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Inversion of multicomponent, multiazimuth,
walkaway VSP data for the stiffness tensor

Pawan Dewangan∗ and Vladimir Grechka‡

ABSTRACT

Vertical seismic profiling (VSP), an established tech-
nique, can be used for estimating in-situ anisotropy that
might provide valuable information for characterization
of reservoir lithology, fractures, and fluids. The P-wave
slowness components, conventionally measured in mul-
tiazimuth, walkaway VSP surveys, allow one to recon-
struct some portion of the corresponding slowness sur-
face. A major limitation of this technique is that the
P-wave slowness surface alone does not constrain a num-
ber of stiffness coefficients that may be crucial for infer-
ring certain rock properties. Those stiffnesses can be ob-
tained only by combining the measurements of P-waves
with those of S (or PS) modes.

Here, we extend the idea of Horne and Leaney, who
proved the feasibility of joint inversion of the slowness
and polarization vectors of P- and SV-waves for param-
eters of transversely isotropic media with a vertical sym-
metry axis (VTI symmetry). We show that there is no
need to assume a priori VTI symmetry or any other
specific type of anisotropy. Given a sufficient polar and
azimuthal coverage of the data, the polarizations and
slownesses of P and two split shear (S1 and S2) waves
are sufficient for estimating all 21 elastic stiffness co-

efficients ci j that characterize the most general triclinic
anisotropy. The inverted stiffnesses themselves indicate
whether or not the data can be described by a higher-
symmetry model.

We discuss three different scenarios of inverting noise-
contaminated data. First, we assume that the layers are
horizontal and laterally homogeneous so that the hori-
zontal slownesses measured at the surface are preserved
at the receiver locations. This leads to a linear inversion
scheme for the elastic stiffness tensor c. Second, if the
S-wave horizontal slowness at the receiver location is un-
known, the elastic tensor c can be estimated in a nonlin-
ear fashion simultaneously with obtaining the horizon-
tal slowness components of S-waves. The third scenario
includes the nonlinear inversion for c using only the ver-
tical slowness components and the polarization vectors
of P- and S-waves. We find the inversion to be stable
and robust for the first and second scenarios. In contrast,
errors in the estimated stiffnesses increase substantially
when the horizontal slowness components of both P- and
S-waves are unknown. We apply our methodology to a
multiazimuth, multicomponent VSP data set acquired in
Vacuum field, New Mexico, and show that the medium at
the receiver level can be approximated by an azimuthally
rotated orthorhombic model.

INTRODUCTION
Multiazimuth walkaway vertical seismic profiling (VSP) can

be used for measuring in-situ anisotropy. It is usually esti-
mated from P-wave slowness surfaces p(P) (e.g., Gaiser, 1990;
Miller and Spencer, 1994) constructed by differentiating the
traveltimes t (P) of the first arrivals with respect to the coordi-
nates x of the surface sources and the downhole geophones,
p(P)

i = ∂t (P)/∂xi (i = 1, 2, 3). Because of the acquisition geom-
etry, the vertical slowness components p(P)

3 are obtained only
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at the geophone levels, whereas the horizontal components
p(P)

1 and p(P)
2 are computed only at the earth’s surface. To re-

construct the slowness surfaces in the borehole, one usually
assumes lateral homogeneity of the overburden. Then, accord-
ing to Snell’s law, the horizontal slownesses p(P)

1 and p(P)
2 are

preserved along any ray travelling from sources to downhole
receivers. Although the presence of even mild lateral velocity
variations is known to lead to noticeable distortions of the re-
constructed slowness surfaces and, consequently, to substantial
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errors in the estimated anisotropic parameters (Gaiser, 1990;
Sayers, 1997), Bakulin et al. (2000c) found a practical way of
correcting the slownesses for lateral heterogeneity of the over-
burden. Still, P-wave slowness surfaces p(P) are inherently in-
sufficient for constraining several stiffness coefficients needed
for describing certain rock properties (e.g., Zheng and Ps̆enc̆ı́k,
2002). Combining P- and S-wave VSP data is necessary for a
more comprehensive reservoir characterization.

