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S U M M A R Y
A non-linear theory of transresonant wave phenomena based on consideration of perturbed
wave equations is presented. In particular, the waves in a surface layer of a porous compressible
viscoelastoplastic material are considered. For such layers the 3-D equations of deformable
media are reduced to 1-D or 2-D perturbed wave equations. A set of approximate, closed-
form, general solutions of these equations are presented, which take into account non-linear,
dissipative, dispersive, topographic and boundary effects. Then resonant, site and liquefaction
effects are analysed. Resonance is considered as a global parameter. Transresonant evolution
of the equations is studied. Within the resonant band, utt ≈ a2

0∇2u and the perturbed wave
equations transform into non-linear diffusion equations, either to a basic highly non-linear or-
dinary differential equation or to the basic algebraic equation for travelling waves. Resonances
can destroy predictability and wave reversibility. Surface topography (valleys, islands, etc.) is
considered as a series of earthquake-induced resonators. A non-linear transresonant evolution
of smooth seismic waves into shock-, jet- and mushroom-like waves and vortices is studied.
The amplitude of the resonant waves may be of the order of the square or cube root of the
exciting amplitude. Therefore, seismic waves with a moderate amplitude can be amplified very
strongly in natural resonators, whereas strong seismic waves can be attenuated. Reports of the
1835 February 20 Chilean earthquake given by Charles Darwin are qualitatively examined
using the non-linear theory. The theory qualitatively describes the ‘shivering’ of islands and
ridges, volcano spouts and generation of tsunami-like waves and supports Darwin’s opinion
that these events were part of a single phenomenon. Same-day earthquake/eruption events and
catastrophic amplification of seismic waves near the edge of sediment layers are discussed. At
the same time the theory can account for recent counterintuitive results of experiments with
water, liquified matter and granular materials.

Key words: analytical solutions, chaos, earthquake-induced eruption, perturbation method,
resonance, strong ground motion.

1 I N T RO D U C T I O N

Wave non-linearity is an important element of Nature. This non-linearity is often focused near and at critical points where greatly different
natural and artificial (for example, the Bose–Einstein condensate) systems exhibit a strong similarity. These points have been called ‘resonances’
(Galiev & Galiev 2001). In the resonant band, non-linear effects can increase strongly and first-order linear effects drop to zero. In particular,
harmonic waves can be transformed into anomalous waves and wave structures (breakers, mushroom-like waves, jets, vortices and so on). The
evolution of governing equations, generation of singularities of wave fronts, a complex competition of non-linear, dissipative, dispersive and
spatial effects occur. The traditional methods of non-linear physics fail within transresonant bands because of the evolution, the singularities,
a problem of small divisors, the competition of various effects and the diffusion effect (Poincaré 1892; Sagdeev et al. 1988; Arnold 1990;
Prigogine 1997). Therefore, a development of the theory is required to describe non-linear transresonant waves.

Resonance is a classical problem of great practical impact. This phenomenon is usually described by one or a few second-order
non-linear differential equations (for example, the pendulum equation). However, sometimes, wave properties must be taken into account
(Sagdeev et al. 1988; Nayfeh & Mook 1995; Ilgamov et al. 1996; Nayfeh 2000; Ibrahim et al. 2001). It was found (Chester 1964; Van
Wijngaarden 1968; Galiev et al. 1970; Mortell & Varley 1970; Galiev 1972, 1988; Mortell & Seymour 1981; Galiev & Galiev 1994;
Ilgamov et al. 1996; Galiev 1999b) that strongly non-linear waves and shock waves may be excited in 1-D resonators (tubes, spheres and
layers) within the resonant bands. Following Galiev & Galiev (2001) we develop the theory of non-linear transresonant waves based on
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consideration of perturbed wave equations. These equations are derived for a layer of a weakly cohesive medium. Media such as gran-
ular materials, sediments and some soils, transform into a liquified state during strong ground motion and maintain this state for up to
a day (Aguirre & Irikura 1997; O’Rourke & Pease 1997; Pease & O’Rourke 1997). For these media we generalize the well-known the-
ory of non-linear shallow water waves (Airy 1845; Boussinesq 1872; Lamb 1932; Stoker 1957; Whitham 1974; Dean & Dalrymple 1991;
Debnath 1994; Kirby 1997). It is known that the transresonant evolution of water waves in a horizontally oscillating container is very complex
(Verhagen & Van Wijngaarden 1965; Chester & Bones 1968; Ockendon et al. 1985; Cox & Mortell 1986; Galiev & Galiev 1998). Here we
solve the equations of continuum mechanics for layers, whereas the classical water wave problem consists of solving the Euler equations
in the presence of a free surface. Effects of the vertical acceleration of particles, compressibility, shear strains and stresses, and high-order
non-linearity are all taken into account.

The influence of non-linearity on strong ground motion has begun to be analysed in recent years. Laboratory studies (Johnson et al.
1996) reveal that the linear approximation can break down and resonant non-linear waves can be formed if the amplitude of forced oscillations
is sufficiently large. It is more difficult to observe non-linear effects in the field. However, Singh et al. (1988), Aki (1993), Field et al. (1997,
1998), Su et al. (1998) and Fukushima et al. (2000) demonstrated a non-linear relationship between peak ground motion and site response.
Porosity, surface geology, the free surface and relief may induce non-linear effects. In particular, the seismic wave amplitude is greater in a
low-density, low-velocity soil than in a high-density, high-velocity rock. Sediments amplify ground motion relative to bedrock (Reiter 1990).
Therefore, non-linearity is more important for upper-lying sedimentary layers than for underlying material (Aki 1993). If the wave amplitude
increases beyond some threshold level, the linear predictions break down. The influence of non-linearity increases and causes changes in both
the amplitude and the form of seismic waves. In particular, seismic waves may be trapped by the upper layer or topography and then begin to
reverberate. Resonance occurs if the reverberating waves are in phase with each other. If dissipative effects are small, non-linearity is the most
important mechanism that limits the resonant amplification of the trapped seismic waves. Thus resonance, which is usually observed in upper
sediments, is sometimes a non-linear phenomenon. Resonant amplification of about 75, with respect to coastal sites at similar distances, was
produced in the Mexico City sediments during the 1985 September 19 and 21 Michoacan earthquakes (Singh et al. 1988). However, non-linear
effects may also influence seismic body waves. In particular, the effects may be important for porous materials saturated by gas (or a gas/oil
mixture).

I suggest that studying non-linear effects can give a new understanding of some aspects of earthquake behaviour. In particular, the linear
elastic model predicts extreme amplification of seismic waves at resonance. According to this model, the resonant singularity in amplitude
exists for weak, moderate and strong seismic waves. However, according to the non-linear theory, the resonant amplitude is bounded and may
be of the order of the square or cube root of the exciting amplitude (Galiev 1997b, 1999a). Thus, the greater the amplitude of an incident
seismic wave, the smaller the amplification. Indeed, the amplification of strong motions is often significantly smaller than that observed for
moderate motions (Field et al. 1997, 1998). The width of the resonant frequency band is very small for weak seismic waves. Therefore, they
are not amplified in the natural resonators according to the non-linear theory. Strong seismic waves are attenuated within the resonant band.
The non-linear theory also predicts that strong resonant ground motion may be more dependent upon the ground properties at a site than
on the proximity or intensity of the earthquake sources (Galiev 1999a). Thus, the non-linear theory can give us insight into a phenomena of
particular importance to earthquake engineering.

Non-linear seismic effects have previously been widely discussed (Singh et al. 1988; Aki 1993; Su et al. 1998). In particular, equations
for non-linear seismic waves have been derived (Biot 1973; Beresnev & Wen 1996a; Johnson et al. 1996; Nikolaevskiy 1996). However,
surface effects are not generally taken into account. Indeed, when considering waves in surface layers we need to take into account relevant
boundary conditions.

In considering a non-linear problem, we should first determine the sources of non-linearities. There are four. The first source is the
equation of continuity, the equations of motion and energy, written in terms of stresses. The second source is the constitutive equations relating
stresses and displacements. The third source is the equation of state relating pressure p and density ρ (or p, ρ and temperature). This source
is very important for porous and highly compressible materials. The last (but sometimes the most important) source is the boundaries of the
layer. Indeed, the non-linear waves considered herein are formed due to the boundary surfaces. The contributions of these sources to the total
effect of the non-linearities vary. For example, sometimes liquified weakly cohesive media have high linear elastic thresholds (Singh et al.
1988). The effect of non-linearity of the stress–strain relationship can drop to zero during the earthquake-forced transformation of the solid
into a liquid-like state (Pease & O’Rourke 1997).

The influence of non-linearities is important only when the wave amplitude is sufficiently large. In this paper we focus on two causes of
amplification: resonant and topographic effects. There are two natural timescales associated with earthquake-induced natural resonators: the
time for a wave to travel the length of the natural resonators, and the time over which non-linear effects become significant. In considering
the resonant oscillations of topographies we shall assume that the latter scale is much smaller then the former. The above non-linear waves
are treated far from the earthquake source. We shall not consider here strongly non-linear effects in and near this source (fracture, etc.).

The paper is organized as follows. In Section 2, equations of deformable media for surface waves in weakly cohesive porous materials
are developed. Weakly compressible materials and highly non-linear problems are considered in Section 3. In particular, the 2-D equations of
deformable media are reduced to a 1-D perturbed wave equation and an approximate general solution of this equation is constructed. The 2-D
results presented in Section 4 are the generalization of the 1-D case. Thus, in Sections 2–4 we derive equations and obtain solutions describing
the evolution and propagation of non-linear seismic waves in surface layers. These solutions make it possible to analyse non-linear effects
due to strong ground motion. Sections 5–7 are devoted to applications of the general theory. The boundary problems of topography (valleys,
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islands, volcanoes, ridges and coastline) are considered. Charles Darwin’s (1839) reports of shivering of islands, anomalous earthquake/volcano
interaction, violent crest amplification and vortices are qualitatively examined. Scenarios of transresonant evolution of seismic waves into
breakers and tsunami-like waves, surface wave patterns and field data are treated. In Section 8 some novel and important aspects of the theory
are discussed and a summary may be found.

2 M A I N A S S U M P T I O N S A N D G E N E R A L 3 - D E Q UAT I O N S O F T H E T H E O RY

In this section we develop and analyse 3-D equations for a layer. We use a rectangular coordinate system. Let coordinates x1 and x2 be
located on the bottom surface of the layer, and the coordinate x3 be drawn vertically upwards. The motion of the layer is determined by the
displacement vector components ui(i = 1, 2, 3) directed along xi.

The material of the layer is considered as a compound of condensed (solid or solid+liquid) phase and gas. Let us assume that the exchange
of the mass, momentum and energy between the gas and the condensed phase is negligible. The above assumption allows us to describe the
behaviour of the material using space-averaged values for variables. The properties of the material, as a multiphase medium, will be described
with the help of the equation of state.

The dynamic boundary conditions on the upper surface are

p33 = pa p31 = τ+
31 p32 = τ+

32 at x3 = x+
3 . (1)

Here pa is the known pressure (in the case of the free surface pa is the atmospheric pressure), p31 and p32 are the shear stresses (pij are the
stress tensor components), x+

3 specifies the position of the upper surface. The values τ+
31 and τ+

32 are the surface shear stresses. We assume that

u3 = η + η+ at x3 = x+
3 . (2)

The vertical displacement u3 on the surface x3 = x+
3 is the sum of an unknown vertical displacement (dynamic elevation) of the surface η and

an initial known vertical displacement of the surface η+. For example, η+ might be the surface wave generated by an earthquake source, while
η takes into account the strong amplification of the wave due to site (topographic or resonant) effects. We assume that η+ is much smaller
than η. The vertical displacement η is determined by the equations of deformable media. The kinematic and dynamic boundary conditions on
the bottom surface of the layer (x3 = x−

3 ) are

u3 = η−, p31 = τ−
31; p32 = τ−

32 (x3 = x−
3 ). (3)

Here an incident wave η− is much smaller than η. For example, the earthquake-induced hard rock (base) oscillations η− may be amplified to
η on the upper surface of the sediment layer. The thickness of the layer is h = x+

3 − x−
3 .

