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S U M M A R Y
We investigate the potential advantages and pitfalls of using an irregular interface parametriza-
tion in 3-D wide-angle seismic traveltime tomography. Several synthetic tests are performed
using an interface surface consisting of a mosaic of cubic B-spline surface patches and a
source–receiver array designed to produce a highly variable distribution of refracted and re-
flected ray paths. In such circumstances, an irregular parametrization can be adapted to suit the
data coverage, resulting in fewer parameters being needed to describe the solution model, faster
computation time and a better determined inverse problem. We demonstrate that a judicious
parameter distribution can also result in a solution that is well constrained everywhere, satis-
fies the data to an acceptable level and extracts more information from the data than a regular
parametrization. However, introducing an irregular parametrization means that the minimum
wavelength of structure permitted in the model will vary both spatially and directionally. Care-
ful consideration of surface patch size and shape, in addition to resolution estimates and data
fit, is therefore required to meaningfully interpret this class of solution. An application of the
irregular parametrization method to 3-D wide-angle data collected in Tasmania is also pre-
sented, and reveals several features consistent with the known geology that were not recovered
with a regular parametrization.

Key words: interfaces, inversion, irregular parametrization, traveltime tomography, wide-
angle seismic.

1 I N T RO D U C T I O N

A basic goal in seismic tomography is to maximize the extraction of
structural information from data. In traveltime tomography, the data
consist of source–receiver traveltimes and the structural information
is in the form of variations in wave speed and/or reflector depth and
shape. For most realistic problems, ray path coverage will not be
uniform, so the minimum scalelength of structure that the data are
able to resolve will vary across the model. This suggests that the
data should play an important role in deciding how the subsurface is
represented. However, this has rarely been the case in tomographic
studies.

The traditional way of representing structure in seismic tomog-
raphy is to adopt a regular parametrization. In global and regional
traveltime tomography, layers of constant velocity cells (or cells in
which the velocity varies linearly) which have a uniform size in
latitude, longitude and depth are often used (Clayton 1983; Inoue
et al. 1990; van der Hilst et al. 1997; Gorbatov et al. 2000). At the
local scale, regular cells or grids of nodes with specified interpola-
tion functions are common. For example, a parametrization which
has been widely used in local earthquake tomography (e.g. Thurber
1983; Eberhart-Phillips 1986; Haslinger et al. 1999) and teleseismic
tomography (e.g. Zhao et al. 1994; Steck et al. 1998) is a rectan-
gular grid of velocity nodes with a trilinear interpolation function.

Cardinal spline functions have also been used in teleseismic tomog-
raphy by Thomson & Gubbins (1982), and by Sambridge (1990)
in a combined local earthquake and controlled source study. Cubic
splines have been employed in 2-D wide-angle tomography by Farra
& Madariaga (1988), Lutter & Nowack (1990) and McCaughey &
Singh (1997) and splines under tension have been used by Neele
et al. (1993), VanDecar et al. (1995) and Ritsema et al. (1998) in
teleseismic tomography. An alternative to a block or grid approach to
parametrization is to discretize velocity in the wavenumber domain
rather than the spatial domain. An example is a spectral parametriza-
tion that uses some form of truncated Fourier series (e.g. Wang &
Pratt 1997). The minimum wavelength of structure permitted in the
model can be controlled by the number of harmonic terms in the
series. Hildebrand et al. (1989), Hammer et al. (1994) and Wiggins
et al. (1996) have used this type of spectral parametrization in wide-
angle tomography. In global traveltime tomography, truncated spher-
ical harmonic expansions are sometimes used to represent structure
(e.g. Dziewonski et al. 1977; Morelli & Dziewonski 1987), although
they are more commonly used in global surface waveform tomogra-
phy (e.g. Dziewonski & Woodhouse 1987; Trampert & Woodhouse
1995).

The drawback of a regular parametrization, whether it be cells,
interpolated nodes or a truncated Fourier series, is that the minimum
wavelength of structure permitted is essentially invariant throughout
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the model. This type of formalism is therefore not consistent with
the inhomogeneous distribution of information that characterizes
most data sets. In a solution, this inconsistency manifests as regions
of limited resolution corresponding to cells or nodes that are poorly
constrained by the data, and other regions where the parametrization
is not flexible enough to respond to information contained in the
data. The presence of poorly constrained parameters leads to an
underdetermined inverse problem. In such cases, uniform spatial
smoothing and/or damping are usually introduced, but regularizing
the problem in this way can lead to a further loss of information
in the well-constrained parts of the model due to oversmoothing or
overdamping.

A better approach would be to have parameters placed only where
they are required by the data so as to produce a solution that is
well constrained everywhere yet satisfies the data to an acceptable
level. However, there have been very few implementations of such
schemes. Reasons for this include: (1) the difficulty of constructing
a tomographic scheme that can handle irregular parametrization; (2)
choosing node/cell positions so that the resulting model is well con-
strained and satisfies the data; and (3) the difficulty of interpreting
a model described by an irregular distribution of parameters. Ray
tracing and inversion become more problematic when a parametriza-
tion is irregular, and are likely to require additional computational
effort for the same number of unknowns. However, this trades off
against the fewer nodes that will be required to satisfy the data. In
large problems, positioning nodes manually according to ray path
concentration or some other measure of resolving power can be ex-
tremely time consuming. A model composed of basis functions with
variable length-scales imposes an additional burden in the interpre-
tation stage because the minimum wavelength of permitted structure
will vary according to the distribution of parameters.

