller 1972). In few rocks deviations from linearity occur in fields
smaller than the Earth’s magnetic field. Néel showed that thermal
fluctuations explain the linear dependence in case of SD particles
(Néel 1955) but MD TRM theories based on domain theoretical in-
vestigations – often called hysteretic theories – do not predict the ob-
served linear TRM behaviour. Phenomenological MD TRM theories
simply presume linearity of TRM. The first consistent phenomeno-
logical theory was built from an analogy between MD ensembles
and spin glasses and derived a kinematic equation

d

dT
m(T ) = A(T ) − B(T ) m(T ) (17)

for the sample magnetization m(T) (Shcherbakov et al. 1993). Only
by assuming a linear dependence of A(T) on H were they able to ob-
tain linearity of TRM. The same kinematic equation has later been
related to a phase theoretical model of uniaxial MD particles where
it was possible to infer the linear dependence of A(T) from the de-
pendence of magnetostatic energy on external field (Fabian 2000).
However, the derivation of (17) still required purely phenomenolog-
ical assumptions (eq. 18 in Fabian 2000). A generally valid physical
proof for the linear dependence of MD TRM on H has not yet been
provided although a micromagnetic calculation including thermal
fluctuations rigorously proves the linearity of TRM at the block-
ing temperature T B where the MD system changes from thermal
equilibrium to a non-equilibrium state (Fabian 2000). However, the
occurrence of non-equilibrium transdomain processes during cool-
ing from T B to T 0 may well destroy this linearity—an important
fact which has been pointed out in Dunlop & Xu (1994).

In this section it will be shown that the linearity of TRM(H)
in weak fields for generic PSD and MD particle ensembles where
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R(T , T ′) 
= 0 is an immediate consequence of the linear expan-
sion (16).

At T C, the sample is in state S0, therefore the state density vec-
tor ρC at T C is δi0, where δi j is the Kronecker symbol. Using the
abbreviations MH := M([T C, H ] → [T 0, H ]), R := R(T c, T 0) and
ρH = ρ([T 0, H ]) eq. (1) together with (16) becomes

ρH = M H ρC = (M0 + H R)ρC. (18)

For the probabilities of the antisymmetric states Si and S−i this
yields

ρH
i = M0

i0 + H Ri0,

ρH
−i = M0

−i0 + H R−i0 = M0
i0 − H Ri0. (19)

The total remanence mH (T 0) at T 0 is now obtained as

m H (T0) =
N∑

i=−N

m(Si , T0)ρH
i

=
N∑

i=1

m(Si , T0)
(
ρH

i − ρH
−i

)

= 2H
N∑

i=1

m(Si , T0)Ri0. (20)

Thus mH (T 0) depends linearly on H with the exception of those ex-
treme cases where the sum over m(Si, T 0) Ri0 is zero. In these cases,
a small disturbance of the entries of R suffices to restore linearity.
This is what is meant by stating that all generic MD particle ensem-
bles show linear TRM dependence.

The above result considerably extends the thermo-fluctuational
theory of Néel (1955) and also the phenomenological arguments
of Shcherbakov et al. (1993) and Fabian (2000), because non-
equilibrium state transitions during the entire cooling process are
consistently taken into account. However, the notion of ‘weak field’
in the above derivation depends upon the height of the energy barri-
ers within the system. If these are very low, linearity may occur only
at fields lower than the Earth’s magnetic field. The apparent non-
linearity found for interacting SD ensembles and large iron crystals
(Dunlop & Argyle 1997; Dunn & Fuller 1972) thereby is not in
conflict with the present calculation.

5 T H E L L I E R ’ S L AW O F A D D I T I V I T Y

One of the most astonishing experimental facts of MD TRM con-
cerns Thellier’s law of additivity. It states, that the sum of two or
more pTRMs separately acquired in non-overlapping temperature
intervals is equal to a single pTRM acquired in the union of these
temperature intervals. Néel (1949) explained the validity of this law
for ensembles of SD particles by showing that each SD particle
possesses a single well defined blocking temperature. Thus pTRMs
acquired in disjoint temperature intervals are carried by different
particles and contribute independently to the total TRM. Several
studies confirm the validity of Thellier’s additivity law also for MD
remanence carriers (Levi 1979; Shcherbakov et al. 1993; Dunlop &
Özdemir 2001). When the very thorough study Levi (1979) showed
that additivity of pTRM also holds perfectly for MD particles, the
author at that time readily concluded that blocking within MD parti-
cles must, like in SD particles, occur at one well defined temperature
which would imply that also in MD samples the pTRMs are indepen-
dent. However, experiments revealed that independence of pTRMs
in MD samples can be badly violated and that changes of the mag-
netization structure occur during the entire cooling process (Petrova