2.1 Model of the material

We assume a viscoelastoplastic model of a compressible material. Under the assumption of small plastic deformations, the viscoelastic
(ε∗

i j , j = 1, 2, 3) and plastic (
∑N

n=1 �nε
p
i j ) strain components may be separated:

εi j = ε∗
i j +

N∑
n=1

�nε
p
i j . (4)

The viscoelastic components can be found from eq. (4). They are related to the deviatoric stress tensor components s∗
i j according to the

following equations for a linear viscoelastic material (Nowacki 1963):

s∗
i j = 2G

(
ε∗

i j − ε∗
llδi j

/
3
)
. (5)

Here δi j is the Kronecker symbol, l = 1, 2, 3. In eq. (5) G is an operator which takes into account both the elastic and viscous properties of
the material. It is assumed that the elastic and viscous effects are independent, and the total deformation is the sum of the elastic and viscous
components. These components depend on the mean porosity φ0 of the material (Rabotnov 1969). For materials with porosity φ we assume
G = ν(1 − αsφ0) + η∗(1 − ανφ0)∂(· · ·)/∂t , where ν and η∗ are the elastic shear modulus and an effective viscosity, respectively. Coefficients
αs and αv are experimentally determined constants. The values of αsφ0 and ανφ0 lie between 0 and 1. According to the model, if αsφ0 → 1,
the material transforms into a liquified state (Galiev 1999a). This mechanism can take place for the vertical excitation of a layer (Umbanhowar
et al. 1996; Wassgren et al. 1996; Cerda et al. 1997; Galiev 1999a). Under horizontal excitation the porosity can decrease. As a result, in
saturated materials the water pressure increases due to lack of drainage. The material loses its shear strength and behaves like a liquid (Seed
et al. 1976). In this case G = ναsφ0 + η∗ανφ0∂(· · ·)∂t .

The stress tensor components pij are defined by the pressure p and s∗
i j (Nowacki 1963; Mendelson 1968):

pi j = s∗
i j − pδi j . (6)

Here p = −(p11 + p22 + p33)/3 = −pll/3. Now we can find from eqs (4)–(6) that

pi j = 2G(εi j − εllδi j/3) + si j − pδi j . (7)

Here terms si j = −2ν(1 − αsφ0)
∑N

n=1 �nε
p
i j take into account the accumulated plastic strains and

∑N
n=1 �nε

p
i j = 0. The terms sij can be

found using the criterion for plasticity and the Prandtl–Reuss constitutive equations (Mendelson 1968). The criterion for the material transfer
into the plastic state can be written in the form (Shima & Oyane 1976)

σ 2
e + C∗φp2 = C∗(φ)σ 2

Y , (8)
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where σ 2
e = 1.5sijsij, σY is the yield stress, and C∗ and C∗(φ) are an experimentally defined constant and a function of the porosity, respectively.

Note that σ 2
e = 3J 2, where J 2 is the second invariant of the deviatoric stress tensor: J 2 = sijsij/2.

Expression (8) can be determined experimentally. For example, it was found (Shima & Oyane 1976) that C∗ = 6.25 and C∗(φ) =
(1 − φ)5 for a porous metal. However, expression (8) does not provide the relation between individual stress and strain components. Therefore,
the Prandtl–Reuss constitutive equations must be used to determine σ i j and εi j :

�nε
p
i j = 1.5�nε

p
e Si j

/
σe, (9)

where �nε
p
e = (2 �nε

p
e /σ e �nε

p
i j/3)1/2.

The equations are sufficient to study the elastic, weakly viscous and plastic strains in the material. They contain both finite and infinitesimal
quantities, and are valid for small plastic segments of the stress–strain curve. Therefore, a step-by-step algorithm should be used to solve the
plastic problem (Galiev 1981, 1997a).

Let us consider the equations of motion, continuity and state for weakly cohesive media, assuming that the viscous and plastic effects
are very small.

2.2 The Lagrangian equations

Let x1, x2 and x3 be the initial coordinates of any particle of the material, and x, y and z be its coordinates at time t. There is the following
relation between these values: x = x1 + u1, y = x2 + u2 and z = x3 + u3 (Lamb 1932). Considering the motion of the mass of the material
and following Novozhilov (1961) we find that

ρ(u1,t t − X ) = p11,x + p21,y + p31,z, (10)

ρ(u2,t t − Y ) = p12,x + p22,y + p32,z, (11)

ρ(u3,t t + g) = p13,x + p32,y + p33,z . (12)

Here X , Y and g = g0 + gd are the components of the external forces per unit mass, where g0 is the acceleration due to gravity and
gd = gd(t) is the excited acceleration. The subscripts t , x , y and z indicate derivatives with respect to time and coordinate. These equations
contain differential coefficients with respect to x, y and z, whereas our independent variables are x1, x2, x3 and t. To eliminate these differential
coefficients, we multiply the above equations by ∂x/∂x1, ∂ y/∂x1 and ∂z/∂x1, respectively, and add; then by ∂x/∂x2, ∂ y/∂x2 and ∂z/∂x2,
and add; and again a third time by ∂x/∂x3, ∂ y/∂x3 and ∂z/∂x3 and add. Then we neglect the non-linear terms in the right-hand side of the
equations. For this case, it follows that

ρ[(u1,t t − X )(1 + u1,1) + (u2,t t − Y )u2,1 + (u3,t t + g)u3,1] + p1 = s∗
11,1 + p21,2 + p31,3, (13)

ρ[(u1,t t − X )u1,2 + (u2,t t − Y )(1 + u2,2) + (u3,t t + g)u3,1] + p2 = p12,1 + s∗
22,2 + p32,3, (14)

ρ[(u1,t t − X )u1,3 + (u2,t t − Y )u2,3 + (u3,t t + g)(1 + u3,3)] = p13,1 + p32,2 + p33,3, (15)

where s∗
i j,l = ∂s∗

i j/∂xl , pi = ∂ p/∂xi and eqs (6) are used. We emphasize that soft and liquified layers are considered. Therefore, we presented
the equations so that the left-hand sides of (13) and (14) coincide with the ‘Lagrangian’ form of the hydrodynamic equations (Lamb 1932,
p. 13). The right-hand side terms take into account the stresses. Thus, the left-hand side of eqs (13)–(15) describe the motion of the media
as an inviscid liquid. The right-hand side stress terms correct the motion taking into account solid-like properties of the media. These terms
can drop to zero during the earthquake-forced transformation of the material into the liquified state. For example, the effective shear modulus
can reduce from 9000 kPa to 20 kPa because of liquefaction (Pease & O’Rourke 1997). Many shallow-water seabeds are characterized by
sediments of low rigidity. Thus, the right-hand side terms in eqs (13)–(15) are small for the layers considered. For rock and stiff soils the stress
terms in eqs (13)–(15) are larger but the non-linear effects are smaller (Aki 1993; Beresnev & Wen 1996b). Therefore, for hard materials we
can use linearized versions of eqs (13)–(15). For a plate-like layer we assume that u1, u2 and ρ are nearly independent of x3. Therefore, in
eqs (13)–(15) we have

u1,3 = ∂u1/∂x3 ≈ 0, u2,3 = ∂u2/∂x3 ≈ 0 and ρ3 = ∂ρ/∂x3 ≈ 0. (16)

The deformations are expressed in terms of ui according to the following formula:

εi j = 0.5(ui, j + u j,i + ul,i ul, j ), (17)

where ∂ui/∂xj = ui, j . From eqs (17) and (7) we have

pi j = G(ui, j + u j,i − 2ul,lδi j/3) + si j + pN
i j − pδi j , (18)

where pN
i j = Gul,i ul, j − G(u2

l,1 + u2
l,2 + u2

l,3) δi j/3. It follows from eqs (6) and (18) that

s∗
i j = G(ui, j + u j,i − 2ul,lδi j/3) + si j + pN

i j . (19)

The equation of continuity (Lamb 1932) is written using eq. (25):

ρ0 = ρ
(
1 + nh−n xn−1

3 η
)
(1 + u1,1 + u2,2 + u1,1u2,2 − u1,2u2,1). (20)

Here n is a positive constant.
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2.3 Equations of state for the material

Following Galiev (1988, 1997a, 1999a) we use the following approximate equation of state for the multiphase material:

ρ = ρ0{(1 − φ0)[1 − λ(p − p0)] + φ}−1, (21)

where λ is the compressibility of the condensed phase. The wave velocity (∂ p/∂ρ) depends strongly on porosity φ (Van der Grinten et al.
1987; Nakoryakov et al. 1989; Carcione & Poletto 2000). For example, in very soft muddy sediments, gassy and liquified soils the velocity
is of the order of 10 m s−1 (see eq. 216). Gas oscillations will be considered as isothermal. Therefore, we have the following relation:

p = p0φ0φ
−1. (22)

For a weakly compressible material, eqs (21) and (22) approximate to

ρ−1 ≈ ρ−1
0

{
1 − [

λ(1 − φ0) + φ0 p−1
0

]
(p − p0) + φ0 p−2

0 (p − p0)2 − φ0 p−3
0 (p − p0)3 + · · · }. (23)

We assume that ρ0 is a weakly varying function of the coordinates: ρ0,1 ≈ 0 and ρ0,2 ≈ 0. The components s∗
i j in eqs (13)–(15) are functions

of ui. Thus, we have six equations (13)–(15), (20), (23) and (25) for six unknown values: η, ui, p and ρ.

2.4 Pressure and the thickness-averaged equations

Pressure may be determined from the linearized equation of vertical motion. Using eqs (16) and (19), and neglecting small and non-linear
terms, we find from eq. (15) that

u3,t t = −g + ρ−1
0 G(u3,22 + u3,11 + u2,32 + u1,31) + ρ−1

0 p33,3, (24)

where ρ0 is the undisturbed density. We determine the terms u3,22 and u3,11 using the following assumption:

u3 = xn
3 h−n(η − η+) + η−. (25)

We assume that (x−
3 )nh−n ≈ 0 and η+  η−, so kinematic conditions (2) and (3) are satisfied. Eq. (25) yields Boussinesq’s approximation

(Boussinesq 1872) if η+ = 0, η− = 0 and n = 1. Then eq. (24) is integrated from the upper surface (x3 = x+
3 ) to an arbitrary surface x3.

Taking into account boundary conditions (1) and (25), we find the stress p33 at depth x3:

p33 = pa − gρ0

[
(2n + 1)(n + 1)−1η + h − x3

] − h−n(n + 1)−1
(
hn+1 − xn+1

3

) (
ρ0ηt t − G∇2η

) + ρ0C∗, (26)

where C∗ = C∗(x1, x2, t) is an arbitrary function. It was assumed that the thickness of the layer changes very slowly (h1 ≈ 0, h2 ≈ 0) and
h − h0 � h0, where h0 is the average thickness. Now integrating the equations between x+ and x− we can reduce the problem to a 2-D
formulation. Since η � h we shall integrate the equations between h and 0. For example, the thickness-averaged pressure and the displacements
are introduced as

P = h−1

∫ h

0
p dx3, ui∗ = h−1

∫ h

0
ui dx3, (27)

where the subscript ∗ denotes the averaged value and will be dropped for these values in the rest of the paper. Taking into account eqs (18)
and (27) we have from eq. (26),

P − P0 = gρ0[(2n + 1)η/(n + 1) + h − h0] − 2

3
G(u1,1 + u2,2) + 4

3
Gh−1η + h(n + 2)−1

(
ρ0ηt t − G∇2η

)
, (28)

where P0 = pa + g0ρ0h0/2, and we have assumed that g = g0 + gd and C ∗ = gdh0/2. Here P0 is the average static pressure.
Now we rewrite eqs (13) and (14) using the averaged values (27), boundary conditions (1) and (3), and expressions (19) and (25),

(u1,t t − X )(1 + u1,1) + (u2,t t − Y )u2,1 + (2n + 1)−1ηt tη1 + g(n + 1)−1
(
η1 − η+

1

) + gη−
1

= −ρ−1 P1 + ρ−1G

(
4

3
u1,11 + 1

3
u2,12 + u1,22 − 2

3
h−1η1

)
+ ρ−1 X p

N + ρ−1h−1τ31,
(29)

(u2,t t − Y )(1 + u2,2) + (u1,t t − X )u1,2 + (2n + 1)−1ηt tη2 + g(n + 1)−1
(
η2 − η+

2

) + gη−
2

= −ρ−1 P2 + ρ−1G

(
4

3
u2,22 + 1

3
u1,12 + u2,11 − 2

3
h−1η2

)
+ ρ−1Y p

N + ρ−1h−1τ32,
(30)

where X p
N = s11,1 + s21,2 + pN

11,1 + pN
21,2, Y p

N = s12,1 + s22,2 + pN
12,1 + pN

22,2, Pi = ∂ P/∂xi , ηi = ∂η/∂xi (i = 1, 2) and

τ31 = p31

(
x1, x2, x3 = x+

3 , t
) = p31

(
x1, x2, x3 = x−

3 , t
)
. (31)

The expression for τ 32 is similar to eq. (31). Eq. (20) yields

ρ0 = ρ(1 + h−1η)(1 + u1,1 + u2,2 + u1,1u2,2 − u1,2u2,1). (32)

The approximate equation (23) is valid for the averaged values too. Thus, eqs (20), (23), (28), (29), (30) and (32) are derived for weakly
3-D waves. These equations describe the generation and the evolution of non-linear seismic waves when liquefaction of the layer occurs. We
used assumptions (16), (25) and assumed that the effects of plasticity and of the boundary stresses are very small.
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According to the equations presented, the surface waves may depend on n, the vertical acceleration of particles of media and the geometric
non-linearity, eq. (17). We shall take into account the geometric non-linearity in Section 7. In Sections 3–6 the linearized eq. (17) is used and
we also assume that n = 1 and (2n + 1)−1ηt tη1 + g(n + 1)−1(η1 + η+

1 ) + gη−
1 ≈ 0, (2n + 1)−1ηt tη2 + g(n + 1)−1(η2 + η+

2 ) + gη−
2 ≈ 0, and

gu3,3 ≈ 0 in eqs (29), (30) and (15), respectively. In particular, for this case eq. (15) yields

P − P0 = gρ0(η + h − h0) − 2

3
G(u1,1 + u2,2) + 4

3
Gh−1

0 η + 1

3
h
(
ρ0ηt t − G∇2η

)
, (33)

instead of eq. (28).
Remark. The equations presented describe a wide spectrum of wave phenomena in different media. For example, if G = 0 and the

vertical acceleration is small, we have the classical expression for the pressure of long water waves P − P0 = gρ0(η + h − h0) from eq. (33)
(Lamb 1932). If η = η+ = η− = 0 and τ 31 = τ 32 = 0 then the equations are valid for 2-D body waves propagating in porous geomaterials,
weakly cohesive soils, bubbly liquids and so on (see also Section 8.1). Thus, eqs (23), (28), (29), (30) and (32) describe 2-D body waves when
h → ∞ and η → 0, η+ → 0, η− → 0, τ31 → 0, τ32 → 0.