In the past, irregular parametrizations have generally only been
used in problems involving relatively few unknowns within a static
framework. That is, the parameters are positioned by the user a pri-
ori and are not repositioned or refined by the inversion step. The
commonly used 2-D wide-angle inversion method of Zelt & Smith
(1992) is an example of this. They employ a layered, variable block
size representation with velocity variation and interface depth con-
trolled by nodes that may be positioned irregularly by the user to
improve the trade-off between data fit and resolution. Several global
tomography studies have also used static irregular parametrizations.
Bijwaard et al. (1998), Bijwaard & Spakman (2000) and Spakman
& Bijwaard (2001) use a spatially variable cell size parametriza-
tion based on ray sampling. An underlying regular grid is used to
construct a mosaic of non-overlapping irregular cells. Sambridge
& Gudmundsson (1998) propose a more sophisticated scheme for
irregular parametrization based on Delaunay and Voronoi cells and
illustrate how it may be used in whole-earth tomography.

Recently, several studies have investigated data adaptive
parametrizations for tomographic inversion. This class of scheme
does not necessarily impose an irregular grid a priori, but allows the
nodes or blocks to adapt to the structural information extracted from
the data by the inversion. Michelini (1995) formulated an adaptive-
grid method for cross-hole tomography using cubic B-splines in
parametric form to describe a 2-D velocity field. From an initially
regular grid of nodes, the scheme progresses by simultaneously in-
verting for both the velocity and the position of the nodes. The aim
of the approach is to locate the optimum grid configuration for the
model. Curtis & Snieder (1997) opt for a slightly different approach
to adaptive cross-hole tomography; they use a genetic algorithm to
search for the configuration of Delaunay triangles that results in

the best conditioned inverse problem (as measured by the condition
number of the matrix to be inverted).

Vesnaver et al. (2000) use an adaptive scheme in 3-D reflec-
tion tomography with structure represented by subhorizontal layers.
The velocity field within a layer is described in terms of Voronoi
polyhedra, which are adjusted during the inversion. This adjustment
involves increasing the grid density where the velocity gradient and
ray density is significant, and decreasing it where velocity gradients
are negligible or ray coverage is poor. Böhm et al. (2000) use a sim-
ilar scheme to investigate the use of Delaunay triangles and Voronoi
polygons in 3-D adaptive tomography (see also Böhm et al. 1996). A
dual criterion is used for adding and removing cells from the model
based on the magnitude of the velocity gradient and the null space
energy, as computed by a singular-value decomposition of the to-
mographic matrix. The scheme is demonstrated on the SEG/EAEG
salt model using reflection and cross-well data in a joint inversion.

In the context of global tomography, Sambridge & Faletic (2003)
use an initial model composed of a coarse grid of Delaunay tetra-
hedra, which are then locally refined after each inversion step ac-
cording to some measure of the structural signal extracted from
the data. Chiao & Kuo (2001) implement a multiscale tomographic
parametrization based on 2-D spherical wavelets with permitted
bandwidths that are locally controlled by the resolving power of the
data. They apply the method to S–SKS traveltimes to image lateral
shear wave structure in the D′ ′ layer.

Both static and adaptive irregular grid tomography show promise,
but further effort is required towards understanding more precisely
what their advantages and disadvantages are compared with regular
grid tomography. In this paper, we describe the benefits and pit-
falls of exploiting a static irregular interface parametrization in 3-D
wide-angle (i.e. refraction and reflection) traveltime tomography.
The scheme we adopt describes an interface by a mosaic of cubic
B-spline surface patches. Refracted and reflected rays are traced
from source to receiver using a shooting method, and a subspace
inversion method is used to invert the traveltimes for interface struc-
ture. A series of tests are performed to compare the reconstruction
of synthetic models using regular and irregular parametrizations
in the presence of highly variable ray coverage. The effectiveness
of resolution estimates from linear theory in examining these two
classes of solution is also investigated. An application of irregu-
lar parametrization tomography to 3-D wide-angle data collected
in Tasmania is then presented to help verify the conclusions drawn
from the synthetic examples.

2 M E T H O D

The method of model parametrization, ray tracing and inversion we
use is described in Rawlinson et al. (2001a), so we only provide a
brief summary below. However, we will discuss the characteristics of
the irregular parametrization and our approach to analysing solution
robustness in some detail, as they play an important role in our tests
with synthetic and observational data.

2.1 Model parametrization

Model structure is represented by a set of subhorizontal layers.
Within a layer, the velocity varies linearly with depth. Each layer
interface is described by a mosaic of cubic B-spline surface patches,
the shape and size of which are controlled by a grid of depth nodes
with a rectangular association. Thus, for a given set of control ver-
tices pi, j = (xi, j , yi, j , zi, j ), where i = 1, . . . , m and j = 1, . . . , n,
the (i, j)th surface patch is
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(a)
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(b)

(d)

Figure 1. Examples of how node distribution influences surface patch shape using the B-spline formulation of eq. (1). Nodes (grey dots) and surface patches
(with boundaries denoted by solid lines) are projected on to the xy plane. Refer to the text for a description of each case.