& Trukhin 1961; McClelland & Sugiura 1987; Shcherbakov et al.
1993). Therefore, the high degree of precision with which additiv-
ity of pTRMs is fulfilled in MD samples became more and more
puzzling. In the following, based on the statistical description given
in the previous section, a complete physical explanation of the phe-
nomenon of additivity is given.

To describe acquisition of pTRMs in different temperature inter-
vals in terms of similar sequences of T-H-processes, represented by
their transition matrices, the following types of matrices are needed:

M H
( j) := M

(
[Tj+1, H ] → [Tj , H ]

)
,

U H
( j) := M

(
[Tj , 0] → [Tj , H ]

)
,

DH
( j) := M

(
[Tj , H ] → [Tj , 0]

)
. (21)

The temperatures T C = T 5 ≥ T 4> · · · >T 1 ≥ T 0 are the boundaries
of the pTRM intervals. Fig. 3 sketches which transition matrices
must be multiplied to obtain the total transition matrices W (a)

H , W (b)
H ,

W (c)
H for pTRM(a), pTRM(b) and pTRM(c). The latter is acquired

over the union of the temperature intervals used for pTRM(a) and
pTRM(b). Here indices (x) refer to Fig. 3.

The resulting expressions are

W H
(a) = M0

(0) D
0
(1) M

0
(1)U

0
(2) M

0
(2) D

H
(3) M

H
(3)U

H
(4) M

0
(4),

W H
(b) = M0

(0) D
H
(1) M

H
(1)U

H
(2) M

0
(2) D

0
(3) M

0
(3)U

0
(4) M

0
(4),

W H
(c) = M0

(0) D
H
(1) M

H
(1)U

H
(2) M

0
(2) D

H
(3) M

H
(3)U

H
(4) M

0
(4). (22)

The first order expansions W H
(x) = W 0

(x) + Hw(x) of these matrices in
H can be calculated using the results of the previous sections which
state that in first order

M H
( j) ≈ M0

( j) + H R( j),

U H
( j) ≈ U 0

( j) + Hu( j),

DH
( j) ≈ D0

( j) + Hd( j). (23)

Here the matrices M0
( j), U 0

( j) and D0
( j) are point symmetric, while

R( j), u( j) and d ( j) are point antisymmetric. Substituting (23) into (22)

M(4)

0 M(2)

0 M(0)

0

M(3)

H

U(4)

H D(3)

H U(2)

H

M(1)

H

D(1)

H

M(4)

0 M(2)

0 M(0)

0

M(3)

0

U(4)

0 D(3)

0

U(2)

H

M(1)

H

D(1)

H

M(4)

0 M(2)

0 M(0)

0

M(3)

H

U(4)

H D(3)

H

U(2)

0

M(1)

0

D(1)

0

TC T4 T3 T2 T1 T0

H

(a)

(b)

(c)

Figure 3. Sketch of the sequence of transition matrices describing the cool-
ing processes for pTRM acquisition. In (a) the pTRM is acquired in the
temperature interval [T 4, T 3], in (b) in the interval [T 2, T 1] and in (c) the
union of the above intervals is used for pTRM acquisition. In all cases, the
lower level represent external zero-field and the upper level a weak field H .
Matrices U H

( j) and DH
( j) describe field switching (up and down), while M H

( j)
describes cooling in field H from temperature T j+1 to T j.
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and discarding higher order terms in H results in

w(c) = W H
(c) − W 0

(c)

H
≈ W H

(a) − W 0
(a)

H
+ W H

(b) − W 0
(b)

H
= w(a) + w(b)

(24)

Each w(x) is point antisymmetric, since it is the sum of matrix prod-
ucts, each of which contains exactly one point antisymmetric factor,
whilst the other factors are point symmetric.