3 1 - D H I G H LY N O N L I N E A R T H E O RY F O R S L I G H T LY C O M P R E S S I B L E M AT E R I A L S

The equation of continuity (32) and the linearized equation (23) yield

−hb(P − P0) − hu1,1 = η(1 + u1,1), (34)

where b = λ(1 − φ0) + φ0 P−1
0 . Expression (33) reduces to the following form:

P − P0 = gρ0(h − h0) − 2

3
Gu1,1 +

(
4

3
Gh−1 + gρ0

)
η + h(ρ0ηt t − Gη11)/3. (35)

Now using the equation of continuity (33), we rewrite eq. (29) so that

u1,t t = ρ−1
0 (1 + ηh−1)

[
−P1 + 2

3
G

(
2u1,11 − h−1η1

)] + X + ρ−1
0 X p

N + ρ−1
0 h−1τ31 + g

(
0.5η+

1 − η−
1

)
. (36)

Eqs (34)–(36) define the 1-D problem completely. Let us reduce these equations to one equation neglecting the sixth-order non-linear terms.
Eqs (34) and (35) yield approximately

η = −Ah

(
1 − 2

3
bG

)(
1 − Au1,1 + A2u2

1,1 − A3u3
1,1 + A4u4

1,1

)
u1,1, (37)

where A = 1/(1 + hbgρ0 + 4
3 bG). The dispersive terms were eliminated in eq. (37). Using eq. (37), we rewrite expression (35) so that

P − P0 = −2

3
Gu1,1 − Ah

(
1 − 2

3
bG

)(
gρ0 + 4

3
h−1G

)(
1 − Au1,1 + A2u2

1,1 − A3u3
1,1 + A4u4

1,1

)
u1,1

−1

3
Aρ0h2

(
1 − 2

3
bG

)(
u1,1t t − ρ−1

0 Gu1,111

) + gρ0(h − h0).
(38)

Thus η and P are determined with the help of u1. Now, after some algebra, the equation for u1 may be derived from eq. (36) using eqs (37)
and (38):

u1,t t − a2
0u1,11 = X − gh1 + (

βu1,1 + β1u2
1,1 + β2u3

1,1 + β3u4
1,1

)
u1,11 + µu1,1t

+ 1

3
A∗h2

(
1 − 2

3
bG∗

)(
u1,11t t − a2

s u1,1111

) + ρ−1
0 X p

N + ρ−1
0 h−1τ31 + g

(
0.5η+

1 − η−
1

)
, (39)

here G∗ = ν(1 − αsφ0), A∗ = (1 + gbhρ0 + 4
3 bG∗)−1, µ ≈ 2η∗ρ−1

0 (1 − αsφ0), a2
s = ρ−1

0 G∗ and

a2
0 = A∗

(
1 − 2

3
bG∗

)(
gh + 2ρ−1

0 G∗
) + 2ρ−1

0 G∗, (40)

β = A∗

(
2

3
bG∗ − 1

) [
2ρ−1

0 G∗ + A∗
(
gh + 2ρ−1

0 G∗
)(

3 − 2

3
bG∗

)]
, (41)

β1 = A∗

(
1 − 2

3
bG∗

)
A2

∗

[
2ρ−1

0 G∗ + 3A∗
(
gh + 2ρ−1

0 G∗
)(

2 − 2

3
bG∗

)]
, (42)

β2 =
(

2

3
bG∗ − 1

)
A3

∗
[
2ρ−1

0 G∗ + A∗
(
gh + 2ρ−1

0 G∗
)
(10 − 4bG∗)

]
, (43)

β3 =
(

1 − 2

3
bG∗

)
A4

∗

[
2ρ−1

0 G∗ + 5A∗
(
gh + 2ρ−1

0 G∗
)(

3 − 4

3
bG∗

)]
. (44)
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We note that the expression for µ was very long and here the main part of the expression was retained. The second term in the right-hand
side of eq. (39) takes into account the topographic effect (Galiev 1997b, 1998, 1999a; Galiev & Galiev 1998). Then there are quadratic,
cubic, fourth and fifth-order terms with regard to u1. The dissipative and dispersive terms in eq. (39) follow the non-linear terms. The term
ρ−1

0 X p
N takes into account plastic and geometric non-linear properties of the layer material. The term ρ−1

0 h−1τ 31 is determined by the boundary
friction. The final term takes into account the initial waves propagating on the upper and lower surfaces. It is assumed that the thickness of
the layer changes very slowly and the linear and non-linear terms containing partial derivatives of h (for example, gh1u1,1) are negligible.
Moreover, non-linear terms containing the viscosity coefficient η∗ are neglected. These assumptions simplify the analysis of the influence of
non-linearity, the topographic, dispersive and dissipative effects on the surface waves. From the linearized equation (39) it follows that u1,t t11

≈ a2
0u1,1111. Using this equation, we rewrite eq. (39) so that

u1,t t − a2
0u1,11 = X − gh1 + (

βu1,1 + β1u2
1,1 + β2u3

1,1 + β3u4
1,1

)
u1,11

+ µu1,11t + ku1,1111 + ρ−1
0 X p

N + ρ−1
0 h−1τ31 + g

(
0.5η+

1 − η−
1

)
, (45)

where k = A∗h2(1 − 2
3 bG∗)(a2

0 − a2
s )/3. We emphasize that eq. (45) takes into account the strength and the viscous properties of the medium.

In particular, in eq. (45) the dispersive term depends on the strength and h2. The vertical displacement is determined by eq. (37). Boundary
friction effects might be introduced in eq. (45) in several ways (Stoker 1957; Chester 1968; Ockendon et al. 1986; Galiev & Galiyev 2001).
Cox & Mortell (1986) assumed that this friction is proportional to u1,t . In Sections 5.1 and 5.2 we shall assume that the boundary friction
term in eq. (45) is proportional to u1,11t (τ 31 = µ f u1,11t ).

3.1 Limiting expressions for a0

The local speed, eq. (40), depends on the mean porosity, the shear wave speed, the compressibility of the matrix material, the thickness of the
layer and the vertical acceleration. In particular, the mean porosity of the material and the shear wave speed can vary during the earthquake.
Thus, a0 is a complex function of the coordinates and time. However, there are cases when expression (40) may be reduced to well-known
expressions. Let h → ∞; then we have a2

0 = ρ−1
0 [λ(1 − φ0) + φ0 P−1

0 ]−1 + 4
3 νρ−1

0 (1 − αsφ0). If φ0 → 0, then this expression determines the
speed of elastic body waves in an infinite space: a0 = (ρ−1

0 λ−1 + 4
3 νρ−1

0 )1/2.
The thickness of the liquifiable layer has been found to be a significant parameter affecting the magnitude of lateral spreading (O’Rourke

& Pease 1997). This also follows from the theory presented. If αsφ0 → 1 (liquified state or bubbly liquid) then a2
0 = {1/gh + ρ0[λ(1 − φ0) +

φ0 P−1
0 ]}−1. Thus, the wave speed in the liquified layer is a function of the porosity, the thickness, the vertical acceleration and may be very

small (a2
0 < gh). If the compressibility of the solid phase is zero, λ = 0, then a2

0 = (1/gh + ρ0φ0 P−1
0 )−1. Let 1/gh  ρ0φ0 P−1

0 ; then we
have a2

0 ≈ gh. Furthermore, if h → ∞ and φ0 = 1, then we have the relation for the speed of sound in gas (the isothermal approximation):
a2

0 = P0ρ
−1
0 .

3.2 The Airy model and equation

For a thin water layer, eq. (45) yields

u1,t t − ghu1,11 = gh
(−3u1,1 + 6u2

1,1 − 10u3
1,1 + 15u4

1,1

)
u1,11. (46)

This equation may be considered as the generalization of Airy’s theory (Airy 1845). Airy considered water waves propagating in a uniform
canal. For this case gh = g0h0 in eq. (46) and we have the Airy equation (Lamb 1932, p. 260) written for weakly non-linear waves. Airy
predicted that a non-linear wave could not propagate without a change of form: it steepens and eventually breaks. On the other hand, eq. (46)
is similar to eq. (3) from Lamb (1932, p. 481) which determines the generation of wave singularities in gas. Therefore, we can expect seismic
surface waves propagating in inviscid and non-dispersive media also to steepen and break. On the other hand, there are dissipative and
dispersive terms in eq. (45). These terms can modify the results of non-linear effects. Thus, anomalous waves having complex forms are
described by eqs (45) and (46). We will study these waves in Sections 3.5 and 5–7.

Here the dynamic model of the layer presented in Section 2 was reduced to Airy’s model (Airy 1845) of shallow water waves. As will
be seen, the 2-D equation (43) from Beji & Nadaoka (1997) for shallow water waves also follows from the theory as a particular case (see
Section 4.2.2). Thus, our theory may be considered as the generalization of shallow surface water wave theory to solid deformable layers.

3.3 Perturbation method and general solution

Eq. (45) is now rewritten in terms of new variables:

r = a(t) − x1, s = a(t) + x1, (47)

where a(t) is an unknown function that will be determined later. It is found that

u1,1 = u1,s − u1,r , u1,t = at (u1,s + u1,r ), u1,11 = u1,rr − 2u1,rs + u1,ss,

u1,t t = a2
t (u1,rr + 2u1,rs + u1,ss) + att (u1,r + u1,s),

u1,1111 = u1,rrrr − 2u1,rrss + u1,ssss, u1,11t = at (u1,rrr − u1,rss − u1,rrs + u1,sss).
(48)
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Here a = a(t) and the subscripts r and s refer to partial derivatives with respect to r and s, respectively. Then, using eq. (48) we rewrite eq. (45)
so that(
a2

t − a2
0

)
(u1,rr + u1,ss) + 2

(
a2

t + a2
0

)
u1,rs + a2

t t (u1,r + u1,s) = g(hr − hs)

+ [
β − β1(u1,r − u1,s) + β2(u1,r − u1,s)2 − β3(u1,r − u1,s)3

]
(u1,s − u1,r )(u1,rr − 2u1,rs + u1,ss)

+ µat (u1,rrr − u1,rss − u1,rrs + u1,sss) + k(u1,rrrr − 2u1,rrss + u1,ssss) + X

+ ρ−1
0 X p

N + ρ−1
0 h−1τ31 + g

(
0.5η+

1 − η−
1

)
. (49)

It is seen that eq. (49) yields the non-linear diffusion equation if u1,rs ≈ 0.
We assume site resonant conditions

|Re| � 1, |att | � 1, u1,rs ≈ 0, (50)

where a transresonant parameter Re = a2
t − a2

0 depends weakly on x1 and t : (Re)1 ≈ 0 and (Re)t ≈ 0. At the exact site resonance a2
t =

a2
0. We assumed that a0 and at are functions of t. This situation may occur as the result of the acoustic fluidization of the material (Melosh

1996; Sornette & Sornette 2000) due to earthquake-induced vibrations or the earthquake-induced vertical acceleration. We can assume that
a(t) is proportional to tα , where α < 2. Therefore, att → 0, if t → ∞. When a0 and at are functions of t, the solution (57) resembles the
d’Alembert-type solution, but the velocity of waves J (a − x) and j(a + x) can vary and depends on t (Galiev 1999a, 2000a).