In general, three-component geophones are required to
record S-waves at oblique incidence and perform Alford-type
rotation to separate the fast (S1) and slow (S2) shear-wave ar-
rivals (Dellinger et al., 2001). In addition to the S1- and S2-wave
traveltimes (which can be differentiated in the same manner
as those of P-waves to obtain the slownesses), Alford rotation
results in the polarization vectors A(S1) and A(S2) of the split
shear waves. Since the polarizations are measured locally at
the geophones, they can be used, along with the slownesses, for
anisotropic parameter estimation. Horne and Leaney (2000)
recognized this possibility and developed a procedure for joint
inversion of P- and SV-wave VSP data for parameters of trans-
versely isotropic media with a vertical symmetry axis (VTI).
The VTI model, however, might be too simplistic for character-
ization of realistic reservoirs. For instance, dipping beds lead to
tilted transverse isotropy (TTI model), whereas the presence of
vertical fractures might reduce the symmetry of effective media
to orthorhombic, monoclinic, or even triclinic (Bakulin et al.,
2000a,b; Grechka et al., 2001). Although, some anisotropic co-
efficients can be found from reflection seismics, in general it is
impossible to estimate all quantities needed for reservoir char-
acterization from surface data. Thus, it is important to exam-
ine whether or not multicomponent, multiazimuth, walkaway
VSP data can be used to obtain parameters of lower-symmetry
anisotropic media.

Here we show that all 21 stiffness coefficients can be found
given a sufficient polar and azimuthal coverage of the data. Er-
rors in their values turn out to depend on the complexity of the
overburden, which determines our ability to use the horizontal
slowness components (measured at the surface) in the inver-
sion. We consider three possible scenarios for the inversion of
VSP data.

FIG. 1. Three different scenarios of the inversion of multicomponent VSP data corresponding to different levels
of the complexity of the subsurface: (a) scenario 1, (b) scenario 2, and (c) scenario 3.

Scenario 1. The overburden is close to horizontally layered
(Figure 1a), and lateral velocity variations of P- and S-waves
are known, for instance, from surface seismics. The expense of
shear-wave excitation can be avoided by obtaining the S modes
from converted (PS) wave reflections. The possible influence
of lateral velocity heterogeneity on the horizontal slowness
components of P- and S-waves might be corrected by applying
the technique described by Bakulin at al. (2000c). With such a
correction, local values of the slowness vectors p(P), p(S1), and
p(S2) and the polarizations A(P), A(S1), and A(S2) of all three
modes are available at the receiver locations and can be used
to estimate the elastic stiffness coefficients ci j . This results in
a linear inverse problem for the tensor c [see equations (1)
below].

Scenario 2. It may happen that only conventional P-wave
surface seismic data were acquired and the S-wave veloc-
ity distribution is unknown, or shear waves recorded by the
downhole receivers correspond to PS-wave reflections from
dipping interfaces (Figure 1b). In both cases, the horizontal
slowness components p(S1)

1 , p(S1)
2 , and p(S2)

1 , p(S2)
2 of S-waves

are, in general, unknown at receiver locations. The tensor
c, however, can still be estimated by inverting the slow-
nesses p(P), p(S1)

3 , and p(S2)
3 and the polarization vectors A(P),

A(S1), and A(S2). The inversion becomes nonlinear in this
case.

Scenario 3. If the subsurface is so complicated that it is im-
possible to obtain the horizontal slownesses of both P- and
S-waves at the receiver locations (Figure 1c), only the quanti-
ties p(P)

3 , p(S1)
3 , p(S2)

3 , and A(P), A(S1), A(S2) comprise the input
for estimating the tensor c. The inversion problem is again
nonlinear.

Below, we analyze these three inversion scenarios and apply
the developed procedure to estimate the elastic stiffness tensor
c for a multiazimuth, multicomponent VSP data set acquired
in Vacuum field, New Mexico.