Eq. (24) provides an additivity law for the first order coefficients
of the transition matrices which belong to the pTRM processes in
question. To obtain Thellier’s law of additivity, (24) must be trans-
formed into a relation between remanences. This can be done by
regarding the transition probabilities from state S0 at T C into two
antisymmetric states Si and S−i at T 0 by the pTRM(x) process. These
probabilities are

W H
(x)0i

= W 0
(x)0i

+ Hw
(x)
0i ,

W H
(x)0−i

= W 0
(x)0i

− Hw
(x)
0i .

Since m(S−i , T 0) = −m(Si, T 0), the weighed contribution mi of
states Si and S−i to the expectation value of the remanence at T 0 is
the sum

mi = W H
(x)0i

m(Si , T0) + W H
(x)0−i

m(S−i , T0) = 2Hw
(x)
0i m(Si , T0).

(25)

The expectation value of the total remanence is obtained by summing
all contributions mi from antisymmetric pairs.

pTRM(x) =
N∑

i=1

mi = 2H
N∑

i=1

w
(x)
0i m(Si , T0). (26)

Using (24) one obtains for H → 0 Thellier’s law of additivity as

χpTRM(a) + χpTRM(b) = χpTRM(c) , (27)

where χpTRM(x) = d
d H pTRM(x)|H=0.

Often the additivity law is stated for the special case T 2 = T 3 as

χpTRM(T1,T3) + χpTRM(T3,T4) = χpTRM(T1,T4). (28)

It has been noted in Ozima & Ozima (1965) that in this case an
IRM acquired at T 3 is counted for the left hand side, but not for the
right hand side. This was experimentally verified by Levi (1979).
Application of the transition matrix method analogous to the above
derivation indeed results in the correct relation

χpTRM(T1,T3) + χpTRM(T3,T4) = χpTRM(T1,T4) + χIRM(T3), (29)

where the last term is the susceptibility of an viscous IRM acquired
by cooling in zero field to T 2 = T 3 switching the field on and
off with a residence time of the order of τ c, and cooling down
to T 0 in zero field. There are two slight subtleties related to the
transition matrix representation of the viscous IRM process. First,
the transition matrix which ensures additivity actually is

W H
(d) = M0

(0) D
0
(1) M

0
(1)U

H
(3) D

H
(3) M

0
(3)U

0
(4) M

0
(4), (30)

and describes an inverse IRM, because the field is first switched off,
and then on. For a real IRM the field switching part of the transition
matrix would be DH

(3) U H
(3). However, from (23) one recognizes that

in first order DH
(3) and U H

(3) commute, and (29) finally turns out
to be correct. The second subtlety is that the viscous remanence
acquisition due to the intermediate waiting time at T 3 is crucial for
the explanation of additivity violations in the limit H → 0. Without
viscous remanence, Rayleigh’s law states that remanence acquisition
in weak fields is proportional to H 2 and thus of second order only.

6 E X T E N D E D V E R S I O N S O F
T H E L L I E R ’ S L AW O F A D D I T I V I T Y

Recent experimental investigations of MD TRM revealed that be-
sides the classical additivity law, extended or modified versions are
also valid. In Shcherbakov et al. (1993) it was found that additiv-
ity also holds for an overheated pTRM′, which is generated like a
normal pTRM preceded by the cooling process [T C, 0] → [T 0, 0]
and the subsequent heating [T 0, 0] → [T ′, 0], where T ′ > T 4. To
describe these processes by transition matrices, the pTRM repre-
sentations (22) must be modified by a matrix factor

C(T ′) := (
M0

(4)

)−1
M

(
[T0, 0] → [T ′, 0]

)
M ([TC , 0] → [T0, 0]) .

(31)

Thus the process generating pTRM′(x) is represented by W H
(x) C(T ′).

Analogous to (24) one obtains for these matrices

w(c)C(T ′) = w(a)C(T ′) + w(b)C(T ′). (32)

By checking that the matrices w(x)C(T ′) are point antisymmetric, it
finally can be concluded in correspondence to (27) that

χpTRM′(a) + χpTRM′(b) = χpTRM′(c) . (33)

A further extension of the additivity law has been reported in Dunlop
& Özdemir (2001), where it is stated that even the thermal demagne-
tization curves of the pTRM(x) are additive. This is true not only for
high temperature measurements, but also for the tails tpTRM(x)(T )
of pTRM(x) at T , which are obtained by the process [T 0, 0] → [T , 0]
→ [T 0, 0] after pTRM acquisition. Again these modifications of
Thellier’s law are easily derived in the same fashion as above. The
transition matrices of the pTRM representations (22) must be mod-
ified by the point symmetric matrix factors

E1(T ) := M ([T0, 0] → [T, 0]) , (34)

E2(T ) := M ([T, 0] → [T0, 0]) M ([T0, 0] → [T, 0]) (35)

to yield the transition matrices E1(T )W H
(x) for the high tempera-

ture measurements of pTRM(x)(T ) or E2(T )W H
(x) for the tpTRM(x).