Below we shall consider the case where βa−2
t , β1a−2

t , β2a−2
t , β3a−2

t , µa−1
t and ka−2

t are approximately constant in eq. (49). In particular,
they are constants for water, liquefiable soft soils and suspensions. For water we have βa−2

t = −3, β1a−2
t = 6, β2a−2

t = −10, β3a−2
t =

15, µa−1
t ≈ constant and ka−2

t = 1
3 h2. On the other hand, they are constant for solid layers if 4

3 νρ−1
0 (1 − αsφ0)  gh.

The solution of eq. (49) is sought using the perturbation method:

u1 = u(1)
1 + u(2)

1 + u(3)
1 + u(4)

1 + u(5)
1 + · · · , (51)

where u(1)
1  u(2)

1  u(3)
1  u(4)

1  u(5)
1 . Expansion (51) is used widely in non-linear physics (Koch & Sangani 1999; Kouznetsov & Garcia-

Valenzuela 1999). We assume that at the resonance the amplitude of the waves becomes significantly larger than the amplitude of the forcing
oscillations. Substituting the sum (51) into eq. (49) and equating terms of the same order, we obtain the following inhomogeneous linear
differential equations:

u(1)
1,rs = 0, (52)

4a2
0u(2)

1,rs = −Re

[
u(1)

1,r + 2u(1)
1,rs + u(1)

1,ss

]
− att

[
u(1)

1,r + u(1)
1,s

]
+ β

[
u(1)

1,s − u(1)
1,r

] [
u(1)

1,rr − 2u(1)
1,rs + u(1)

1,ss

]
, (53)

4a2
0u(3)

1,rs = −Re

[
u(2)

1,rr + 2u(2)
1,rs + u(2)

1,ss

]
− att

[
u(2)

1,r + u(2)
1,s

]
+ β

[
u(2)

1,s − u(2)
1,r

] [
u(1)

1,rr − 2u(1)
1,rs + u(1)

1,ss

]

+ β
[
u(1)

1,s − u(1)
1,r

] [
u(2)

1,rr − 2u(2)
1,rs + u(2)

1,ss

]
+ β1

[
u(1)

1,s − u(1)
1,r

]2 [
u(1)

1,rr − 2u(1)
1,rs + u(1)

1,ss

]
, (54)

4a2
0u(4)

1,rs = β2

[
u(1)

1,s − u(1)
1,r

]3 [
u(1)

1,rr − 2u(1)
1,rs + u(1)

1,ss

]
, (55)

4a2
0u(5)

1,rs = β3

[
u(1)

1,s − u(1)
1,r

]4 [
u(1)

1,rr − 2u(1)
1,rs + u(1)

1,ss

]
+ µa0

[
u(1)

1,rrr − u(1)
1,rss − u(1)

1,rrs + u(1)
1,sss

]

+ k
[
u(1)

1,rrrr − 2u(1)
1,rrss + u(1)

1,ssss

]
+ ρ−1

0 h−1τ31 + ρ−1
0 X p

N + g(hr − hs) + X + g
(
0.5η+

1 − η−
1

)
. (56)

The equations for u(4)
1 and u(5)

1 following from eq. (49) are very long and complex. We retain only a few terms in eqs (55) and (56) to simplify
the problem. These simplified equations will allow us to evaluate qualitatively the influence of high non-linearity on the waves.

The solution of eq. (52) is

u(1)
1 = J (r ) + j(s). (57)

Now we shall correct solution (57) taking into account u(2)
1 , and then u(i)

1 (i = 3, 4, 5). We assume that Re ≈ constant , att ≈ constant. Substituting
eq. (57) into eq. (53) and integrating, one can find that

u(2)
1 = J2(r ) + j2(s) − 1

4
a−2

0

[
s(Re J ′ + att J ) + r (Re j ′ + att j)

] + βa−2
0 [r ( j ′)2 − s(J ′)2 + 2 j J ′ − 2 j ′ J ]/8 + x1d + d1, (58)

where J 2(r ) and j2(s) are functions of integration, and d and d1 are constants of integration. In eq. (58), J = J (r ) and j = j(s), and the
prime denotes differentiation with respect to the appropriate variables r or s. The influence of d and d1 on the high-order values will not be
considered. Using eqs (57) and (58), we can rewrite eq. (54) in the following form:
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u(3)
1,rs = −0.25a−2

0

{
Re

[
u(2)

1,rr + 2u(2)
1,rs + u(2)

1,ss

]
+ att

[
u(2)

1,r + u(2)
1,s

]}

+ β2a−4
0

{
1

2
( j2)′ J ′′′ + 1

2
(J 2)′ j ′′′ − J j ′ j ′′′ − j J ′ J ′′′ − 5

6
[( j ′)3]′ − 5

6
[(J ′)3]′ − J J ′′ j ′′ − j j ′′ J ′′ − 7

2
( j ′)2 J ′′ − 7

2
(J ′)2 j ′′

+ 7

2
[(J ′)2]′ j ′ + 7

2
[( j ′)2]′ J ′ − j(J ′′)2 − J ( j ′′)2

}/
16

− 1

32
β2a−4

0 s

{
j ′[(J ′)2]′′ − j ′′[(J ′)2]′ − 2

3
[(J ′)3]′′

}

+ 1

32
β2a−4

0 r

{
−J ′[( j ′)2]′′ + J ′′[( j ′)2]′ + 2

3
[( j ′)3]′′

}
+ 1

4
β1a−2

0 [J ′′( j ′)2 − 2J ′ j ′ J ′′ + J ′′(J ′)2 + j ′′( j ′)2 − 2J ′ j ′ j ′′ + j ′′(J ′)2]

+ 1

4
βa−2

0 [(J ′′
2 + j ′′

2 )( j ′ − J ′) − (
J ′

2 − j ′
2

)
(J ′′ + j ′′)]. (59)

Here J 2 = J 2(r ) and j2 = j2(s). Eq. (59) yields

u(3)
1 = J3(r ) + j3(s) − 0.25a−2

0

∫ ∫ {
Re

[
u(2)

1,rr + u(2)
1,ss

]
+ att

[
u(2)

1,r + u(2)
1,s

]}
dr ds − 0.5a−2

0 Reu
(2)
1

+ 1

32
β2a−4

0

{
j2 J ′′ + J 2 j ′′ + 7(J ′)2 j + 7( j ′)2 J − 5r ( j ′)3/3 − 5s(J ′)3/3

− 2
∫ ∫

[J j ′ j ′′′ + j J ′ J ′′′ + j(J ′′)2 + J ( j ′′)2] dr ds − J ′
∫

[7( j ′)2 + 2 j j ′′] ds − j ′
∫

[7(J ′)2 + 2J J ′′] dr

}

− 1

32
β2a−4

0

∫
s{ j ′[(J ′)2]′ − j ′′(J ′)2} ds + 1

96
β2a−4

0 s2[(J ′)3]′

+ 1

32
β2a−4

0

∫
r{−J ′[( j ′)2]′ + J ′′( j ′)2} ds + 1

96
β2a−4

0 r 2[( j ′)3]′

+ 0.25β1a−2
0

[
J ′

∫
( j ′)2 ds + j ′

∫
(J ′)2 dr + s(J ′)3/3 + r ( j ′)3/3 − j(J ′)2 − J ( j ′)2

]

+ 0.25βa−2
0 (J ′

2 j − j ′
2 J + j2 J ′ − J2 j ′ + r j ′

2 j ′ − s J ′
2 J ′). (60)

After some algebra, u3 is determined from eq. (60) as

u(3)
1 = J3(r ) + j3(s) − 0.25a−2

0

∫ ∫ {
Re

[
u(2)

1,rr + u(2)
1,ss

]
+ att

[
u(2)

1,r + u(2)
1,s

]}
drds − 0.5a−2

0 Reu
(2)
1

+ β2a−4
0 [J ′′ j2 + j ′′ J 2 − 2 j ′ J ′ J − 2 j ′ J ′ j − 2s j J ′ J ′′ + s j ′(J ′)2 − 2r J j ′ j ′′

+ r J ′( j ′)2 + s2(J ′)2 J ′′ + r 2( j ′)2 j ′′]/32 − (
β1a−2

0

/
4 − 3β2a−4

0

/
16

)
[ j(J ′)2 + J ( j ′)2]

+ (
β1a−2

0

/
4 − 5β2a−4

0

/
32

)[
j ′

∫
(J ′)2 dr + J ′

∫
( j ′)2ds + s(J ′)3/3 + r ( j ′)3/3

]

+ 0.25βa−2
0 (J ′

2 j − j ′
2 J + j2 J ′ − J2 j ′ + r j ′

2 j ′ − s J ′
2 J ′). (61)

Now we can approximately take into account highly non-linear effects. With the help of eq. (57), eqs (55) and (56) can be rewritten as

4a2
0u(4)

1,rs = β2( j ′ − J ′)3( j ′′ + J ′′), (62)

4a2
0u(5)

1,rs = β3( j ′ − J ′)4( j ′′ + J ′′) + µa0( j ′′′ + J ′′′) + k( j ′′′′ + J ′′′′) + ρ−1
0 h−1τ31 + ρ−1

0 X p
N + g(hr − hs) + X − g

(
0.5η+

1 + η−
1

)
. (63)

We shall neglect the interaction of the waves J ′ and j ′ in eqs (62) and (63). In this case, the previous equations yield

u(4)
1 = J4(r ) + j4(s) + β2a−2

0 [r ( j ′)4 − s(J ′)4]/16,
(64)

u(5)
1 = J5(r ) + j5(s) + 0.05β3a−2

0 [r ( j ′)5 − s(J ′)5] + 0.25µa−1
0 (r j ′′ + s J ′′)

+ 0.25ka−2
0 (r j ′′′ + s J ′′′) + 0.25

∫ ∫
a−2

0

[
X + ρ−1

0 h−1τ31 + ρ−1
0 X p

N + g(hr − hs) − g
(
0.5η+

1 + η−
1

)]
dr ds. (65)
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The approximate general solution of eq. (45) is the sum (51):

u1 = J + j + (
1 − 0.5a−2

0 Re

){J2 + j2 + x1d + d1 − 0.25a−2
0 Re(s J ′ + r j ′)

+ 0.125βa−2
0 [r ( j ′)2 − s(J ′)2 + 2 j J ′ − 2 j ′ J ]} + J3(r ) + j3(s)

− 0.25a−2
0

∫ ∫ [
Re

(
u(2)

1,rr + u(2)
1,ss

) + att (u
(2)
1,r + u(2)

1,s)
]

dr ds

+ β2a−4
0 [J ′′ j2 + j ′′ J 2 − 2 j ′ J ′ J − 2 j ′ J ′ j − 2s j J ′ J ′′ + s j ′(J ′)2

− 2r J j ′ j ′′ + r J ′( j ′)2 + s2(J ′)2 J ′′ + r 2( j ′)2 j ′′]/32 − (
β1a−2

0 /4 − 3β2a−4
0 /16

)
[ j(J ′)2 + J ( j ′)2]

+ (
β1a−2

0 /4 − 5β2a−4
0 /32

) [
j ′

∫
(J ′)2 dr + J ′

∫
( j ′)2 ds + s(J ′)3/3 + r ( j ′)3/3

]

+ 0.25βa−2
0 (J ′

2 j − j ′
2 J + j2 J ′ − J2 j ′ + r j ′

2 j ′ − s J ′
2 J ′) + β2a−2

0 [r ( j ′)4 − s(J ′)4]/16

+ J4(r ) + j4(s) + J5(r ) + j5(s) + 0.05β3a−2
0 [r ( j ′)5 − s(J ′)5] + 0.25µa−1

0 (r j ′′ + s J ′′)

+ 1

8
ka−2

0 (r j ′′′ + s J ′′′) + 1

8

∫ ∫
a−2

0

[
X + ρ−1

0 h−1τ31 + ρ−1
0 X p

N + g(hr − hs) + g
(
0.5η+

1 − η−
1

)]
dr ds.

(66)

Expression (66) is the approximate solution of the 2-D equations of deformable media under conditions (1)–(3) on the upper and lower
surfaces of the layer. The coefficients in eq. (66) explicitly depend on t because of the fact that in eqs (53)–(56) some right-hand ‘driving’
terms are in resonance with the intrinsic oscillator frequency (Poincaré 1892; Tabor 1989). The infamous problem of resonances (or small
divisors, Poincaré 1892) has been studied over the past hundred years (Poincaré 1892; Sagdeev et al. 1988; Prigogine 1997; Nayfeh 2000).
We consider this fundamental problem below.