ANALYTIC BACKGROUND

The forward model for the inverse problem at hand is sim-
ply the Christoffel equation, which determines the polarization
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and slowness vectors of plane waves propagating in anisotropic
media (e.g., Tsvankin, 2001):

F (Q)
k ≡ G(Q)

kl ′ A(Q)
l ′ − A(Q)

k = 0, (1)

where

G(Q)
kl ′ = ckk′ll ′ p

(Q)
k′ p(Q)

l , (2)

(Q = P, S1, S2; k = 1, 2, 3).

As in typical notation, we require the polarization vectors A(Q)

to be normalized, |A(Q)| = 1, define the wave type according to
inequality |p(P)|< |p(S1)| ≤ |p(S2)|, and assume summation over
all repeated indexes from 1 to 3. The density-normalized stiff-
ness tensor c, as well as the vectors p and A, are defined in a
Cartesian coordinate frame with the positive x3-axis pointing
downward. Our goal is to estimate the elastic stiffness tensor
c by inverting equations (1). In the discussion below, we often
use Voigt convention for the components of c:

ckk′ll ′ → ci j = cji ,

where the correspondences kk′ → i and ll
′ → j are given by

the template

i = kδkk′ + (9− k− k′)(1− δkk′).

Here, δkk′ = 1 if k = k′ and δkk′ = 0 otherwise. The indexes i
and j in Voigt notation change from 1 to 6 indicating that the
maximum number of independent components of symmetric
tensor c is 21.

Scenario 1. If the slowness and polarizations vectors (p(Q)

and A(Q)) of all three modes are measured for N propagation
directions, the only unknown in equations (1) is the tensor c.
Thus, the model and data vectors for scenario 1 are given by

m = c, d =
{

p(Q)
n , A(Q)

n

}
,

(3)
(Q = P, S1, S2; n = 1, . . . , N).

Clearly, obtaining c from equations (1) is a linear inverse
problem.

Scenario 2. When the horizontal slowness components of
shear waves cannot be measured, the model and data vectors
are

m =
{

c, p
(S1)
1,n , p

(S1)
2,n , p

(S2)
1,n , p

(S2)
2,n

}
,

d =
{

p(P)
n , p

(S1)
3,n , p

(S2)
3,n , A(Q)

n

}
, (4)

(Q = P, S1, S2; n = 1, . . . , N).

Since the slowness components p(S1)
i,n and p(S2)

i,n (i = 1, 2) have
to be estimated along with the components of the tensor c, the
inversion becomes nonlinear.

Scenario 3. Finally, when the horizontal slownesses of both
P- and S-waves are unknown, we operate with the model and
data vectors

m =
{

c, p(Q)
1,n , p(Q)

2,n

}
, d =

{
p(Q)

3,n , A(Q)
n

}
,

(5)
(Q = P, S1, S2; n = 1, . . . , N),

and the inversion procedure is again nonlinear.

To illustrate the increase in the number of unknowns from
scenario 1 to scenario 3, let us assume that there are N= 30
spatial directions (data points) specified by a particular az-
imuth and polar angle, where the polarizations and slownesses
of all three modes are measured. In scenario 1, the unknowns
are the 21 stiffness coefficients ci j for the most general tri-
clinic anisotropy. In scenario 2, four unknown slowness com-
ponents p(S1)

1 , p(S1)
2 , p(S2)

1 , p(S2)
2 for each data point [equations (4)]

have to be added, increasing the number of unknowns to
21+ (30× 4)= 141. Similarly, in scenario 3 the total number of
unknowns becomes 21+ (30× 6)= 201 because the horizontal
slownesses of all three modes are unknown [equations (5)].