Bi, j (u, v) =
2∑

k=−1

2∑

l=−1

bk(u)bl (v)pi+k, j+l , (1)

where {bi} are the uniform cubic B-spline basis functions (Bartels
et al. 1987). Phantom vertices are used to extend the surface out to
the boundary nodes (Rawlinson et al. 2001a). Any point on a surface
patch is a function of the two independent variables u (0 ≤ u ≤ 1)
and v (0 ≤ v ≤ 1). A surface defined by eq. (1) for any given set
of nodes will be everywhere continuous in curvature, and will not
necessarily interpolate the control vertices. The surface may also be
multivalued, but this feature is not utilized by the inversion method.

The property of eq. (1) that we wish to exploit in this paper is
its ability to deal with an irregular distribution of nodes—a smooth

(i.e. C2 continuous) surface will always be constructed. However,
the scheme has two relatively minor drawbacks. First, the grid of
nodes that control the shapes of the surface patches have a rectan-
gular association. This means that some node configurations may
result in surface patches with undesirable shapes. Secondly, there
must be m × n nodes, which may lead to some redundancy. Fig. 1
shows several examples of how the node distribution influences the
shape of surface patches. In Fig. 1(a), nodes are placed an equal
distance apart on a 6 × 7 rectangular grid. Surface patch corners
coincide with horizontal node positions in this case. Fig. 1(b) com-
presses the inner grid of 4 × 5 nodes so that they lie within a 20 ×
20 km2 area. The nodes are more randomly positioned in Fig. 1(c),
but their rectangular association is still evident. Fig. 1(d) has the
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same node configuration as Fig. 1(a) except that the nodes along the
line y = 0 have been placed along three sides of a square at y >

100 km. Similarly, the nodes along y = 120 km have been placed
along three sides of a square at y < 20 km. The surface now has
highly variable patch sizes and self-intersects; this example demon-
strates why nodes cannot be completely randomly positioned.

2.2 Inversion scheme

Rays are traced through the model by a shooting method—initial-
value ray tracing is rapid since ray paths consist of piecewise circular
arc segments for which analytic expressions are calculated. A multi-
stage fan shooting scheme is used to target the receiver region and the
final two-point path is found using a Gauss–Newton-type iterative
method. Multiple two-point paths for a single phase may be found,
in which case the path with minimum traveltime is selected.

The inverse problem can be formulated as one of minimizing an
objective function consisting of a data residual term and one or more
regularization terms. In our case, the objective function we choose
is

S(m) = [g(m) − dobs]
TCd

−1[g(m) − dobs]

+ ε(m − m0)TCm
−1(m − m0), (2)

where dobs are the observed data and g(m) are the model predictions;
the data residual term is weighted by the data covariance matrix Cd.
The regularization term is a function of the difference between the
current model (m) and the initial model (m0) and is weighted by
the a priori model covariance matrix Cm. ε is a damping factor that
governs the trade-off between how well the data are fitted and how
near the final model is to the initial model.

The inverse problem is solved iteratively using a subspace inver-
sion method that only requires the solution of a small system of
linear equations and naturally deals with different parameter classes
(Kennett et al. 1988). To address the non-linear nature of the inverse
problem, rays are retraced after each iteration. All refraction and re-
flection data can be simultaneously inverted for all three classes
of model parameter (interface node depth, layer velocity and layer
velocity gradient).

2.3 Analysis of solution robustness

A common way of investigating solution non-uniqueness in seismic
tomography is to examine the formal estimates of resolution given
by the resolution matrix R (e.g. Aki et al. 1977; Menke 1989; Benz
et al. 1992; Graeber & Asch 1999). For the objective function of
eq. (2), the resolution matrix is defined by

R = [
GTC−1

d G + εC−1
m

]−1
GTC−1

d G, (3)

where G = ∂g/∂m represents the Fréchet matrix of partial deriva-
tives calculated at the solution point (see Tarantola 1987, for a deriva-
tion). The diagonal elements of R range between 0 and 1; ideally, a
value of unity indicates that the model parameter has been uniquely
determined by the data; a value of zero indicates that the model pa-
rameter is completely unconstrained by the data; and a value between
zero and one indicates that the data partially constrains the model
parameter. Since geometrical ray theory is used in the calculation of
G, eq. (3) does not account for the finite-frequency effects of seismic
waves, which impose a limit on the length-scale of objects that may
be resolved, regardless of data coverage. In the examples we present,
the node separations on the interface grids are always larger than

the seismic wavelength, which means that finite-frequency effects
are not significant.

The resolution matrix is a function of both data coverage and the
model parametrization that has been chosen. For example, if a model
were defined by a single parameter (e.g. the average velocity of a
volume or the average interface depth), then it is likely that the res-
olution matrix will yield a value in the vicinity of unity, because the
parameter will be sampled by all the data, and hence its value will be
extremely well constrained. On the other hand, the spatial resolution
of the model will be poor as it permits no structural variation. As the
number of parameters is increased, model variance becomes poorer
(uncertainties associated with model parameters will increase) but
spatial resolution improves since finer features can be detected. This
describes the well-known trade-off between resolution and variance
(see Backus & Gilbert 1968; Menke 1989). Tomographic schemes
that use an irregular parametrization exploit this trade-off differently
to schemes that use a regular parametrization.