3.3.1 Bounded solution of eq. (45)

Expression (66) may be modified to exclude the secular terms. First we modify expression (58). There the secular terms will be eliminated if

J2(r ) = 0.25a−2
0 r (Re J ′ + att J ) + βa−2

0 r (J ′)2/8 + �2(r ),

j2(s) = 0.25a−2
0 s(Re j ′ + att j) − βa−2

0 s( j ′)2/8 + ψ2(s).
(67)

As a result, we have

u(2)
1 = �2(r ) + ψ2(s) − 0.5a−2

0 x1[Re(J ′ − j ′) + att (J − j)] + βa−2
0 [(r − s)( j ′)2 − (s − r )(J ′)2 + 2 j J ′ − 2 j ′ J ]/8 + x1 d + d1. (68)

Using eqs (57) and (68), we rewrite eq. (54) and obtain a variation of eq. (59). Then, following Section 3.3, we find u(3)
1 :

u(3)
1 = J3(r ) + j3(s) + 1

12
β2a−4

0

{
j2 J ′′ + J 2 j ′′ + 7(J ′)2 j + 7( j ′)2 J − 5r ( j ′)3/3 − 5s(J ′)3/3

− 2
∫ ∫

[J j ′ j ′′′ + j J ′ J ′′′ + j(J ′′)2 + J ( j ′′)2] dr ds − J ′
∫

[7( j ′)2 + 2 j j ′′] ds − j ′
∫

[7(J ′)2 + 2J J ′′] dr

}

− 1

32
β2a−4

0

∫ ∫
(s − r )

{
j ′[(J ′)2]′′ − J ′[( j ′)2]′′ + J ′′[( j ′)2]′ − j ′′[(J ′)2]′ + 2

3
[( j ′)3]′′ − 2

3
[(J ′)3]′′

}
dr ds

+ 0.25β1a−2
0

[
J ′

∫
( j ′)2 ds + j ′

∫
(J ′)2 dr + s(J ′)3/3 + r ( j ′)3/3 − j(J ′)2 − J ( j ′)2

]

+ 0.25βa−2
0 (� ′

2 j − ψ ′
2 J + ψ2 J ′ − �2 j ′ + rψ ′

2 j ′ − s� ′
2 J ′). (69)

Here �2 = �2(r ) and ψ2 = ψ2(s). For simplicity we assumed Re ≈ 0 and att ≈ 0 in eq. (69). We have∫ ∫
(s − r )[( j ′)3]′′ drds = 1.5(sr − 0.5r 2) j ′[( j ′)2]′ − r ( j ′)3. (70)

Now, after some algebra, u3 is determined from eq. (69) as

u(3)
1 = J3(r ) + j3(s) + β2a−4

0 (J ′′ j2 + j ′′ J 2 − 2 j ′ J ′ J − 2 j ′ J ′ j)/32

− (
β1a−2

0 /4 − 5β2a−4
0 /32

)[
j(J ′)2 + J ( j ′)2

] + (
β1a−2

0 /4 − β2a−4
0 /8

)[
j ′

∫
(J ′)2 dr + J ′

∫
( j ′)2ds

]

+ (
β1a−2

0 /12 − β2a−4
0 /32

)[
s(J ′)3 + r ( j ′)3

] + β2a−4
0

{
(r − s)[2 j J ′ J ′′ − 2J j ′ j ′′

+ J ′( j ′)2 − j ′(J ′)2] + (s2 − 2rs)J ′′(J ′)2 + (r 2 − 2rs) j ′′( j ′)2
}/

32

+ 0.25βa−2
0 (� ′

2 j − ψ ′
2 J + ψ2 J ′ − �2 j ′ + rψ ′

2 j ′ − s� ′
2 J ′).

(71)
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The secular terms are eliminated in eq. (71) if

J3(r ) =
(

1

32
β2a−4

0 − 1

12
β1a−2

0

)
r (J ′)3 + 1

32
β2a−4

0 r 2 J ′′(J ′)2 + 1

4
βa−2

0 r� ′
2 J ′ + �3. (72)

j3(s) =
(

1

32
β2a−4

0 − 1

12
β1a−2

0

)
s( j ′)3 + 1

32
β2a−4

0 s2 j ′′( j ′)2 − 1

4
βa−2

0 sψ ′
2 j ′ + ψ3. (73)

Here �3 = �3(r ) and ψ3 = ψ3(s). Then in eqs (64) and (65) we assume that

J4(r ) = β2a−2
0 r (J ′)4/16, j4(s) = −β2a−2

0 s( j ′)4/16, (74)

j5(r ) = −0.05β3a−2
0 s( j ′)4 − 0.25µa−1

0 r J ′′ − 0.25ka−2
0 r J ′′′, (75)

j5(s) = −0.05β3a−2
0 s( j ′)4 − 0.25µa−1

0 s j ′′ − 0.25ka−2
0 s j ′′′. (76)

Using eq. (51), and expressions (57), (68), (71)–(73), (64), (74) and (65), (75), (76), we can write the approximate general bounded
solution of eq. (45):

u1 = J + j + �2 + ψ2 + �3 + ψ3 + x1d + d1 − 0.5a−2
0 x1[Re(J ′ − j ′) + att (J − j)]

− βa−2
0 [x1(J ′)2 + x1( j ′)2 − j J ′ + j ′ J ]/4 + 1

32
β2a−4

0 (J ′′ j2 + j ′′ J 2 − 2 j ′ J ′ J − 2 j ′ J ′ j)

− 1

4
(β1a−2

0 − 5β2a−4
0 /8)[ j(J ′)2 + J ( j ′)2] + 1

4
(β1a−2

0 − 0.5β2a−4
0 )

[
j ′

∫
(J ′)2 dr+J ′

∫
( j ′)2ds

]

+ (β1a−2
0 /6 − β2a−4

0 /16)x1[(J ′)3 − ( j ′)3] + 1

8
β2a−4

0 x1[J j ′ j ′′ − j J ′ J ′′ − 0.5J ′( j ′)2 + 0.5 j ′(J ′)2

+x1 J ′′(J ′)2 + x1 j ′′( j ′)2] − β2a−2
0 x1[( j ′)4 + (J ′)4]/8 − 0.1β3a−2

0 x1[( j ′)5 + (J ′)5]

− 0.5µa−1
0 x1( j ′′ − J ′′) − 0.5ka−2

0 x1( j ′′′ − J ′′′) + 1

4

∫ ∫
a−2

0 [X + ρ−1
0 h−1τ31 + ρ−1

0 X p
N + g(hr − hs)

+ g(0.5η+
1 − η−

1 )] drds + 1

4
βa−2

0 (� ′
2 j − ψ ′

2 J + ψ2 J ′ − �2 j ′ − 2x1ψ
′
2 j ′ − 2x1�

′
2 J ′). (77)

It is assumed that the integrals in eq. (77) do not generate secular terms. One can consider expression (77) as the approximate bounded solution
of 2-D equations of deformable media under conditions (1)–(3) on the surfaces of the layers. The solution is valid for finite layers. If the effect
of the interaction of the waves J ′ and j ′ is negligible and X p

N = X = η+
1 = η−

1 = 0, then eq. (77) reduces to the following expression:

u1 = J + j + �2 + ψ2 + �3 + ψ3 + x1d + d1 − 0.5a−2
0 x1[Re(J ′ − j ′) + att (J − j)]

− 1

4
βa−2

0 x1[(J ′)2 + ( j ′)2] + (β1a−2
0 /6 − β2a−4

0 /16)x1[(J ′)3 − ( j ′)3] + 1

8
x1

{
β2a−4

0 x1[J ′′(J ′)2 + j ′′( j ′)2]

− β2a−2
0 [( j ′)4 + (J ′)4]

} − 0.1β3a−2
0 x1[( j ′)5 + (J ′)5] − 0.5µa−1

0 x1( j ′′ − J ′′)

− 0.5ka−2
0 x1( j ′′′ − J ′′′) + 0.25

∫ ∫
a−2

0

[
ρ−1

0 h−1τ31 + g(hr − hs)
]

drds − 0.5βa−2
0 x1(ψ ′

2 j ′ + � ′
2 J ′).

(78)

Let us consider a one-sided travelling wave of displacement u−
1 . In this case, j = 0 and from eq. (78) we have

u−
1 = J + d1 − 0.5a−2

0 x1(Re J ′ + att J ) − 1

4
x1βa−2

0 (J ′)2 + (
β1a−2

0

/
6 − β2a−4

0

/
16

)
x1(J ′)3

+ 1

8
x2

1β
2a−4

0 J ′′(J ′)2 − β2a−2
0 x1(J ′)4 − 0.1β3a−2

0 x1(J ′)5. (79)

For simplicity it was assumed that �2 = �3 = 0 and ψ2 = ψ3 = 0. We also eliminated some terms in eq. (79). Expression (79) explicitly
demonstrates the non-linear effect. Indeed, according to the linear theory u−

1 = J and a seismic wave propagates with an unvarying shape.
Because of the non-linear terms in eq. (79), the shape deforms as the coordinate x1 varies. Harmonics are generated within the wave. For
example, if we have at a given point, say x1 = 0, a sinusoidal wave with frequency ω, then, according to eq. (79), harmonics with frequencies
2ω, 3ω, 4ω and 5ω appear in x1 > 0.

The above effect depends strictly on frequency and the mechanical properties of the material. In particular, for earthquake-induced waves
in hard rocks the non-linear effects are very small. However, for porous, soft sediments, liquified, gassy and weakly cohesive soils, non-linear
terms in eqs (66) and (77)–(79) may be important. The solutions eqs (77) and (78) explicitly include the dependence of wavefields on the
dissipative, dispersive and topographic effects. We shall use these solutions to consider different boundary problems in Sections 5 and 6.
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3.4 Strongly non-linear waves and transresonant evolution of eq. (45)

We have derived the perturbed wave equation (45) assuming that the non-linear terms are smaller than the linear terms. For example, if a
linear term is of order 0.3 then a non-linear term can be of the order of 0.1. Therefore, one might expect that any attempt to study strongly
non-linear waves with the help of these equations would fail. However, this is not the case if the same linear terms annihilate each other. As
a result, the influence of non-linearity becomes more important than the influence of the linear terms, although every linear term may to be
larger than the non-linear terms. In eq. (45) the annihilation takes place if u1,t t ≈ a2

0u1,11.
The perturbation method was also based on the assumption that the non-linear terms are smaller than the linear ones. In particular, the

series (79) diverges if the function J is sufficiently large. However, sometimes, we may wish to simulate the generation of strongly non-linear
seismic waves.

While the general solution for strongly non-linear seismic waves is unknown, we consider a special solution that can be readily obtained
(Galiev 1988; Galiev & Galiev 2001). Let the solution of eq. (45) be the sum or the difference of oppositely travelling localized waves:

u1 = J (r ) ± j(s). (80)

In this case, if τ 31 = 0 and X p
N = η−

1 = 0, we have directly from eq. (49) that

a−1
t a2

t t u1,t − (
a2

0 − a2
t

)
u1,11 = X − gh1 + (

βu1,1 + β1u2
1,1 + β2u3

1,1 + β3u4
1,1

)
u1,11 + µu1,11t + ku1,1111 + 0.5gη+

1 . (81)

Here u1 = u1(r , s). If a2
t = a2

0, [see conditions (50)] and att ≈ 0 occur, eq. (81) yields

µξt + kξ11 = gh − 0.5βξ 2 − β1ξ
3/3 − β2ξ

4/4 − β3ξ
5/5 −

∫ (
X + 0.5gη+

1

)
dx1 + C(t), (82)

where ξ = u1,1(r , s) and C(t) is an arbitrary function. The perturbed wave equation (45) is transformed into non-linear diffusion eqs (81) or
(82) (see also Section 8.2). In particular, eq. (82) yields µξ t + kξ 11 = −0.5βξ 2. Near resonance the evolution and the interaction of non-linear,
dissipative, diffusive and dispersive effects may be very complex (Prigogine 1997). Eq. (82) may be reduced to an algebraic equation with
respect to u1,1, if µ = 0, k = 0, X = 0. In this case, if C(t) = gh0 and η+

1 = 0, we have

g(h − h0) = 0.5βξ 2 + β1ξ
3/3 + β2ξ

4/4 + β3ξ
5/5. (83)

For a flat layer g(h − h0) = 0, then the equation of free non-linear oscillations follows from eq. (83):

β + 2β1ξ/3 + β2ξ
2/2 + 2β3ξ

3/5 = 0. (84)

We have obtained eqs (82)–(84) using eq. (50). However, there is a special case, when a2
t �= a2

0, but µ = 0, k = 0, X = 0 and gh1 ≈ 0. Then
we have from eq. (81) the following algebraic equation:

a2
t − a2

0 = βξ + β1ξ
2 + β2ξ

3 + β3ξ
4. (85)

The results presented in this section may be useful for studying wave evolution in elongated topographies. First the sign in eq. (80) should be
chosen so that boundary conditions are satisfied at the ends of the topography. Then the form and the amplitude of the waves are determined
from eqs (82), (83), (84) or (85)(82), (83), (84) or (85) (Galiev 1999, 2000; Galiev & Galiev 2001).