Exactly as above, (24) assumes the modified form

Ek(T )w(c) = Ek(T )w(a) + Ek(T )w(b), k = 1, 2, (36)

which due to the point antisymmetry of each term Ek(T ) w(x) im-
mediately leads to the additivity laws

χpTRM(a)(T ) + χpTRM(b)(T ) = χpTRM(c)(T ), (37)

χtpTRM(a)(T ) + χtpTRM(b)(T ) = χtpTRM(c)(T ). (38)

In Dunlop & Özdemir (2001) the validity of this additivity law was
interpreted as a consequence of a symmetry of the spectrum of
unblocking temperatures with respect to the blocking temperature.
However, no such symmetry is needed in the above derivation and
therefore additivity is of completely independent nature. A similar
conclusion was drawn previously on the basis of a phenomenolog-
ical model (Fabian 2000). It is evident that the above modification
technique can be applied to arbitrary point symmetric modification
matrices and thus generates a large class of possible additivity laws.

7 B L O C K I N G A N D U N B L O C K I N G
O F R E M A N E N C E

An essential concept of TRM theories is usually the notion of block-
ing or unblocking temperatures. Until now this notion didn’t occur
at all within the presented statistical theory where all state changes
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TC

TB

no domain

changeTC T0

TB
domain

nucleation
T0

(a)

(b)

Figure 4. The sketch in (a) illustrates the common definition of the blocking
temperature T B where it is required that no domain changes occur below
T B. The main deficiency of this definition is depicted in (b). Here the critical
decision about the remanence at T 0 is made at T B although nearly certainly
some minor domain change occurs between T B and T 0. According to the
common definition, the domain state at T B in (b) is not blocked.

are solely represented by transition matrices. Here it will be shown
that a more abstract concept of blocking and unblocking temperature
can be derived from the statistical approach by regarding expecta-
tion values of remanence. This concept turns out to be much more
appropriate when dealing with transdomain processes.

The most concise definition of the blocking temperature T B for a
cooling SD particle is the temperature at which the expected number
of magnetization reversals during the remaining cooling falls below
1 (Stacey & Banerjee 1974). Analogously, one could define the
blocking temperature of a domain state S within an MD particle as
the temperature at which the probability of a transition away from
this state during cooling falls below 1/2 usually. This would regard
a state Si as blocked when during the remaining cooling process it
remains unchanged. However, Fig. 4 sketches a typical mechanism
by which in MD particles a part of the remanence can be already
blocked, even if a change in domain state (e.g. a small domain wall
jump) is highly probable to occur at lower temperatures.

To account for changes of the magnetization structure during
the whole cooling process, it is more appropriate to consider the
blocked remanence at temperature T , which is the expectation value
of remanence at T 0 provided that the irreversible magnetization
state at T is ρT . In Fig. 4 the expectation value of remanence above
T B is 0, while below T B it is the SD remanence if no transdomain
processes occur as in (a) or some smaller value if transdomain effects
are present as in (b). In both cases the difference in the expectation
value of remanence above and below T B indicates that a blocking
of remanence takes place at T B. In terms of domain state, this can
be regarded as a conditional blocking.

To make this idea precise, it is helpful to introduce a more sug-
gestive notation similar to the Dirac quantum mechanical bra-ket
formalism. Let 〈mT | denote the vector with components mT,i =
m(T , Si). This vector acts as a magnetization operator upon the
state vectors |ρ〉 such that if the system at temperature T is in state
|ρ〉, its magnetization is given by 〈mT | ρ〉. A temperature change is
represented by the transition matrix M H

T,T ′ := M([T , H ] → [T ′, H ]).
The expectation value of remanence at T ′ after zero field cooling
from the state ρT at T is

〈
mT ′

∣∣M0
T,T ′

∣∣ ρT

〉 =
N∑

i, j=−N

mT ′,i M0
T,T ′,i jρT, j . (39)