In general, we have three equations (1) for each mode, so
there are nine equations for each data point. Therefore, the to-
tal number of equations is 30× 9= 270. For noise-free, noncon-
tradictory data, however, this number reduces to 30× 6= 180
exactly at the solution c because the components of slowness
vectors p(Q) also satisfy the equality

det
(

ckk′ll ′ p
(Q)
k′ p(Q)

l
− δkl

′

)
= 0

which makes the polarization vectors A(Q) the eigenvectors of
matrix G(Q) [equation (2)]. As a consequence, one of three
equations (1) can be expressed in terms of the other two. The
numbers of independent equations and unknowns are summa-
rized in Table 1. Clearly, the inversion procedure in scenario 3
is underdetermined.

FEASIBILITY OF ESTIMATING STIFFNESS COEFFICIENTS
FROM WALKAWAY VSP DATA

In general, our ability to estimate a certain stiffness coef-
ficient depends on the acquisition geometry. If, for instance,
all ray trajectories in the data are close to the vertical, the
stiffness coefficients c11, c12, c22, and c66, which largely govern
wave propagation in near-horizontal directions, will be poorly
constrained. The feasibility of estimating a particular stiffness
coefficient can be evaluated by examining the Christoffel equa-
tion (1) written in the form

F(m, d) = 0, (6)

where m and d are the model and data vectors for the inversion
scenarios given by equations (3–5). Then, the model and data
perturbations relate as

∂F
∂m

1m+ ∂F
∂d
1d = 0. (7)

Therefore,

1d = FF1m, (8)

Table 1. Comparison of the numbers of equations and un-
knowns for a hypothetical VSP data set containing 30 points.
Scenarios 1, 2, and 3 are illustrated in Figure 1.

Number of unknowns

Number of equations Scenario 1 Scenario 2 Scenario 3

270 (180) 21 141 201
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where the matrix

FF = −
(
∂F
∂d

)†
∂F
∂m

(9)

has the meaning of the Frechèt derivative matrix, and † denotes
the pseudoinverse.

Using the singular value decomposition (SVD) of the
Frechèt matrix, we obtain

FF = USVT . (10)

Here U and V are the eigenvector matrices in the data and
model spaces, respectively, S is the diagonal matrix of singular
values, and T denotes transposition. To get some understanding
of how errors in data propagate into the estimated stiffness
coefficients, let us assume that the data are contaminated by
uncorrelated Gaussian noise that has the standard deviation
σ (d)= constant and calculate the standard deviation σ (m) of
the model vector m. The result is (e.g., Press et al., 1987)

σ 2
j (m) =

dim(d)∑
i=1

(
Vji

Si

)2

σ 2(d), ( j = 1, . . . ,dim(m)),

(11)
where Vji is the model eigenvector, Si is the corresponding
singular value, and dim(a) denotes the length of vector a.

Figure 2 shows typical distribution of errors in the stiffness
coefficients inverted following scenario 2. The triclinic model
and spatial directions corresponding to 30 data points used in
this example are described in the caption of Figure 2. We ob-
serve that the errors in different components of the tensor c
vary. The reason is the limited polar coverage of the data. Since
the maximum of the polar angle α(1) is 65◦ from the vertical,
the greatest error-amplification factors are associated with the

FIG. 2. Error-amplification factors σ (m)/σ (d) for the stiff-
nesses ci j computed using equation (11). The spatial direc-
tions used to generate the data are specified by five polar an-
gles α(1)= [13◦, 26◦, 39◦, 52◦, 65◦] and six azimuths α(2)= [0◦,
30◦, 60◦, 90◦, 120◦, 150◦]. The model is described by the fol-
lowing density-normalized stiffness coefficients (in km2/s2):
c11= 4.00, c12= 2.06, c13= 2.10, c14=−0.05, c15= 0.01, c16=−0.02, c22= 3.83, c23= 1.96, c24= 0.12, c25=−0.05, c26= 0.13,
c33= 3.96, c34= 0.11, c35= 0.03, c36=−0.09, c44= 1.00, c45=
0.11, c46=−0.07, c55= 0.88, c56= 0.01, c66= 1.11.

stiffness coefficients c11 and c22 that determine the P-wave slow-
nesses and polarizations in directions close to the horizontal.
In contrast, the stiffnesses c44 and c55, which govern shear-wave
signatures near the vertical, are among the best constrained;
their error-amplification factors are much smaller.