3.5 Non-linear, non-linear-topographic and dispersive effects. Solitary and shock waves

Let us assume j (s) = j = 0 in eq. (80) and consider non-linear, non-linear-topographic and dispersive effects on the one-sided travelling
wave.

(1) Non-linear effect. Let β = β2 = β3 = 0, then eq. (85) yields ξ = u1,1 = ±(a2
t − a2

0)1/2β−0.5
1 . Using these solutions and eq. (80), we can

construct the following discontinuous solution:

u1,1 = (a2
t − a2

0 )1/2β−0.5
1 {H [a(t) − x1] − H [−a(t) + x1]}, (86)

where H is the Heaviside function, which defines here the travelling shock wave. Solution (86) takes into account the cubic non-linear effect.
This solution describes a surface shock wave, since u1,1 is proportional to the vertical displacement η.

(2) Non-linear-topographic resonant effect. Let β1 = β2 = β3 = 0 in eq. (83). In this case eq. (83) yields u1,1 = ±[2g(h − h0)β−1]1/2.
Using these solutions and eq. (80) we can construct the following discontinuous resonant solution u1,1 = [2g(h − h0)β−1]1/2{H [a(t) − x1]
− H [−a(t) + x1]}. For a flat layer we have u1,1 = 0.

(3) Dispersive non-linear-topographic effect. It is assumed that the non-linear, dissipative and dispersive terms are of the same order and
a0, at, β, β1, β2, β3, µ and k are approximately constant. In this case, from eq. (81) we have

k J ′′′′ + µat J ′′′ − [
a2

t − a2
0 + β J ′ − β1(J ′)2 + β2(J ′)3 − β3(J ′)4

]
J ′′ = gh1 − 0.5gη+

1 − X. (87)

This is the ordinary differential equation for a travelling wave J ′. Eq. (87) describes the interaction of non-linear, dissipative, dispersive
and topographic effects. We shall consider a variety of particular cases of eq. (87) in Sections 5–7.

Eq. (87) is integrated if µ = 0. Let X = 0, h = h0 and η+ = 0. In this case eq. (87) yields

k1/2

∫ [(
a2

t − a2
0

)
(J ′)2 + 1

3
β(J ′)3 − 1

6
β1(J ′)4 + 1

10
β2(J ′)5 − 1

15
β3(J ′)6 + C1 J ′ + C2

]−0.5

d J ′ = r + C3. (88)
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Here C1, C2 and C3 are arbitrary constants. It is possible to derive different expressions for J ′ from eq. (88). Let us consider the much studied
solitary wave using eq. (88) and assuming that β1 = β2 = β3 = C1 = C2 = C3 = 0. Following Remoissenet (1996) and Akhmediev &
Ankiewicz (1997), we can write the solitary wave solution

u1,1 = −J ′ = 3β−1
(
a2

t − a2
0

)
sech2

{
0.5

√
k−1

(
a2

t − a2
0

)
[a(t) − x1]

}
. (89)

This solution describes a localized surface wave. Thus, dispersion can transform the shock wave (86) into the solitary wave (89). The shape
and size of this wave depend on the difference a2

t − a2
0. Solitary waves were first observed in a canal by J. Scott Russell in 1834. The waves

travel in a canal for miles without changing form (Lamb 1932). We suggest that an earthquake can generate a similar wave on the surface of
liquified layers. The localized waves are known in structural geology (Hunt et al. 1997).

Integrating eq. (89) we find that u1 = −6β−1
√

k(a2
t − a2

0 ) tanh{0.5
√

k−1(a2
t − a2

0 )[a(t) − x1]}. It is the shock-like solution for the
horizontal displacement. The width of the shock (jump) becomes infinitely small if the dispersive coefficient k → 0. The amplitude of u1 is a
function of non-linearity and dispersion.

4 2 - D N O N L I N E A R T H E O RY F O R C O M P R E S S I B L E M AT E R I A L

We have constructed a set of solutions of 1-D equations of the general theory. Below, a 2-D theory of non-linear surface seismic waves is
developed and a set of 2-D analytical solutions is presented.

Let us introduce the displacement potential ϕ and assume that

u1 = ∂ϕ/∂x1 = ϕ1, u2 = ∂ϕ/∂x2 = ϕ2. (90)

For this case, eq. (32) yields

ρ−1 = ρ−1
0 (1 + η/h)

(
1 + ∇2ϕ + ϕ11ϕ22 − ϕ2

12

)
. (91)

Now using eqs (90) and (91) we transform eqs (29) and (30) into the following form:

ϕ1t t (1 + ϕ11) + (ϕ2t t − Y )ϕ12 − X∗ = −ρ−1
0 (1 + η/h)

(
1 + ∇2ϕ + ϕ11ϕ22 − ϕ2

12

)
P∗

1 , (92)

ϕ2t t (1 + ϕ22) + (ϕ1t t − X )ϕ21 − Y∗ = −ρ−1
0 (1 + η/h)

(
1 + ∇2ϕ + ϕ11ϕ22 − ϕ2

12

)
P∗

1 , (93)

where X∗ = X + ρ−1
0 (h−1τ31 + X p

N ) + g(0.5η+
1 − η−

1 ), Y∗ = Y + ρ−1
0 (h−1τ32 + Y p

N ) + g(0.5η+
2 − η−

2 ) and

P∗
i = ∂

(
P + 2

3
h−1Gη − 4

3
G∇2ϕ

)/
∂xi . (94)

Let us consider two limiting cases of plane waves when

ϕ1 ≈ ϕ2, ϕ11 ≈ ϕ22, X∗ − ρ−1
0 P∗

1 ≈ Y∗ − ρ−1
0 P∗

2 or (95)

ϕ1  ϕ2, ϕ11  ϕ22, ρ0Y∗ − P∗
2 ≈ 0. (96)

Thus, it is assumed that ϕ = ϕ [a(t) ± f (k1x1 ± k2x2)], where f is an arbitrary function, k1 and k2 are arbitrary constants, and k1 ≈ k2 (case
95) or k2 ≈ 0 (case 96).

In the case of eq. (95), expressions (92) and (93) yield the same equation:

ϕ1t t − X∗ = −ρ−1
0 (1 + η/h)P∗

1 . (97)

If conditions (96) occur, then the influence of the coordinate x2 is small and ϕ2 = ∂ ϕ/∂x2 ≈ 0. In this case, eq. (92) reduces to eq. (97). Let
us rewrite eq. (97) using eq. (94) so that

ϕ1t t (1 − ηh−1 + η2h−2 + · · ·) − X∗ = −ρ−1
0 ∂

(
P + 2

3
h−1Gη − 4

3
G∇2ϕ

)/
∂x1. (98)

Thus, we have an equation of state (23), equation of continuity (91) and eqs (28) and (98) for four unknown functions: ρ, ϕ, P and η.

4.1 Pressure and vertical displacement

Now, using the iterative method, we find P − P0 and η as functions of ϕ. It is assumed that X∗, topographic and dispersive effects are of third
order with respect to ϕ. This allows us to take into account the influence of X∗, topographic and dispersive effects in the final expression for
P − P0 and η.

As a first approximation, from eq. (98) we find

P − P0 ≈ −ρ0ϕt t − 2

3
h−1Gη + 4

3
G∇2ϕ. (99)

Now taking into account eqs (33) and (99), one can write

η ≈ A∗(2G B−2
∗ − ρ0

)
ϕt t . (100)
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We assume that

A∗ = (gρ0 + 2h−1G)−1. (101)

In eq. (100) we have used the linear relation

∇2ϕ ≈ B−2
∗ ϕt t , (102)

where B∗ will be defined in Section 4.2. Now we can take into account the quadratic terms. In this case, eqs (98) and (100) yield

ϕ1t t (1 + 2a1ϕt t ) = −ρ−1
0 ∂

(
P + 2

3
h−1Gη − 4

3
G∇2ϕ

)/
∂x1, (103)

where a1 = 0.5A∗ h−1(ρ0 − 2B−2
∗ G). Integrating eq. (103), we obtain

P − P0 ≈ −ρ0ϕt t (1 + a1ϕt t ) − 2

3
h−1Gη + 4

3
G∇2ϕ. (104)

Then using eqs (33) and (104) we find that

η ≈ A∗[2G∇2ϕ − ρ0ϕt t (1 + a1ϕt t )]. (105)

Now the pressure P − P0 and η may be calculated by taking into account the third-order terms. First we rewrite eq. (98) using eqs (100) and
(105):

ϕ1t t [1 − 2h−1 A∗G∇2ϕ + h−1ρ0 A∗(1 + a1ϕt t ) ϕt t + h−2(A∗)2(2G B−2
∗ − ρ0) ϕ2

t t ] − X∗ = −ρ−1
0 ∂

(
P + 2

3
h−1Gη − 4

3
G∇2ϕ

)/
∂x1. (106)

Integrating this equation we use the following relation:

∇2ϕ ≈ B−2
∗ (ϕt t − β∗ B−4

∗ ϕ2
t t ), (107)

where β∗ will be determined in Section 4.2. As a result, one can find that

ϕ1t t (1 + 2a1ϕt t + 3a2ϕ
2
t t ) − X∗ = −ρ−1

0 ∂

(
P + 2

3
h−1Gη − 4

3
G∇2ϕ

)/
∂x1. (108)

Integration of eq. (108) yields

P − P0 = −ρ0ϕt t (1 + a1ϕt t + a2ϕ
2
t t ) − 2

3
h−1Gη + 4

3
G∇2ϕ + ρ0

∫
X∗ dx1, (109)

where a2 = A∗[2h−1β∗ B−6
∗ G − A∗h−2(1.5ρ0 − 2B−2

∗ G)(2B−2
∗ G − ρ0)]/3. The final expression for η is determined from eqs (33) and (109),

η = A∗
[

2G∇2ϕ − ρ0ϕt t (1 + a1ϕt t + a2ϕ
2
t t ) + ρ0

∫
X∗ dx1 − 1

3
h A∗(B2

∗ρ0 − G)(2G − ρ0 B2
∗ )∇4ϕ − ρ0g(h − h0)

]
. (110)

Now one can find P − P0 from eqs (109) and (100) as a function of ϕ:

P − P0 = ρ0

(
2

3
h−1G A∗ − 1

)(
ϕt t + a1ϕ

2
t t + a2ϕ

3
t t −

∫
X∗ dx1

)
+ 4

3
(1 − h−1G A∗)G∇2ϕ

+ 2

9
G(A∗)2(B2

∗ρ0 − G)(2G − ρ0 B2
∗ )∇4ϕ + 2

3
gρ0h−1G A∗(h − h0). (111)

4.2 Governing equation

The equation of state (23) and continuity eq. (91) may be reduced to the following form:

η + (η + h)∇2ϕ ≈ −hb(P − P0) + hφ0 P−2
0 (P − P0)2 − hφ0 P−3

0 (P − P0)3. (112)

Let us substitute in the last equation expressions (110) and (111). Then, after some algebra, one can find the following perturbed wave equation:

ϕt t − a2
∗∇2ϕ = µ∗∇2ϕt + k∗∇4ϕ + I∗ − g∗(h − h0) + β∗(∇2ϕ)2 + β∗

1 (∇2ϕ)3, (113)

where

a2
∗ = Z−1[h + 2E1G∗ + 4bh(1 − h−1 E1G∗)G∗/3], (114)

β∗ = −Z−1

[
bChρ0a1 B4

∗ + hC1φ0 P−2
0 B2

∗

(
ρ0C B2

∗ − 8

3
G∗C∗

)
+ ρ0a1 E1 B4

∗ − 2E1G∗ + ρ0 E1 B2
∗

]
, (115)

β∗
1 = −Z−1

{
hφ0 P−3

0

(
Cρ0 B2

∗ − 4

3
C∗G∗

)3

+ hφ0ρ0C P−2
0

[
2ρ0β

∗C B2
∗ − 8

3
β∗C∗G∗ + 2a1a4

∗

(
ρ0C B2

∗ − 4

3
C∗G∗

)]

+ Cbhρ0(2β∗a1 B2
∗ + a2 B6

∗ ) + ρ0 E1 B2
∗ (2β∗a1 + a2 B4

∗ ) + ρ0 E1(β∗ + a1 B4
∗ )

}
, (116)
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µ∗ = Z−1η∗(1 − ανφ0)E1

{
2 + ρ0 B2

∗

[
2

3
b
(
1 − 2h−1 E1G∗

) + 2h−1 E1

]
− 4h−1 E1G∗+ 4bh(E−1

1 − h−1G∗) − 4

3
bG∗

(
1 − 2h−1 E1G∗

)}
,

(117)

k∗ = 1

3
hρ0 B2

∗ Z−1 E2
1

(
2

3
bG∗ − 1

)
(2G∗ B−2

∗ − ρ0)(B2
∗ − ρ−1

0 G∗), (118)

I∗ = ρ0 Z−1(1 + bhC)
∫

X∗ dx1, (119)

g∗ = gρ0 E1 Z−1

(
1 − 2

3
bG∗

)
. (120)

Here we used the following notation:

Z = hbρ0 + ρ0 E1 − 2

3
bρ0 E1G∗, (121)

E1 = (gρ0 + 2h−1G∗)−1, C∗ = 1 − h−1 E1G∗, (122)

C = 1 − 2h−1 E1G∗/3, a1 = 0.5h−1 E1(ρ0 − 2G∗ B−2
∗ ), (123)

a2 = 2β∗h−1 E1G∗ B−6
∗ − h−2 E2

1 (2G∗ B−2
∗ − ρ0)(1.5ρ0 − 2G∗ B−2

∗ )/3. (124)

It is assumed that B∗ = a∗(h0, t).
Eq. (113) may be approximately rewritten for η. Considering eqs (100) and (102)

∇2ϕ ≈ b0η, (125)

where b0 = E−1
1 (2G∗ − ρ0 B2

∗)−1, we find from eq. (113) that

ηt t − a2
∗∇2η = µ∗∇2ηt + k∗∇4η + b−1

0 ∇2 I∗ − g∗b−1
0 ∇2h + b0β

∗∇2η2 + b2
0β

∗
1 ∇2η3. (126)

Eqs (113) and (126) generalize the 1-D model suggested in Section 3. These equations describe approximately the propagation of the waves.
In particular, we used approximate conditions (95) or (96). At the same time, the equations describe a wide spectrum of plane waves in different
media and elongated bodies. Indeed, we took into account the strength, compressibility and viscous properties of media. In particular, in eqs
(113) and (126) the dispersive terms depend on the effective shear modulus G∗. In addition, these equations take into account both underlying
and overlying topographies as well as the porosity of the surface material. The variation of porosity is determined by the expression (22):
φ = P0φ0 P−1.