With a regular parametrization, spatial resolution is kept at the
same level throughout the model, which means that model variance
will change according to data coverage. In contrast, an irregular
parametrization can be used to vary the spatial resolution so that
model variance does not change significantly across the model. By
quantitatively measuring the level of constraint imposed on each
model parameter by the data, the resolution matrix is potentially a
valuable tool for assessing tomographic models described by both
regular and irregular grids.

It is important to remember that the resolution matrix does not
measure: (1) the accuracy of the model—the model parameters may
be well constrained by the data, but may not be able to represent
the true structural variations or (2) whether the model satisfies the
data. The last point is important, because it means that the resolution
matrix cannot be used exclusively to analyse solution quality. For
our examples, the ability of the model to satisfy the data is measured
by the rms traveltime misfit (the rms difference between all observed
and predicted traveltimes). The optimum model we seek is one that
satisfies the data and is well constrained throughout.

To help analyse the results of the synthetic tests, the similarity
between the recovered model and the true model is examined using
two measures of misfit: the correlation coefficient and rms vertical
separation. The correlation coefficient varies between −1 and 1; a
correlation of 1 means that the two surfaces are identical; a corre-
lation of 0 means that they have no similarity; and a correlation of
−1 means that the two surfaces are inverted copies of each other.
Rms vertical separation is a measure of the average vertical sepa-
ration distance between the two surfaces. Differences in horizontal
extent between surfaces are accounted for in the calculation of both
misfit measures, which allows a direct comparison of these values
for different solutions.

3 S Y N T H E T I C T E S T S

3.1 Results

A series of six synthetic tests using a single interface and fixed layer
velocities are performed. An array of five sources and 142 receivers
was used to generate the synthetic data (see Fig. 2a). While this par-
ticular array geometry is unlikely to be encountered in any obser-
vational study, it does produce a highly heterogeneous ray coverage
in a way that makes it clear which parts of the model are sampled
by data and which parts are not; this makes the results easier to
interpret.
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Figure 2. Interface structure and source–receiver array used in the synthetic tests. (a) Interface nodes and surface patch boundaries are indicated by dots and
lines, respectively. Sources are denoted by stars and receivers by triangles. (b) Projection of the surface defined by the nodes in (a). Sources are denoted by
large dots and receivers by small dots. Figs 2–9 may be viewed in colour in the on-line version of the journal (www.blackwell-synergy.com).

The model chosen for the synthetic tests is defined by a rectangu-
lar grid of 17 × 21 = 357 nodes spaced 10 km apart (see Fig. 2a).
The B-spline surface described by these nodes varies between 3 and
12 km in depth (see Fig. 2b); above the interface, the velocity gradi-
ent is 0.05 s−1 and below the interface, the velocity gradient is 0.06
s−1. The average velocity contrast across the interface is 1.1 km
s−1 and the average velocity in the top layer along the interface is
4.6 km s−1. A total of 537 refracted and 260 reflected traveltimes
comprise the synthetic data set; the MPEG animation referenced in
Appendix A (electronic copy only) shows these rays traced through
the interface surface and clearly illustrates the inhomogeneous na-
ture of the data distribution. To simulate the noise content of real
data, Gaussian noise with a standard deviation of 45 ms was added
to the synthetic traveltimes.

All inversions were carried out using six iterations of a 4-D sub-
space scheme with a damping factor of ε = 1.0 and an initial model
consisting of a horizontal planar interface at 7 km depth. The damp-
ing factor controls the trade-off between model perturbation and
data fit. Tests with different values of the damping factor show that
a value of ε = 1.0 tends to produce the optimum trade-off (see
Rawlinson et al. 2001a, for more details on damping).

The first test we perform (see Fig. 3 and Table 1) attempts to
recover structure using a grid with the same number and spacing
of nodes as was used to describe the synthetic model. The rms data
misfit curve (Fig. 3a) decreases monotonically from an initial value
of 267 ms to a final value of 44 ms, which is approximately equal to
the standard deviation of the added Gaussian noise. This behaviour
is characteristic of a stable inversion. The horizontal node distribu-
tion and ray-interface hit points of the solution model are shown in
Fig. 3(b)—it is evident that a large number of surface patches are
not intersected by any rays. The resolution diagram (Fig. 3c), which
plots the diagonal elements of the resolution matrix at the solution
point, strongly correlates with the ray path distribution. A discon-
tinuity in the colour palette is introduced at the resolution value of
0.5 to help distinguish between well-constrained regions (≥0.5) and
poorly constrained regions (<0.5). Of course, such a separation is
rather arbitrary and may vary depending on the value chosen for
the damping parameter. However, as a general guide, we have found
that this cut-off level is a reasonable indicator of which parts of the
interface are well constrained by the data and which parts are not.

Fig. 3(d)–(f) compare the true model, recovered model and model
misfit (i.e. the difference between the true model and the recovered
model), respectively. The resolution plot (Fig. 3c) appears to be an

excellent indicator of which parts of the model have been recov-
ered. In regions of poor resolution (<0.5), the solution model tends
not to deviate from the initial model, but in regions of good resolu-
tion (≥0.5), structure is accurately recovered. In particular, Fig. 3(f)
shows that there is virtually no leftover structure within the inner
ring of receivers where resolution is especially good.