Figure 3 compares the errors for our three inversion scenar-
ios. As expected, the smallest errors in the estimated stiffnesses
correspond to scenario 1, for which the number of unknowns
is just 21 (Table 1). Interestingly, the errors in scenarios 1 and
2 are comparable, which suggests that knowing the horizontal
slownesses of S-waves is not especially important for estimat-
ing the stiffness tensor c. On the other hand, in scenario 3, the
errors are substantially higher. Since in scenario 3 the number
of unknowns is greater than the number of equations (Table 1),
infinite errors (not shown) are associated with some horizon-
tal slowness components that have to be found along with the
stiffnesses.

We conclude this section by noting that the obtained results
are based on analysis of the Frechèt derivative matrix, which
represents the linearization of the truly nonlinear inverse prob-
lem in the vicinity of its solution. Next, we perform actual non-
linear inversion of synthetic noise-contaminated VSP data and
show that the above conclusions remain qualitatively valid.

INVERSION SCHEME AND NUMERICAL RESULTS

For scenario 1, for which the horizontal slownesses of both
P- and S-waves at the receiver location are known, the problem
of obtaining the stiffnesses ci j from equations (1) is linear. Its
solution is given by

m = FF†d, (12)

where FF is the Frechèt matrix defined by equation (9).
In scenarios 2 and 3, when the inversion becomes nonlinear,

we implemented the following procedure. First, given a trial
stiffness tensor c, we minimize F 2(c, p(Q)) [equation (1)] with
respect to the horizontal slownesses p(Q)

1 and p(Q)
2 at each data

FIG. 3. Comparison of the error-amplification factors
σ (m)/σ (d) for inversion scenarios 1 (circles), 2 (diamonds),
and 3 (triangles). As before, the data were computed at the
spatial directions and for the model described in the caption
of Figure 2.
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point. Once the horizontal slowness components (four per data
point in scenario 2 and six per point in scenario 3) are obtained,
we seek a minimum of the objective function

8(c) =
∑

F2(c, p(Q)) (13)

with respect to c. The summation here is performed over
all data points, and the conjugate gradient method is used
in both optimization steps. The main advantage of this in-
version scheme is that it allows us to split the full parame-
ter space, which includes both c and p(Q), into a sequence of
substantially smaller subspaces. As a result, we significantly im-
prove computational efficiency without compromising the rate
of convergence.

To test the inversion algorithm, we computed the polariza-
tion and slowness vectors in an orthorhombic model. Then, the
data were contaminated with Gaussian noise that had standard
deviations 2% for the slownesses and 10◦ for the polarization
vectors. The stiffnesses have been estimated for different re-
alizations of the noise. We did not use information about the
symmetry of the model, so the data were inverted for triclinic
media.

The results presented in Figure 4 (scenario 1) clearly indicate
that all elements of the stiffness tensor that are strictly zero in
the original orthorhombic medium are, indeed, small. Thus,
knowing the symmetry of the model a priori is not needed for
the inversion; the symmetry can be inferred from the results.
The larger error bars for the computed stiffness coefficients
c11, c12, and c22 as compared to those for c44 and c55 can be
explained by the limited polar coverage of the data (up to 52◦

from the vertical). Note that relative errors in the estimated
stiffnesses are reasonably well predicted by the above analysis
of the Frechèt matrix (Figure 3).