It is of interest to study the change of remanence during cooling
from some initial state | ρH

T 〉 at T to a temperature T ′ < T . Assume
that the state | ρH

T 〉 has been obtained by cooling from T C within

fields H (T ) ≤ H . It then has the form∣∣ ρH
T

〉 = ∣∣ ρ0
T + HσT

〉
, (40)

where | σ T 〉 is a point antisymmetric vector (σ T,−i = −σ T,i ). The
remanence at T then is given by〈
mT | ρH

T

〉 = 〈
mT

∣∣ ρ0
T + HσT

〉 = H〈mT | σT 〉. (41)

The last equality uses the fact that | ρ0
T 〉 is point symmetrical and

〈mT | point antisymmetrical. After cooling to T ′ the remanence to
first order in H is〈
mT ′

∣∣ M H
T,T ′

∣∣ ρH
T

〉 = 〈
mT ′

∣∣ M0
T,T ′ + H RT,T ′

∣∣ ρ0
T + HσT

〉
≈ H

(〈
mT ′

∣∣ RT,T ′
∣∣ ρ0

T

〉 + 〈
mT ′

∣∣ M0
T,T ′

∣∣ σT

〉)
.

(42)

The change in remanence includes three independent effects. First,
the operator 〈mT ′ | is different from 〈mT | due to different reversible
states determining the remanence in Rev(Si). Second, a pTRM
has been acquired during cooling in field, which is described by
〈mT ′ | RT,T ′ | ρ0

T 〉. Note that this pTRM is independent from the mag-
netization acquired above T which is represented by | σ T 〉. Third, the
previously acquired pTRM is reduced by state changes. This effect
is described by 〈mT ′ | M0

T,T ′ | σ T 〉 and in first order is independent
from the applied field during cooling from T to T ′.

To obtain an expression for the weak field blocking potential
at temperature T B one has to consider the difference between two
cooling processes

TC−→TB + �T −→TB, (43)

where a field H is either switched on or off in the interval [T B +
�T , T B]. Thereby, the blocking potential at T B can be defined as

χ (TB)

= lim
�T →0
H→0

〈
mTB

∣∣ M H
TB+�T,TB

∣∣ ρH
TB+�T

〉 − 〈
mTB

∣∣ M0
TB+�T,TB

∣∣ρH
TB+�T

〉
H�T

= 〈
mTB

∣∣ αTB

∣∣ ρ0
TB

〉
. (44)

Here αT B is the point antisymmetric linear coefficient of the in-
finitesimal generator µ(T B, H ). Thus χ (TB) is the maximal pos-
sible contribution of T B to the TRM susceptibility at T 0 and (44)
shows that it is independent from the details of the cooling process
above T B. The real contribution of the blocked remanence at T B to
the remanence at T 0, is obtained by taking into account the cooling
transition

TB−→T0 (45)

which leads to

χ T0
(TB) = lim

�T →0
H→0

〈
mT0

∣∣ M0
TB,T0

M H
TB+�T,TB

− M0
TB+�T,T0

∣∣ ρH
TB+�T

〉
H�T

= 〈
mT0

∣∣ M0
TB,T0

αTB

∣∣ ρ0
TB

〉
. (46)

The point symmetric transition matrix M0
T B,T 0 in (46) describes the

reduction of the maximal blocking potential (44) by state changes.
In a similar way the unblocking of remanence can be investigated
by regarding a process

TC−→TB + �TB−→TB−→T0−→TUB−→TUB + �TUB,

where the field H is switched on only in the step T B + �T −→ T B.
In the limit �T B → 0 the sample carries only a remanence blocked
at T B. The fraction of this remanence, which unblocks at T UB is
obtained in the limit �T UB → 0. Calculations analogous to (44)
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yield for the susceptibility of remanence which has been blocked at
T B and unblocks at T UB

χ (TB, TUB) = 〈
mTUB

∣∣ µ0
TUB

M0
T0,TUB

M0
TB,T0

αTB

∣∣ ρ0
TB

〉
. (47)

This formula contains a statistical interpretation of the process by
which unblocking and blocking temperatures can differ. It traces the
average magnetization change of all possible paths of irreversible
states which acquire some remanence at T B and after a sequence
of state transition processes lose some remanence at T UB. Here it
is important to remember that the occurrence of a state transition is
not deterministic. A remanence loss �m due to a state change Sj →
Si may or may not occur during cooling at some temperature T ′ <