4.2.1 Limiting expressions for a∗ and the thickness effect on a∗

The expression for the local wave speed a∗, eq. (114), is complicated. However, there are cases when it can be simplified.

(1) Let h → ∞ (see also Section 3.1), then we have the speed of elastic waves in the infinite space:

a2
∗ = [ρ0λ(1 − φ0) + ρ0φ0 P−1

0 ]−1 + 4

3
νρ−1

0 (1 − αsφ0). (127)

(2) Let g = 0, then

a2
∗ = 4νρ−1

0

{
3 + ν

[
λ(1 − φ0) + φ0 P−1

0

]}{
3 + 4ν

[
λ(1 − φ0) + φ0 P−1

0

]}−1
. (128)

If φ0 = 0, expression (128) determines the velocity of longitudinal waves in plates (Kolsky 1953). For compressible liquified materials ν ≈ 0
and a2

∗ = 4νρ−1
0 .

(3) Let us consider an incompressible material (λ = 0). In this case, if φ0 P−1
0 → 0,

a2
∗ = gh + 4νρ−1

0 (1 − αsφ0). (129)

If φ0 → 0, then from eq. (129) we have a2
∗ = gh + 4νρ−1

0 .
(4) If αsφ0 → 1 in eq. (129), then we have liquified media and a2

∗ = gh.

From eqs (114) and (127)–(129) it follows that the velocity a∗ depends on the thickness of the layer. This dependence is interesting for
rock-like geomaterials. However, it is more important for weakly cohesive soils, liquefiable soils and soft materials. For example, for very soft
muddy sediments and gassy and liquified soils, the shear velocity is of the order of 10 m s−1. In these cases we can have in eq. (129) that gh >

4νρ−1
0 (1 − αsφ0). Mexico City clay has a shear velocity close to 80 m s−1 (Singh et al. 1988). During the 1985 September 19 Michoacan

earthquake, the greatest damage occurred there where a layer thickness changes from 38 to 50 m and (gh)1/2 ≈ 20 m s−1. Thus the effect of
thickness may be important for surface seismic waves. On the other hand, from eqs (114) and (127)–(129) it follows that the effect of porosity
and the vertical acceleration (g = g0 + gd(t)) may be also important.

C© 2003 RAS, GJI, 154, 300–354

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/154/2/300/608218 by guest on 06 February 2022



Non-linear transresonant wave phenomena 315

4.2.2 Limiting cases of eqs (113) and (126)

It is assumed for liquified layers that αsφ0 ≈ 1, λ = 0 and η∗ = 0. The coefficients containing φ0 are often very small. In this case, eq. (113)
yields

ϕt t − gh∇2ϕ = 1

3
gh3∇4ϕ − g(h − h0) − 1.5gh(∇2ϕ)2 + 2gh(∇2ϕ)3. (130)

For simplicity we eliminated I ∗ from eq. (130). We can expect that eq. (130) describes shallow waves in water. Indeed, since eq. (125) holds,
from eq. (130) we have

ηt t − gh0∇2η = 1

3
h2

0∇2ηt t + 1.5g∇2η2 + 2gh−1
0 ∇2η3. (131)

If the cubic term is negligible, eq. (131) coincides with eq. (4.3) from Beji & Nadaoka (1997) for 2-D water waves.
For the 1-D case, eq. (130) yields

u1,t t − gh0u1,11 = 1

3
gh3

0u1,1111 − 3gh0u1,1u1,11 + 6gh0u1,11u2
1,1, (132)

since u1 = ∂ϕ/∂x1 (90). Eq. (132) may be considered as a modified form of the Airy equation (see also eq. 46). From another perspective,
this equation may be regarded as the Boussinesq-type equation written using the Lagrangian coordinate system (Galiev 2000a).

4.3 General wave solution for plane waves

Eq. (113) is the 2-D analogue of the 1-D equation (45) that was studied using the perturbation method. Therefore, the solution of eq. (113)
will be constructed by the method developed in Section 3.3. Let us introduce new variables:

r = k12a(t) − k1x1 − k2x2, s = k12a(t) + k1x1 + k2x2. (133)

Here k1, k2 and k12 are arbitrary constants. It follows that

∂2ϕ/∂x2
i = k2

i (ϕrr − 2ϕrs + ϕss), ϕt t = k2
12a2

t (ϕrr + 2ϕrs + ϕss) + k12att (ϕr + ϕs), (134)

∇2ϕt = k12at

(
k2

1 + k2
2

)
(ϕrrr − ϕrrs − ϕrss + ϕsss), (135)

∇4ϕ = (
k2

1 + k2
2

)2
(ϕrrrr − 4ϕrrrs + 6ϕrrss − 4ϕrsss + ϕssss). (136)

We consider plane waves for which k1 ≈ k2 or k1  k2 (see conditions 95 and 96).
Eq. (113) may be rewritten as

[k2
12a2

t − a2
∗
(
k2

1 + k2
2

)
](ϕrr + ϕss) + k12att (ϕr + ϕs) + 2[k2

12a2
t + a2

∗
(
k2

1 + k2
2

)
]ϕrs

= −g∗(h − h0) + I∗ + β∗(k2
1 + k2

2

)2
(ϕrr − 2ϕrs + ϕss)2 + β∗

1

(
k2

1 + k2
2

)3
(ϕrr − 2ϕrs + ϕss)3

+ µ∗k12at

(
k2

1 + k2
2

)
(ϕrrr − ϕrrs − ϕrss + ϕsss) + k∗(k2

1 + k2
2

)2
(ϕrrrr − 4ϕrrrs + 6ϕrsrs − 4ϕrsss + ϕssss).

(137)

Let ϕrs = 0 and a2
∗ > k2

12a2
t (k2

1 + k2
2)−1. Then eq. (137) yields the following non-linear diffusion-type equation:

att a−1
t ϕt − [a2

∗ − k2
12a2

t

(
k2

1 + k2
2

)−1
]∇2ϕ = µ∗∇2ϕt + k∗∇4ϕ + I∗ − g∗(h − h0) + β∗(∇2ϕ)2 + β∗

1 (∇2ϕ)3. (138)

We assume site resonant conditions

|Re| � 1, |att | � 1, ϕrs ≈ 0, (139)

where a transresonant parameter Re = k2
12a2

t − a2
∗(k2

1 + k2
2) depends weakly on x1, x2 and t: (Re)1 ≈ 0, (Re)2 ≈ 0 and (Re)t ≈ 0. We have the

exact resonance if Re = 0. Conditions (139) and the left-hand side of eq. (137) yield

ϕt t − a2
∗∇2ϕ = Re(ϕrr + ϕss) + k12att (ϕr + ϕs) + 2(2a2

t k2
t − Re)ϕrs ≈ 0. (140)

In Section 3.3 relations similar to eq. (137) and conditions (139) were used. We take this circumstance into account here. The solution of
eq. (137) is sought with the aid of the perturbation method:

ϕ = ϕ(1) + ϕ(2) + ϕ(3) + · · · , (141)

where ϕ(1)  ϕ(2)  ϕ(3). We assume that at the resonance the amplitude of the waves becomes significantly larger than the amplitude of the
forcing oscillations. Substituting the sum (141) into eqs (137), (140) and equating terms of the same order, we obtain the following linear
differential equations:

ϕ(1)
rs = 0, (142)

4a2
∗
(
k2

1 + k2
2

)
ϕ(2)

rs = −Re[ϕ(1)
rr + 2ϕ(1)

rs + ϕ(1)
ss ] − k12att [ϕ(1)

r + ϕ(1)
s ] + β∗(k2

1 + k2
2

)2[
ϕ(1)

rr − 2ϕ(1)
rs + ϕ(1)

ss

]2
, (143)
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4a2
∗
(
k2

1 + k2
2

)
ϕ(3)

rs = −Re

[
ϕ(2)

rr + 2ϕ(2)
rs + ϕ(2)

ss

] − k12att

[
ϕ(2)

r + ϕ(2)
s

]

− g∗(h − h0) + I∗ + 2β∗(k2
1 + k2

2

)2[
ϕ(1)

rr − 2ϕ(1)
rs + ϕ(1)

ss

][
ϕ(2)

rr − 2ϕ(2)
rs + ϕ(2)

ss

]2

+ β∗
1

(
k2

1 + k2
2

)3[
ϕ(1)

rr + ϕ(1)
ss

]3 + µ∗k12at

(
k2

1 + k2
2

)[
ϕ(1)

rrr − ϕ(1)
rrs − ϕ(1)

rss + ϕ(1)
sss

]

+ k∗(k2
1 + k2

2

)2[
ϕ(1)

rrrr − 4ϕ(1)
rrrs + 6ϕ(1)

rrss − 4ϕ(1)
rsss + ϕ(1)

ssss

]
.

(144)

Let the approximate solution of eq. (142) be

ϕ(1) = J (r ) + j(s). (145)

Solution (145) resembles the d’Alembert-type solution, but here the velocity of waves J (k12a − k1x1 − k2x2) and j(k12a + k1x1 + k2x2) can be
variable. Then, following Section 3.3, we assume that att[ϕ(1)

r +ϕ(1)
s ] ≈ 0, and Re, β

∗a−2
∗

(
k2

1 +k2
2

)
, β∗

1 a−2
∗

(
k2

1 +k2
2

)2
, µ∗k12at a−2

∗ , k∗a−2
∗

(
k2

1 +k2
2

)
are approximately constant.

Now we correct solution (145) taking into account ϕ(2) and ϕ(3). Substituting eq. (145) into eq. (143), after integrating, we find

ϕ(2) = J2(r ) + j2(s) − 0.25a−2
∗

(
k2

1 + k2
2

)−1
[Re(s J ′ + r j ′) + k12att (s J + r j)]

+ 0.25β∗a−2
∗

(
k2

1 + k2
2

)[
s

∫
(J ′′)2 dr + 2J ′ j ′ + r

∫
( j ′′)2 ds

]
+ d(k1x1 + k2x2) + d1.

(146)

Expressions (145) and (146) are substituted in eq. (144). For simplicity it is assumed that Re ≈ 0. Then, following Section 3.3, we find ϕ(3).
Solution (141) is written using the expressions for ϕ(i)(i = 1, 2, 3):

ϕ = J + j + J2(r ) + j2(s) + d(k1x1 + k2x2) + d1 + J3(r ) + j3(s)−0.25a−2
∗

(
k2

1 + k2
2

)−1
[s(Re J ′ + k12att J ) + r (Re j ′ + k12att j)]

+ 1

4
β∗a−2

∗
(
k2

1 + k2
2

)[
s

∫
(J ′′)2 dr + 2J ′ j ′ + r

∫
( j ′′)2ds

]
+ 1

24
(β∗)2a−4

∗
(
k2

1 + k2
2

)2
[s2(J ′′)3 − r 2( j ′′)3]

+ 1

4
a−2

∗
(
k2

1 + k2
2

)2[
β∗

1 − (β∗)2a−2
∗

][
s

∫
(J ′′)3 dr + r

∫
( j ′′)3ds

]

+ 1

4
µ∗a−1

∗
(
k2

1 + k2
2

)1/2
(s J ′′ + r j ′′) + 1

4
k∗a−2

∗
(
k2

1 + k2
2

)
(s J ′′′ + r j ′′′) − I ∗, (147)

where I ∗ = 0.25k−2
12

∫∫
a−2

∗ [g∗(h − h0) − I∗] drds, and neglecting the third-order terms in eq. (147), which took into account interaction of
the waves J , J 2(r ) and j , j2(s). The solution (147) is the approximate general solution of the equations of deformable media for certain plane
waves (see conditions 95 and 96).