The patchy nature of the solution model (Fig. 3e), caused by
poorly constrained parts of the interface, is symptomatic of schemes
that map information from inhomogeneously distributed data into
models with regular parametrizations. A common way of treating
this effect is to apply smoothing (e.g. Sambridge 1990). Second-
derivative smoothing is equivalent to increasing the node spacing
with our parametrization. The second test (see Fig. 4) is similar to
the first except that it uses only 120 nodes on a regular grid, a 66 per
cent reduction in the number of unknowns. As one might expect, the
resultant solution (Fig. 4e) essentially looks like a smoothed version
of the true model in the well-constrained regions.

A comparison of the resolution plots of Figs 3(c) and 4(c) shows
that the interface is well constrained in a larger region of the Fig. 4
solution—this is to be expected since there are much fewer nodes
but the same volume of data. However, this does not mean that
the second test model is superior. In fact, the traveltime residual
at iteration six is now 74 ms compared with 44 ms for the first
test, and Fig. 4(f) shows that there is significant short-wavelength
structure that has not been recovered. This is also reflected in the
poorer correlation coefficient and rms model misfit (Table 1) for
this solution compared with the Fig. 3 solution. Nevertheless, the
improved area of resolution is meaningful provided it is understood
that structure is recovered in these regions only at the scalelengths
permitted by the parametrization. As an example of this, we see that
the shallow anomaly at (x < 60, y = 80) km, which is oriented
in the x-direction, is both better recovered and better constrained
in the second test (Fig. 4) compared with the first (Fig. 3). Another
advantage of the second test is that it only required 49 per cent of
the CPU time of the first test.

The third test (Fig. 5) uses the same number of nodes as the
second but spaces them irregularly. Nodes are placed in the vicinity
of ray-interface hit points (Fig. 5b), with the greatest concentration
of nodes occurring within the inner ring of receivers where ray
paths are most numerous. The resolution plot (Fig. 5c) indicates that
this configuration of nodes results in a solution model that is well
constrained within the entire region spanned by the rays. The fine-
scale structure in the vicinity of the sources is accurately retrieved,
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(a)

(d) (e) (f)

(b) (c)

Figure 3. Results from the first test. Structure is recovered only in regions of good data coverage. (a) Rms data misfit versus iteration number. (b) Node
distribution and ray-interface hit points. Nodes are denoted by dots and surface patch boundaries are denoted by lines. Refracted ray hit points are denoted
by circles and reflected ray hits by asterisks. (c) Diagonal elements of the resolution matrix. (d) True model interface structure. (e) Recovered model inter-
face structure. (f) Misfit between the true model and the recovered model. Triangles represent receiver locations and stars represent source locations in all
plots.

Table 1. Data and model misfit information for the six synthetic tests. The i = 0 misfit refers to the rms
data misfit for the initial model; i = 6 misfit refers to the rms data misfit for the solution model. Note that
Figs 6 and 7 use a different synthetic data set to the other four tests.

Figure Grid Nodes i = 0 misfit (ms) i = 6 misfit (ms) Correlation rms sep. (km)

Fig. 3 Regular 357 267 44 0.799 1.192
Fig. 4 Regular 120 267 74 0.769 1.220
Fig. 5 Irregular 120 267 52 0.805 1.130
Fig. 6 Irregular 120 265 45 0.901 0.756
Fig. 7 Regular 357 265 45 0.794 1.048
Fig. 8 Irregular 120 267 67 0.670 1.448

and where data coverage is sparse, the broader-scale features of
the true model have been extracted. Both measures of model misfit
(Table 1) suggest a superior reconstruction compared with the first
and second tests. The data fit of 52 ms is a significant improvement
over the solution of Fig. 4, and the CPU time is only slightly more
at 54 per cent of the first test.

The fourth (Fig. 6) and fifth (Fig. 7) tests are similar to the first
(Fig. 3) and third (Fig. 5) tests except that the synthetic structure we
wish to recover is now defined on the irregular grid of Fig. 5(b). The
fourth test attempts to recover the structure using the same irregular

grid, while the fifth uses the 357 node regular grid of Fig. 3(b).
The reconstruction of Fig. 6 is clearly superior to that of Fig. 7,
even though they both have identical data misfits of 45 ms. The
correlation coefficients and rms vertical separations for these two
tests also support this assertion.

The sixth and final synthetic test (Fig. 8), is a caveat on the use
of irregular parametrizations. The structure we attempt to recover is
once again the regular grid model (Fig. 3d), and a 120-node irregular
grid (Fig. 8b) is used to satisfy the data. Nodes are placed only in the
vicinity of ray interface hits but in a different configuration to that
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(a)

(d) (e) (f)

(b) (c)

Figure 4. Results from the second test. Only broad scale features are recovered in this case. See the caption of Fig. 3 for an explanation of each plot.

of Fig. 5(b). The inversion solution in this case is much poorer than
that of Fig. 5; in fact, as also indicated by the model misfit measures,
it is even worse than the regular parametrization of the second test
(Fig. 4) despite having a slightly better data misfit (67 ms compared
with 74 ms). The resolution plot (Fig. 8c) indicates that this model
is better constrained by the data than any of the previous models,
despite the poor recovery.