When we follow scenario 2 to invert the stiffnesses from
the same data [except for the slowness components p(S1)

1,n , p(S1)
2,n ,

FIG. 4. Results of linear inversion (scenario 1) of polarization
and slowness vectors. Stars denote the exact values of the stiff-
ness coefficients (corresponding to an orthorhombic model),
bars represent± one standard deviation in the estimated quan-
tities. The data were computed at 24 directions specified by
four polar angles α(1)= [13◦, 26◦, 39◦, 52◦] and six azimuths
α(2)= [0◦, 30◦, 60◦, 90◦, 120◦, 150◦].

p(S2)
1,n , and p(S2)

2,n that now become a part of the model; com-
pare equations (3) and (4)], we obtain less accurate results.
Such loss of accuracy is predicted by the SVD analysis (com-
pare the locations of circles and diamonds in Figure 3). The
obtained estimates of stiffness coefficients can be improved
by increasing the polar coverage of the data. Figure 5, where
the maximum polar angle α(1) = 65◦, indicates that the errors
in the estimated ci j become comparable to those in Figure 4,
even though the horizontal slownesses of S-waves are still
unknown.

The inversion following scenario 3 (Figure 6) reveals a se-
rious deterioration in the obtained estimates. Not only do the
error bars generally increase compared to those in Figure 5,
but the method also fails to constrain the stiffnesses c11, c12,
and c22. Again, the reason for this can be seen in Figure 3. The

FIG. 5. Inversion following scenario 2 for the same model as
that in Figure 4 but for data generated at 30 directions given
by five polar angles α(1) = [13◦, 26◦, 39◦, 52◦, 65◦] and six az-
imuths α(2) = [0◦, 30◦, 60◦, 90◦, 120◦, 150◦]. Triangles mark
the initial guesses for the components of tensor c.

FIG. 6. Inversion of the data with the coverage described in the
caption of Figure 5 following scenario 3.
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standard deviations in c11, c12, and c22 predicted by the SVD
are so large that any reasonable values of those elastic coeffi-
cients fit the data. As a consequence, the estimates of c11 and
c12 stay close to the corresponding initial guesses (triangles in
Figure 6), and c22 has a large variability.

So far, we avoided making any assumptions about the type of
anisotropy of the model and attempted to estimate all 21 stiff-
ness coefficients. Let us now reduce the number of unknown
stiffnesses to nine by assuming the model to be orthorhom-
bic with a known orientation of the symmetry planes. Figure 7
shows the inverted nonzero stiffness coefficients following sce-
nario 2. Comparing Figures 5 and 7, we observe some decrease
of the error bars. Although the symmetry is clearly helpful for
the inversion, Figures 5 and 7 indicate that it does not lead to
significant improvement of the results.

FIELD-DATA EXAMPLE

Next, we apply our inversion scheme to a 3D walkaway VSP
data set acquired in Vacuum field, Lea County, New Mexico.
The data were recorded by a string of 10 three-component geo-
phones placed in a vertical well with a 15-m depth increment
between 304.8 and 439.8 m. Vertical and horizontal vibrators
at about 250 shotpoints uniformly distributed around the bore-
hole with the offsets reaching 510 m were used to excite P- and
S-waves, respectively. The details of data acquisition can be
found in Michaud (2001).

Estimation of polarization and slowness vectors

The initial data processing was performed by Michaud
(2001). She applied the technique of DiSeina et al. (1984) to
obtain the P-wave polarization vectors and used Alford (1986)
rotation of the sources and receivers to separate two shear
waves and find their polarization directions. The results for the
receiver at depth 304.8 m are shown in Figures 8a–c.

The analysis of traveltimes t (Q) picked for P-, S1-, and
S2-arrivals reveals the following: (1) traveltime minima t (Q)

0
correspond to the borehole location for all receiver positions,

FIG. 7. Same as Figure 5 but assuming that the model is or-
thorhombic with known orientation of the symmetry planes.

(2) traveltimes are symmetric with respect to the well. Based
on these observations and to reduce the influence of noise on
traveltime picks, we have chosen to approximate the squared
traveltimes t (Q) by a 2D Taylor series,

[
t (Q)(x)

]2=
[
t (Q)
0 (x3)

]2
+

2∑
j1, j2=1

a(Q)
j1 j2

(x3)xj1 xj2

+
2∑

j1, j2, j3, j4=1

b(Q)
j1 j2 j3 j4

(x3)xj1 xj2 xj3 xj4 , (14)

(Q = P, S1, S2).