T . If it didn’t occur during cooling, it may just as well occur during
heating at the same temperature T ′ which now is interpreted as an
unblocking temperature for the remanence fraction �m. By sum-
ming all possible transition paths with their correct probability the
expectation value of remanence change is calculated in (47). The
concept of remanence blocking instead of domain state blocking
can be naturally extended to cover thermo-viscous processes in MD
ensembles where the dependence of thermal demagnetization crit-
ically depends upon the initial state before remanence acquisition
(Halgedahl 1993).

The above notations χ and χ (T B, T UB) are chosen to point out
the analogy to the phenomenological model of Fabian (2000). How-
ever, this similarity is by no means perfect. The statistical theory
doesn’t imply that TRM acquisition can be described by indepen-
dent remanence units with fixed T B and T UB. Therefore it doesn’t
share the deficiencies of the phenomenological model which result
from this assumption. Especially the experimentally found tail of
pTRM* (Shcherbakov et al. 1993) is compatible with the statistical
theory as will be shown in a forthcoming article.

8 D I S C U S S I O N

The statistical concept of probability densities of irreversible states
and transition matrices is apt to explain the crucial properties of MD
TRM. This concept unifies several previous approaches to use sta-
tistical physics for a coherent description of MD TRM. The essence
of the renormalization group approach of Ye & Merrill (1995) can
be regarded as a calculation of the transition matrix M([T C, H ] →
[T C −�T , H ]) for certain particles. A drawback of the renormaliza-
tion group method is that further transdomain processes occurring
during cooling to T 0 cannot be handled. On the other hand, the kine-
matic equations proposed by Sugiura (1981), Shcherbakov et al.
(1993) and Fabian (2000) only deal with an average remanence
change and are unable to distinguish between different internal states
of the system if these lead to the same remanence. The theory pro-
posed here clearly distinguishes the internal state, represented by
ρ(T ), the dynamics, represented by M , and the remanence, which
is an operator working on ρ. This separation allows the explana-
tion of linearity of MD TRM and very general classes of additivity
laws from basic symmetry properties. This reveals that linearity and
additivity laws are rooted in fundamental physics. It is not neces-
sary to investigate domain wall properties, diffusive after effects,
or symmetries of the unblocking spectrum to explain them. The
main intrinsic assumption of the statistical approach is that the in-
volved magnetic energy function actually has sufficient local energy
minima with low energy barriers between them to guarantee appli-
cability of Boltzmann statistics.

A problem without a satisfactory solution has always been the
connection between heating and cooling processes. On one hand,

neither the energy landscape at temperature T , nor the available ther-
mal energy kT depend on the direction of temperature change. On
the other hand, experiments show that heating and cooling processes
at T behave completely differently and they are usually regarded as
being independent from each other. In the statistical theory this puz-
zle is solved by noting that the transition matrix for heating processes
is

M([T1, H ] → [T2, H ]) = P+ exp

(∫ T2

T1

µ(θ, H ) dθ

)
(48)

and for the cooling process the transition matrix is

M([T2, H ] → [T1, H ]) = P− exp

(∫ T1

T2

µ(θ, H ) dθ

)
. (49)

In both cases the involved infinitesimal generators µ(θ , H ), repre-
senting the energy landscape, are the same, but they are applied in
different order (represented by the operators P±, see Appendix A).
As they do not commute, the final transition matrices are not inverse
to each other and can differ considerably.

An important advantage of the proposed statistical theory is that it
can naturally be extended to cover thermo-viscous processes by ex-
plicitly including time dependence into the transition matrices. Most
parts of the theoretical approach presented here can be extended to
this case. In order to calculate time-temperature relations as for
single-domain particles (Pullaiah et al. 1975; Walton 1980; Worm
& Jackson 1988) one has to estimate the relevant energy barrier
distributions either by micromagnetic models (Enkin & Williams
1994; Winklhofer et al. 1997) or by domain theoretical calculations
of wall pinning energies or domain wall nucleation. With respect to
palaeomagnetic applications this certainly is the next big obstacle
to overcome.