3.2 Discussion

The above synthetic tests succinctly reveal the drawbacks of using
a regular parametrization in the presence of a highly heterogeneous
data distribution. These include the presence of unnecessary nodes,
which do not affect data fitting, increased computing time and a
less well-determined inverse problem, as reflected in the resolution
plots. Fig. 3 results show that a fine-scale regular grid accurately re-
constructs the interface in regions of good data constraints, but else-
where, the interface tends not to deviate from its initial value. Using
a coarser regular grid, as in Fig. 4, results in a larger area of good
data constraint, but a poorer data fit. This is to be expected because
only the longer-wavelength features are recovered, and therefore
the ray sampling of the interface need not be as intense to achieve
good constraints on the model parameter values. The poorer data
and model fit (Table 1) are due to the finer-scale structure not being
recovered (Fig. 4f).

The results of the first (Fig. 3) and second (Fig. 4) tests sug-
gest that a better outcome may be obtained by using a finer-scale
parametrization in regions of good data coverage and a broader-scale
parametrization in regions of poor data coverage—this is demon-
strated in Fig. 5. The results illustrated in Figs 6 and 7 complement
those of Figs 3 and 5 and provide another demonstration that the ir-
regular parametrization is capable of recovering structure in regions
of poor data coverage where the fine-scale regular parametrization
does not deviate from the initial model. The regular parametriza-
tion solution is conservative because structure is only introduced
where there are constraints on the minimum wavelength permitted
by the parametrization; elsewhere, structure tends not to be intro-
duced even though the data are capable of resolving broader-scale
features. Put another way, there will always be some wavelength
of structure that the data will constrain, no matter how inhomoge-
neously it is distributed. Regular parametrizations are not consistent
with this reality.

Although we have highlighted the advantages of an irregular
parametrization, the final synthetic test (Fig. 8) is clear evidence
that care must be taken in choosing an appropriate node distribu-
tion. In this case, nodes are placed only where the concentration
of ray-interface hit points is high; consequently, the solution is ex-
tremely well constrained by the data within the region bounded
by the source–receiver array. One therefore may be tempted to con-
clude that all the structure contained in this model is ‘real’. However,
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(a)

(d) (e) (f)

(b) (c)

Figure 5. Results from the third test. The irregular parametrization is adapted to the data coverage. See the caption of Fig. 3 for an explanation of each plot.

comparison of Figs 8(d)–(f) shows that this is not the case. The other
two indicators of something being amiss with the solution are the
data fit and the nature of the recovered anomalies.

The rms data misfit of the final test solution is much worse than
that of the Fig. 3 test and the Fig. 5 test and only marginally better
than the second test (Fig. 4). The latter result seems to suggest
that Fig. 8(e) is a more desirable model than Fig. 4(e), which is
not actually the case. The marginal improvement in misfit of the
irregular model can be attributed to the improved reconstruction
within the inner circuit of receivers, which contains many more
parameters than the coarse regular grid. Therefore, the data misfit
for paths that travel to the inner circuit of receivers is much smaller
for the irregular grid solution (55 ms) than it is for the regular grid
solution (77 ms). For paths to the outer array of receivers, the data
misfit is 75 ms for the irregular case and 72 ms for the regular case.
This is significant because the paths to the outer receiver array are
largely responsible for constraining structure that lies outside the
inner circuit of receivers; for the irregular solution, this is the region
where reconstruction is poor (Fig. 8f).

The shapes of the anomalies in Fig. 8(e) tend to bear a strong re-
semblance to the shapes of the underlying surface patches (Fig. 8b).
When this occurs, it suggests that the data contain informa-
tion on smaller-scale structure which is being filtered out by the
parametrization choice. In some ways, this is not a bad thing—in
fact, something similar occurs when coarse regular parametrizations
are used. However, with this irregular node distribution, the mini-

mum wavelength of structure that is permitted varies strongly both
spatially and directionally. For example, the set of patches to the
left and right of the inner ring of receivers are oriented at approxi-
mately 45◦ to the x and y axes. Structure in these regions (Fig. 8e)
is smeared along the long axis of these patches, but perpendicular
to this direction, the pattern of anomalies is quite well recovered.

From the plots of data coverage for our synthetic tests (e.g.
Fig. 5b), it is clear that there are large areas of the interface that
do not have any ray penetration. Yet we apparently claim, on the ba-
sis of data misfit and resolution estimates, that in the general case,
structural information in these regions can somehow be extracted
from the data set. For example, one may argue that in regions of ‘no’
data coverage, a wide variety of structures could be introduced with-
out affecting any ray path or traveltime. Essentially, this is true, but it
must be remembered that the role of any parametrization is to regu-
larize (e.g. by smoothing) the solution everywhere between infinitely
thin data (under the high-frequency assumption). In other words, the
inverse problem is inherently underdetermined and strictly speak-
ing, structural information is really inferred rather than extracted.
Consequently, the accuracy of a solution (i.e. how close it is to the
truth) will also depend on our underlying assumptions concerning
the type of structures that can exist, in addition to considerations of
model robustness and data fit.