Here, the traveltimes t (Q)(x) are written in a Cartesian coordi-
nate frame [x1, x2, x3] with the origin at the borehole location
and the axes x1, x2, and x3 oriented in the east-west, north-
south, and vertical directions, respectively; x1 and x2 denote
the source coordinates, x3 is the receiver depth. The coeffi-
cients a(Q)

j1 j2 (x3) and b(Q)
j1 j2 j3 j4 (x3) in equation (14) are symmetric

with respect to any pair of their indexes. We find the quantities
[t (Q)

0 (x3)]2, a(Q)
j1 j2 (x3), and b(Q)

i1 i2 i3 i4
(x3) at all receiver levels x3 using

the least-squares method.
Next, we compute the slowness vectors according to their

definition,

p(Q)
i ≡ ∂t (Q)

∂xi
. (15)

The result of this calculation for receiver at depth 304.8 is shown
in Figures 8d–f. Note that the polar coverage of the data is ex-
tremely good. Since the polar angles reach 75◦–80◦, we might
expect a comparable accuracy in the estimated stiffness coeffi-
cients that govern wave propagation in both near-vertical and
near-horizontal directions.

Inversion for stiffness coefficients

The studies done by Roche (1997) and the observed travel-
time symmetry,

t (Q)(x1, x2, x3) = t (Q)(−x1, −x2, x3), (16)

indicate that the subsurface structure in the vicinity of the well
is close to horizontally layered with almost no lateral velocity
variations. This enables us to use the linear inversion strategy of
scenario 1. We make no assumption about the medium symme-
try and invert the data for a triclinic model. To obtain a suite
of inversion results rather than a single model, we contami-
nate the polarizations and slownesses (such as those shown in
Figure 8) with Gaussian noise. According to the estimates of
Michaud (2001), the errors in the polarization and slowness
vectors are 12◦ and 5%, respectively. We impose these values
as the corresponding standard deviations.

It turns out that the inverted stiffness coefficients (Figure 9)
are accurately described by an azimuthally rotated orthorhom-
bic medium. [In fact, we also performed the inversion follow-
ing scenario 2 that does not use shear-wave horizontal slowness
components. Starting from an isotropic initial model, we ob-
tained the stiffnesses (not shown) similar to those displayed in
Figure 9.] The local x′3-axis of this orthorombic medium has a
tilt of approximately 4◦ with respect to the vertical and east-
west azimuth. This tilt is statistically insignificant, so we can
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assume that the model has a horizontal symmetry plane. The lo-
cal x′1-axis points at 25◦SE; the 95% confidence interval for this
value is±15◦. The velocities (along the x′3-axis) of the obtained
orthorhombic model and its anisotropic coefficients (Tsvankin,
1997) are shown in Figure 10. Our model correctly repro-
duces the direction of the S-wave polarization vectors at small
offsets (Figures 8b,c) and the features displayed on the slow-
ness plots (Figures 8d–f). In particular, the shear-wave split-
ting coefficient γ (S)= (γ (2)− γ (1))/(1+ 2γ (2))≈ 0.10 matches
that inferred from Figures 8e,f. Also the elongation of
the P-wave slowness contours in approximately southeast-
northwest direction (Figure 8d) corresponds to the inequality

FIG. 8. (a, b, c) Horizontal projections of the polarization vectors (longer ticks correspond to waves polarized
almost horizontally) and (d, e, f) vertical slowness components p(Q)

3 (p(Q)
1 , p(Q)

2 ) (in s/km) of P-, S1-, and S2-waves,
respectively, for a receiver at depth 304.8 m. The well is located at x1= x2= 0.

δ(2) >δ(1) between two of the δ-coefficients [equation (20) in
Grechka and Tsvankin (1999)].

Some insight into the goodness-of-fit of the data can be
gained from the residuals1A(Q)

i and1p(Q)
3 plotted in Figure 11.