9 C O N C L U S I O N S

The main result of the previous investigation is the development of
a theory which allows derivation of important properties of weak
field TRM in MD particle ensembles from basic physical princi-
ples. This theory takes into account both, the fundamentally statis-
tical nature of TRM acquisition and deletion, and the occurrence
of non-equilibrium magnetization states together with correspond-
ing transdomain processes. The analysis of the statistical theory for
weak fields leads to the following conclusions:

(1) Thellier’s law of linearity of TRM within weak field holds for
generic MD particle ensembles where irreversible state transitions
frequently occur during cooling.

(2) Thellier’s law of additivity of partial thermoremanences is
generally valid for MD particle ensembles in weak external fields. It
can neither be invalidated by magnetostatic interaction, nor by full
or partial self-reversal. The latter cases only require interpretation
of the notion of irreversible state in a sufficiently general fashion to
include states of particle ensembles besides single particle domain
states. The correction of Ozima and Ozima (1965) to Thellier’s law
of additivity is necessary when the sum of two pTRMs acquired
in adjacent temperature intervals is compared to a single pTRM
acquired in the union interval. The method which has been used to
prove Thellier’s law of additivity applies equally to a wide range of
similar additivity properties.

(3) The statistical treatment suggests that blocking and unblock-
ing processes should be understood rather in terms of a change in
the expectation value of remanence than in terms of actually blocked
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or unblocked domain states. Using the former interpretation the ex-
perimentally observed differences between apparent blocking and
unblocking temperatures is explained as an effect of the probabil-
ity distribution for transitions between irreversible magnetization
states. The statistical interpretation thereby also resolves the other-
wise occurring problem that due to continuous transdomain changes
during the cooling process a blocking of domain state may not take
place.
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1 0 A P P E N D I X A

Part 1
The treatment of the master equation (4) and analogously of (6) is
based on results from the theory of linear differential equations in
a somewhat unusual form which traces point symmetry and point
antisymmetry of the solutions. Therefore, the necessary theorems
are stated here in the required form. The presentation is based on
Adrianova (1995). Necessary specifications or extensions are given
explicitly.

For a differentiable function ρ : R → R
2n+1 and a continuous

matrix function µ : R → R
(2n+1)×(2n+1), the equation

d

dT
ρ(T ) = µ(T )ρ(T ) (50)

is a linear homogeneous system of differential equations. Any set of
linearly independent solutions ρ−n(T ), . . . , ρn(T ) is called a funda-
mental system of solutions and forms a basis of the solution space.
From these, a fundamental matrix M(T ) = (ρ−n(T ), . . . , ρn(T ))
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can be constructed, which solves the matrix differential equation

d

dT
M(T ) = µ(T )M(T ). (51)

Any real solution M∗(T ) of (51) can be written as M∗(T ) = C M(T ),
where C ∈ R

(2n+1)×(2n+1). The matriciant �T
T 0

µ is the unique solu-
tion of the initial value problem

d

dT
M(T ) = µ(T )M(T ), M(T0) = Id. (52)

Using the matriciant, the general solution of (50) is obtained as

ρ(T ) = �T
T0

µρ(T0),

for some constant ρ(T0) ∈ R
2n+1. The matriciant can be expressed

in terms of µ as a convergent series

�T
T0

µ = Id +
∫ T

T0

µ(θ1) dθ1

+
∞∑

k=2

(∫ T

T0

µ(θ1) dθ1 · · ·
∫ θk−1

T0

µ(θk) dθk

)
. (53)

This series expansion appears in several physical contexts like quan-
tum mechanical perturbation theory where it is formally evaluated
using linear path ordering operators P+ or P−. These operators sort
a product over µ(θ j ) by a permutation π such that

P+(µ(θ1) · · · µ(θM )) = µ(θπ (1)) · · · µ(θπ (M)), with

θπ (1) ≥ θπ (2) ≥ · · · ≥ θπ (M), (54)

and

P−(µ(θ1) · · · µ(θM )) = µ(θπ (1)) · · · µ(θπ (M)), with

θπ (1) ≤ θπ (2) ≤ · · · ≤ θπ (M). (55)

Using the linearity of P± one can write

∫ T

T0

µ(θ1) dθ1 · · ·
∫ θk−1

T0

µ(θk) dθk = 1

k!
P+

[∫ T

T0

µ(θ ) dθ

]k

, (56)

which finally leads to

�T
T0

µ = P+ exp

[∫ T

T0

µ(θ ) dθ

]
, (57)

whereas the matriciant for cooling is analogously obtained as

�
T0
T µ = P− exp

[
−

∫ T

T0

µ(θ ) dθ

]
. (58)