In our examples, we have assumed that layer boundaries vary
smoothly, and that structure can be decomposed into features of
different length-scales. While this assumption is reasonable, it
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(a)

(d) (e) (f)

(b) (c)

Figure 6. Results from the fourth test. The true model is now described by an irregular grid. The recovered model is based on this same irregular grid. See
the caption of Fig. 3 for an explanation of each plot.

will not always be true; however, this could also be said for any
parametrization that one might care to choose. From this point of
view, all tomographic solutions must be treated with some caution,
whether they are based on regular or irregular parametrizations. The
approach we adopt, which varies the length-scale of structure that
is recovered according to data distribution, is consistent with the
underlying assumptions of our parametrization. As such, we could
claim that it produces a more robust and desirable solution com-
pared with a regular parametrization, but it is difficult to guarantee
that it will always be more accurate.

4 A P P L I C AT I O N T O T H E TA S M A N I A N
DATA S E T

4.1 Results

In this section, we examine the use of an irregular interface
parametrization in the inversion of wide-angle data collected in Tas-
mania, SE Australia in 1995. To create this data set, the Australian
Geological Survey Organization (AGSO) research vessel Rig Seis-
mic fired ∼36 000 air-gun shots at a 50 m spacing during a cir-
cumnavigation of Tasmania. An array of 44 digital and analogue
recorders were deployed throughout Tasmania to record the data.
Rawlinson et al. (2001b) inverted 2148 Pm P and 442 Pn traveltimes

from this data set for the structure of the Moho beneath Tasmania
using the scheme of Rawlinson et al. (2001a) with a regular interface
parametrization. We aim to repeat this experiment with an irregular
grid of interface nodes, and then compare the results with those of
Rawlinson et al. (2001b). The procedure we follow is identical to
that of Rawlinson et al. (2001b) so we will not describe it in detail
here.

The irregular grid used to parametrize the Moho surface is com-
posed of 240 nodes preferentially distributed to regions with good
ray coverage (Fig. 9a). A number of nodes in our scheme are essen-
tially redundant (e.g. above line 4 and in the vicinity of line 12)—
this is hard to avoid due to the nature of the data distribution and
the rectangular association of surface patches. Despite this, we have
more than halved the number of nodes compared with the regular
parametrization of Rawlinson et al. (2001b), which uses 600 nodes
(Fig. 9b). Four iterations of a 14-D subspace inversion scheme are
used to produce the solution model from an initially flat interface at
30 km depth. The layer velocities and the layer velocity gradients
are permitted to vary during the inversion in addition to the interface
depth.

The solution model (Fig. 9e) and resolution plot (Fig. 9c) pro-
duced by the inversion with an irregular grid show that significant
structure is recovered, but regions of the Moho, particularly be-
neath central Tasmania, are still poorly resolved. However, if we
compare these results with the regular parametrization solution of
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(a)

(d) (e) (f)

(b) (c)

Figure 7. Results from the fifth test. As in the fourth test, the true model is described by an irregular grid, but the recovered model is now based on a regular
grid. See the caption of Fig. 3 for an explanation of each plot.

Rawlinson et al. (2001b), as shown in Figs 9(d) and (f), we see
that the area of good solution robustness has been substantially
increased.

The initial model has an rms data misfit of 371 ms; this is reduced
to 191 ms for the irregular grid solution and 176 ms for the regular
grid solution. Thus, there is only a small trade-off in data misfit
for the large saving in nodes (60 per cent) and computing time (the
irregular solution required only 60 per cent of the computing time
of the regular solution). An MPEG animation of the irregular grid
solution model and constraining ray paths is referenced in Appendix
B (electronic copy only).

4.2 Discussion

The use of an irregular interface parametrization in the inversion
of 3-D wide-angle data from Tasmania demonstrates that we can
also improve solution robustness without significantly degrading
the data fit. A comparison of Figs 9(c) and (d) shows that the ro-
bustness of the irregular parameter solution is generally superior
to that of the regular parametrization solution of Rawlinson et al.
(2001b). In fact, towards the centre of Tasmania, the resolution has
become non-zero. This indicates that the model structure in this re-
gion is now influenced by the data to some extent. In comparing
Figs 9(e) and (f), we see that the crust is thicker near central Tasma-

nia in the irregular model compared with the regular model—this
is consistent with the increased surface elevation in this region.
However, the low resolution values associated with central Tas-
mania (Fig. 9c) mean that we should treat this result with some
caution.

Another noticeable difference between the two Moho solution
models is that Fig. 9(e) has a less patchy appearance than Fig. 9(f),
but at the same time does not appear to have features influenced
by the shape of the underlying surface patches. For example, the
two shallow anomalies in the vicinity of station 17 (Fig. 9f) have
become a single shallow anomaly in the irregular interface solu-
tion (Fig. 9e). Ultimately, though, we are not inclined to modify the
overall structural interpretation given by Rawlinson et al. (2001b)
based on the new irregular model, as they share most of the signifi-
cant features. However, the irregular solution (Fig. 9e) does reveal a
broad scale shallowing in the NE of Tasmania that is both less dis-
tinct and less well constrained in the regular solution (Fig. 9f). The
location of this feature coincides with that of the Northeast Tasma-
nia Element (Brown et al. 1998), a tectonic element with a distinct
surface geology that was juxtaposed with western Tasmania during
the Mid-Devonian Tabberabberan Orogeny (Elliot et al. 1993). Evi-
dence from coincident reflection data (Barton 1999) and a previous
refraction survey (Richardson 1980) also indicates a thinning of the
crust beneath the Northeast Tasmania Element.
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(a)

(d) (e) (f)

(b) (c)

Figure 8. Results from the sixth test. An highly irregular grid is used to try and capture structural information described on a regular grid. See the caption of
Fig. 3 for an explanation of each plot.