We observe that our best-fit model is quite successful in pre-
dicting the P- and S1-wave slownesses (Figures 11d,e), whereas
the residuals 1p(S2)

3 have substantial bias (Figure 11f). Like-
wise, the P-wave polarizations (Figure 11a) are well described,
whereas the polarizations of shear modes are relatively poor
(Figures 11b,c). Since the residuals in Figures 11b,c,f display
systematic patterns, it appears that errors in the inversion are
mainly caused by the S-wave polarizations and slownesses. In
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FIG. 9. Inverted stiffness coefficients of triclinic media. Dots
indicate mean values, bars correspond to the 95% confidence
intervals resulting from adding Gaussian noise with the stan-
dard deviation equal to 12◦ for polarization vectors and 5% for
the slownesses.

FIG. 10. Tsvankin’s (1997) anisotropic coefficients for the es-
timated orthorhombic media. As in Figure 9, dots indicate
the mean values, and bars correspond to the 95% confidence
intervals. The vertical velocities for the obtained models are
VP0= 2.66± 0.05 km/s and VS0= 1.44± 0.04 km/s (not shown).

fact, this observation could have been expected because the
vectors A(S1) and A(S2) were obtained by applying Alford ro-
tation, which implies the orthogonality A(S1) ⊥ A(S2). At large
incidence angles, however, the vectors A(S1) and A(S2) are not
orthogonal to each other, as can be verified from the corre-
sponding slowness vectors p(S1) and p(S2) (Figures 8e,f), which
are not parallel. This inconsistency propagates through the in-
version scheme (which tries to fit all the data simultaneously)
and contributes to the overall error.

Even given the possible errors, our results agree with the
existing studies of Vacuum field. For instance, Mattocks (1998)
examined the polarization of S-waves and the focusing of
shear-wave energy, and concluded that the overburden (shal-
low 300 m) of Vacuum field has orthorhombic symmetry. In
addition, the study of borehole breakouts performed by Scuta
(1997) resulted in the estimate of azimuth of the maximum
horizontal stress of about 32◦ southeast.

DISCUSSION AND CONCLUSIONS

The feasibility of estimating the full stiffness tensor c from
multicomponent, multiazimuth, walkaway VSP data depends
on several factors. First, the overburden complexity determines

our ability to estimate the horizontal slowness components p1

and p2 at the geophone levels. When such estimates of p1 and
p2 cannot be made (scenario 3), the large error bars in the in-
verted stiffnesses render them almost useless. We showed that
knowing the horizontal slowness components of only P-waves
(scenario 2) makes the inversion for all ci j feasible. When the
components of p1 and p2 of the shear-waves can be also mea-
sured (scenario 1), the stability of the inverted stiffness coeffi-
cients increases.

Another factor that governs the accuracy of any given ci j

is the data coverage. Since different stiffness coefficients in-
fluence wave propagation for different ranges of polar and
azimuthal angles, full coverage may be needed to obtain all
ci j with a comparable accuracy. In practice, however, we may
expect to have a much better coverage in near-vertical direc-
tions than near the horizontal. As a result, errors in c11, c12, c22,
and c66 are usually greater than those in c33, c44, and c55. Our
numerical tests confirm that.

In general, the accuracy of inverted stiffness coefficients in-
creases if the medium has a known higher symmetry. This
obviously relates to the number of unknown quantities one
attempts to estimate from a given data set. We have found,
though, that the gain in accuracy is not substantial enough to
make the assumption of a particular symmetry absolutely nec-
essary. On the other hand, allowing for the most general tri-
clinic anisotropy offers the potential of recognizing the medium
symmetry from the inversion results in contrast to assuming it
a priori.

The presented case study substantiates the last point. We
estimated the stiffness tensor of a triclinic model by fitting
both the polarization and slowness vectors of the P- and two
split S-waves. We also showed that the obtained stiffnesses are
close to those describing an azimuthally rotated orthorhombic
model. The orientation of its symmetry planes fits a number of
independent observations and seems to relate to the subsurface
stresses.
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