Only if µ(T 1)µ(T 2) =µ(T 2) µ(T 1) for all T 1, T 2 this can be written
in terms of the usual matrix exponential

�T
T0

µ = exp

(∫ T

T0

µ(θ ) dθ

)

and only then �T
T 0

µ and �
T 0
T µ are inverse to each other. Since the

infinitesimal generators of thermal processes in general cannot be
expected to commute, the more general expansion (53) must be used
here. Note that in the application of this article the matriciant �T

T 0
µ

coincides with the transition matrix M(T 0 → T ).
The influence of a weak field upon the zero-field solution can be

taken into account using a theorem on the expansion of the matriciant
in powers of a parameter of the infinitesimal generator.

Theorem 1. Let

µ(T, h) =
∞∑

k=0

µk(T )hk,

where µk(T ) ∈ R
(2n+1)×(2n+1) are continuous matrix functions on

some interval T ∈ J and h a real number. Let the above series be
absolutely convergent and the norms of its terms converge uniformly
for T ∈ J and | h | < hmax. Then for all ρ0 ∈ R

2n+1 the solution
ρ(T , h) of

d

dT
ρ(T, h) = µ(T, h)ρ(T, h), ρ(T0, h) = ρ0 (59)

can be expanded in a power series of h that converges absolutely for
T ∈ J and | h | < hmax and whose coefficients are continuous for
T ∈ J . Moreover, for all k ≥ 0 the k-th order approximation of the
solution in h depends only on the m-th order terms µm(T ) where
m ≤ k. Especially, the first order approximation depends only on
µ0(T ) and µ1(T ).

The proof of this theorem can be found in Adrianova (1995). The
explicit series expansion of the matriciant is

M(T, h) = M0(T ) + M1(T )h1 + · · · + Mk(T )hk + · · · ,
where

M0(T ) = �T
T0

µ0, Mk(T ) = ∫ T
T0

�T
θ µ0

k∑
i=1

µi (θ )Mk−i (θ ) dθ,

k ≥ 1.

This implies the stated dependency properties for the k-th order
approximations. �

In the linear case the point symmetry properties of the matriciant
can be predicted from the infinitesimal generator.

Theorem 2. Let µ0(T ) ∈ R
(2n+1)×(2n+1) be a point symmetric and

µ1(T ) ∈ R
(2n+1)×(2n+1) a point antisymmetric continuous matrix

function on some interval I ⊂ R. Then for all h ∈ R

�T
T0

(µ0 + hµ1) = �T
T0

µ0 + h

∫ T

T0

�T
T ′µ0 · µ1(T ′)�T ′

T0
µ0 dT ′. (60)

This can be written as M0(T ) + hM1(T ), where M0(T ) is point
symmetric and M1(T ) is point antisymmetric.

Proof: The representation (60) is a specialization of the general
expansion of the previous theorem. From (53) follows, that for point
symmetric µ0 also the matriciant �T

T 0
µ0 is point symmetric. There-

fore M0(T ) is point symmetric and the product under the integral
in (60) is point antisymmetric, which extends to the integral M1(T )
itself. �

Part 2
The following calculation shows that the transition matrix for
switching weak fields on within a time interval of the order of τ c in
linear approximation is described by

M([T, 0] → [T, H ]) = I (T, τc) + β H, (61)

where I (T , τ c) is the transition matrix for zero-field viscous state
changes at temperature T within a time interval τ c and β is a point
antisymmetric matrix. The energy barriers between two states Sj

and Si in a weak applied field are given by (10) and (11), even when
no temperature change is involved. Switching on a field can be
described in various ways, depending on the applied experimental
procedure. One simple model is to stop the temperature change,
wait for τ c/2, switch on the field ‘instantaneously’, wait for τ c/2
and continue the temperature change. The waiting time is inserted
to account for handling. Another model is to describe switching as a
field ramp H (t) = H (1 − (t − t0)/τ c). Both approaches lead to the
same representation of the transition matrix which after calculations
analogous to (13)–(15) result in βi j = 1

2 q(T )�m0
i j Ii j (T, τc) which

is point antisymmetric since I ij(T , τ c) is point symmetric.
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