5 C O N C L U S I O N S

In this study, we have investigated the use of irregular interface
parametrization in 3-D wide-angle seismic traveltime tomography.
Our results from synthetic tests indicate that an irregular approach
has many potential benefits when compared with a regular approach
if data are inhomogeneously distributed. These include faster com-
putation time and the ability to satisfy the data with a better con-
strained model. We cannot guarantee that such a model will be
more accurate, but if the underlying structural assumptions of the
parametrization hold true in reality, then the likelihood of this hap-
pening will increase.

The synthetic tests clearly show that broader-scale structure can
be recovered in regions where a finer regular parametrization is
unable to recover structure. The inversion of 3-D wide-angle data
from Tasmania for Moho depth also supports these findings: several
new broad scale features, which were absent from a previous regular
grid inversion, were revealed by the irregular grid solution. At the
same time, the well-constrained shorter-scalelength features of the
regular grid solution were preserved.

Although we have established that regular parametrizations have
undesirable properties in the presence of inhomogeneously dis-
tributed data, care must be taken when adopting an irregular scheme
because the minimum wavelength of structure permitted in the
model will vary both spatially and directionally. One consequence
of this is that there is a possibility of obtaining an extremely well-

constrained solution that poorly represents the true structure. This
type of solution should be revealed by a poor data fit, but another
indicator is the presence of structure that conforms to the shape of
the underlying basis functions.

For relatively small tomographic inversions such as those carried
out in this paper, manual positioning of nodes is feasible. How-
ever, for large tomographic problems, such as those which image
3-D velocity variations, data adaptive schemes would be more ef-
ficient and desirable. One automated way of finding an optimal
parametrization, which is consistent with the findings of this study,
is to begin with a coarse parametrization that is constrained every-
where by the data (as measured by the diagonal elements of the
resolution matrix). Parameters may then be added to regions where
resolution is greatest until a suitable trade-off between model ro-
bustness and data fit is found. This remains a direction for further
study.
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(b)(a)

(c) (d)
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Figure 9. Comparison of inversion results using regular and irregular grids and wide-angle data from Tasmania. In all diagrams, stars indicate recorder
positions and small triangles indicate shot points from which data were picked—contiguous triangles form shot lines. (a) Ray interface hit points and surface
patches for the irregular grid. Refracted ray hits are denoted by circles and reflected ray hits are denoted by crosses. Interface nodes are represented by dots
and thin lines represent surface patch boundaries. (b) Same as (a) but for the regular grid. (c) Diagonal elements of the resolution matrix for the irregular grid
solution. (d) Same as (c) but for the regular grid. (e) Solution model for the irregular grid. (f) Solution model for the regular grid.
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A P P E N D I X A : V I S UA L I Z AT I O N
O F S Y N T H E T I C M O D E L

An MPEG movie has been created to help visualize the dis-
tribution of ray paths through the synthetic model and the
geometry of the interface surface. The movie can be down-
loaded from http://rses.anu.edu.au/seismology/projects/tireg/. The
ray paths shown correspond to those which produced the synthetic
traveltimes which were inverted in Figs 3–5 and 8, and the interface

Figure A1. Snapshot from the MPEG movie of the synthetic model. Re-
fracted rays are shown in red; reflected rays are shown in green. Pink dots
denote receivers and red dots denote sources. Cf. Fig. 3(d).

Figure A2. Snapshot from the MPEG movie of the Tasmanian Moho. Re-
fracted rays are shown in red; reflected rays are shown in green. Pink dots
denote sources and red dots denote receivers. The Tasmanian coastline is
shown in purple. Cf. Figs 9(a) and (e).

surface corresponds to the ‘true model’ that we attempt to recon-
struct in each of these four tests.

A frame from the MPEG movie is shown in Fig. A1; note that
the variations in depth of the interface have been colour contoured
using the same colour scheme as in Figs 3–8 . A 3-D interactive
visualization program called Geomview is used to visualize the
model, which is represented as an OOGL (Object Oriented Graph-
ics Library) object. The actual animation sequence is coded as a
TCL script, which is executed by a Geomview module called Stage-
tools to create the MPEG movie. The Geomview package, which
includes the Stagetools module, is freely available over the internet
at http://www.geomview.org/.

A P P E N D I X B : V I S UA L I Z AT I O N
O F TA S M A N I A N M O H O M O D E L

An MPEG movie of the Tasmanian Moho solution model (Fig. 9e)
and its constraining ray paths (Fig. 9a) has been constructed. It can
be downloaded from the same web site as the movie described in
Appendix A. A frame from the MPEG movie is shown in Fig. A2;
note that variations in interface depth have been colour contoured
using the same colour scheme as in Fig. 9(e). The MPEG movie was
constructed using the method described in Appendix A.
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