4.3.1 Bounded solution

Expression (147) contains the secular terms if a = a0t . Following Section 3.3.1 we can eliminate these terms (Galiev 1999a). In particular,
the expression (146) is rewritten so that

ϕ(2) = �2(r ) + ψ2( j) − 0.25a−2
∗

(
k2

1 + k2
2

)−1
(s − r )[Re(J ′ − j ′) + k12att (J − j)]

+0.25β∗a−2
∗

(
k2

1 + k2
2

)[
(s − r )

∫
(J ′′)2 dr + 2J ′ j ′ + (r − s)

∫
( j ′′)2ds

]
+ d(k1x1 + k2x2) + d1. (148)

Expressions (145) and (148) are substituted in eq. (144). Then, after integrating eq. (144), we obtain

ϕ(3) = J3(r ) + j3( j) + 1

12
(β∗)2a−4

∗
(
k2

1 + k2
2

)2
∫ ∫

(s − r )
{
[(J ′′)3]′ − [( j ′′)3]′

}
drds

+ 0.25a−2
∗

(
k2

1 + k2
2

)2[
β∗

1 − (β∗)2a−2
∗

][
s

∫
(J ′′)3 dr + r

∫
( j ′′)3 dr

]

+ 0.25µ∗a−1
∗

(
k2

1 + k2
2

)1/2
(s J ′′ + r j ′′) + 0.25k∗a−2

∗
(
k2

1 + k2
2

)
(s J ′′′ + r j ′′′) − I ∗, (149)

neglecting the third-order terms in eq. (149), which took into account interaction of the waves J , �2(r ) and j , ψ2(s). The double integral in
eq. (149) is calculated according to eq. (70). Then, using J 3(r ) and j3( j), we eliminate the singular terms. In particular, it was assumed that

J3(r ) = 1

24
(β∗)2a−4

∗
(
k2

1 + k2
2

)2
r 2(J ′′)3 − 0.25a−2

∗
(
k2

1 + k2
2

)2
r

[
β∗

1 − 2

3
(β∗)2a−2

∗

] ∫
(J ′′)3 dr

−0.25µ∗a−1
∗

(
k2

1 + k2
2

)1/2
r J ′′ − 0.25ka−2

∗
(
k2

1 + k2
2

)
r J ′′′ + �3(r ). (150)
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The expression for j3(s) is similar to eq. (150). We assume in eq. (149) that the integral I∗ does not generate the singular terms. As a result,
the secular terms in eq. (149) are eliminated. The final bounded solution is

ϕ = J + j + �2(r ) + ψ2(s) + �3(r ) + ψ3(s) + d(k1x1 + k2x2) + d1 + I ∗ + 0.5β∗a−2
∗

(
k2

1 + k2
2

)
J ′ j ′

−0.5a−2
∗

(
k2

1 + k2
2

)−1
(k1x1 + k2x2)[Re(J ′ − j ′) + k12att (J − j)]

+ 1

6
(β∗)2a−4

∗
(
k2

1 + k2
2

)2
(k1x1 + k2x2)2[(J ′′)3 + ( j ′′)3] + 0.5a−2

∗
(
k2

1 + k2
2

)
(k1x1 + k2x2)

{
β∗

[∫
(J ′′)2 dr −

∫
( j ′′)2ds

]

+ µa∗
(
k2

1 + k2
2

)−0.5
(J ′′ − j ′′) + k(J ′′′ − j ′′′) + (

k2
1 + k2

2

)[
β∗

1 − 2

3
(β∗)2a−2

∗

][∫
(J ′′)3 dr −

∫
( j ′′)3 ds

]}
. (151)

The expression (151) may be considered as a particular case of eq. (147).

4.4 2-D strongly non-linear waves and the transresonant evolution of eq. (113)

Approximate solutions of eq. (113) were constructed. This equation also has other solutions. Some new resonant solutions may be found
following Sections 3.4 and 3.5 without using the perturbation method.

There are solutions of the equation that can be obtained by requiring that

I∗ = f∗(r ), ϕ = F(r ), (152)

where

r = a0k12t − k1x1 − k2x2 (153)

and f ∗ = f ∗(r ) is a travelling seismic wave. In this case, eq. (113) reduces to an ordinary differential equation in r, so[
k2

12a2
0 − a2

∗
(
k2

1 + k2
2

)]
F ′′ = f∗ − g∗(h − h0) + µ∗at

(
k2

1 + k2
2

)
F ′′′ + k∗(k2

1 + k2
2

)2
F ′′′′ + β∗[(k2

1 + k2
2

)
F ′′]2 + β∗

1

[(
k2

1 + k2
2

)
F ′′]3

. (154)

The solution of this equation for a linear, inviscid and non-dispersive medium is

F ′′ = [ f∗ − g∗(h − h0)]
[
k2

12a2
0 − a2

∗
(
k2

1 + k2
2

)]−1
. (155)

Taking into account eqs (125) and (152) we find the vertical displacement

η = b−1
0 [ f∗ − g∗(h − h0)]

[
k2

12a2
0

(
k2

1 + k2
2

)−1 − a2
∗
]−1

. (156)

The 1-D case of solution (156) was considered by Lamb (1932, p. 264). Solution (156) has a singularity when

k2
12a2

0 = a2
∗
(
k2

1 + k2
2

)
. (157)

Thus, solution (156) is not valid and we must take into account non-linear effects when the resonant condition (157) occurs. Let us take into
account the quadratic term in eq. (154). In this case, eq. (154) has two resonant solutions:

F ′′ = ±(β∗)−0.5
(
k2

1 + k2
2

)−1
[g∗(h − h0) − f∗]1/2. (158)

Using these solutions, we can construct the following discontinuous solution:

η = b−1
0 (β∗)−0.5[g∗(h − h0) − f∗]1/2[H (a0k12t − k1x1 − k2x2) − H (−a0k12t + k1x1 + k2x2)]. (159)

Thus, the effects of non-linearity and topography may be very strong. Indeed, solutions (156) and (159) are quite different. The full
equation (154) may be considered in the transresonant band following Galiev (1999a). He found that shock-, soliton- and oscillon-like resonant
waves may be excited in non-linear, dissipative–dispersive systems (see also Section 3.5).

Galiev (1999a) also modelled transresonant oscillations of Tarzana Hill. The results are presented in Fig. 1. There is a large difference
between the linear and non-linear models. According to the linear model there is very localized amplification of seismic waves near resonance.
At the same time, the non-linear theory predicts strong amplification in the wide transresonant band. Fig. 1 qualitatively explains the observed
amplification of seismic waves by non-linear and resonant effects. It would seem that, since peaks of the linear resonances are very narrow, the
complex 2-D and 3-D numerical methods (Rial et al. 1992; Bouchon & Barker 1996; Rial 1996; Yeh et al. 1998) lose these resonances and
predict a much lower degree of amplification than was observed. Of course, our analysis is purely qualitative. There are other explanations
for the discrepancy between the numerical results and the field observations (Reiter 1990, p. 162).

Topographic and resonant effects can be very complex and highly variable. In particular, the resonant condition (157) may be a function
of the relief, since a∗ = a∗(x1, x2, t). Therefore, the non-linear effect may be very localized and the linear model may be valid everywhere
except for specific valleys and mountains.

4.4.1 Condition of common resonance

Thus, the seismic waves depend on the surface relief. Therefore, the condition of resonance should depend on the relief. Eq. (113), which was
written for ϕ = ϕ [a(t) ± f (k1x1 ± k2x2)], takes into account this dependence, since the coefficients are functions of coordinates (relief). Let
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318 Sh. U. Galiev

Figure 1. Influence of frequency on linear and non-linear hysteretic responses of an undamped model of Tarzana Hill (- → — → — the frequency increases,
→ the frequency increases further and ← the frequency decreases).

us rewrite eq. (113) using the following variables, which can explicitly take into account the relief effect

r = a(t)k12 − k1(x1) − k2(x2) − K12(x1, x2), s = a(t)k12 + k1(x1) + k2(x2) + K12(x1, x2), (160)

where k1(x1), k2(x2) and K 12(x1, x2) are functions, which are determined by the geometry of the relief. As a result, we have that

k12att (ϕr + ϕs) + a2
∗(k1,11 + K12,11 + k2,22 + K12,22)(ϕr − ϕs) + {k2

12a2
t − a2

∗[(k1,1 + K12,1)2 + (k2,2 + K12,2)2]}(ϕrr + ϕss)

+ 2{k2
12a2

t + a2
∗[(k1,1 + K12,1)2 + (k2,2 + K12,2)2]}ϕrs = −g∗(h − h0) + β∗(∇2ϕ)2 + β∗

1 (∇2ϕ)3 + µ∗∇2ϕt + k∗∇4ϕ + I∗. (161)

If the earthquake-induced waves are not large (−g∗(h − h0) + I ∗ ≈ 0) and the topographic-resonant effect is weak, then the linearized
equation (161) may be used. However, in the remaining cases, we should use the full equation (161). Let us consider critical (resonant) points
for which ϕt t ≈ a2

∗∇2ϕ and eq. (161) yields

k12att (ϕr + ϕs) + a2
∗(k1,11 + K12,11 + k2,22 + K12,22)(ϕr − ϕs) + {k2

12a2
t − a2

∗[(k1,1 + K12,1)2 + (k2,2 + K12,2)2]}(ϕrr + ϕss) = 0 , (162)

µ∗�t + k∗∇2� = g∗(h − h0) − β∗�2 − β∗
1 �3 − I∗. (163)

We assumed that ϕrs ≈ 0 and � = ∇2ϕ (r , s), where ∇2ϕ (r , s) = ∂2ϕ (r , s)/∂x2
1 + ∂2ϕ (r , s)/∂x2

2. Thus, the perturbed wave equation (161)
is transformed into the non-linear diffusion eq. (163) if the condition of common resonance (162) occurs (Galiev & Galiev 2001). If near the
critical points ϕr ≈ ϕs , then eq. (162) yields the diffusion equation

k12att a
−1
t ϕt − {a2

∗ − k2
12a2

t [(k1,1 + K12,1)2 + (k2,2 + K12,2)2]−1}∇2ϕ = 0. (164)

If the effects of dissipation and dispersion are small, and I ∗ = 0 in eq. (163), then we have the algebraic equation for ∇2ϕ : g∗(h − h0) = β∗

(∇2ϕ)2 + β∗
1 (∇2ϕ)3.

We treat three cases of a simplification of the resonant condition (162).

(1) Let

ϕr ≈ ϕs ≈ 0, (165)

then we have resonance if

a2
t = k−2

12 a2
∗[(k1,1 + K12,1)2 + (k2,2 + K12,2)2]. (166)

(2) Let

att ≈ 0, k1,11 ≈ 0, k2,22 ≈ 0, K12,11 ≈ 0, K12,22 ≈ 0, (167)

then we again have the resonant condition (166).
(3) In the third case, if eq. (165) holds, we have a set of resonant conditions as follows:

at ≈ k1,1 ≈ k2,2 ≈ K12,1 ≈ K12,2 ≈ 0. (168)

Thus, at the resonance the governing equation and motion of seismic waves can change (see also Sections 3.4 and 8.2). Near resonance the
complex interaction of non-linear, dissipative, and dispersive effects may be (Prigogine 1997).
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5 T O P O G R A P H I C - R E S O N A N T A M P L I F I C AT I O N O F W E A K LY N O N L I N E A R
S E I S M I C WAV E S

The theory has been developed for weakly cohesive materials overlying a rigid bedrock. This theory allows us to estimate the effects of site
conditions. As examples of the application of the theory, we consider transresonant non-linear waves in a sediment-filled shallow valley and
a small elongated island. The perturbation method developed in Section 3 is used.

5.1 The 1-D resonance of the sediment-filled valley

We can assume approximately that the horizontal displacement of the valley having steep edge slopes is fixed by the rock at the edges. In this
case

u1 = 0 (x1 = 0 and L), (169)

where L is the length of the valley. This boundary problem is similar to those considered by Galiev (1997b, 1998, 1999, 2000a) and Galiev &
Galiev (1998). It was found that unfamiliar surface waves may be generated in elongated resonators. Therefore, we can expect that anomalous
waves may be excited on the surface of the shallow valley.

We assumed that g = g0 + gd . Let gd = δcos ωt . Here gd is the earthquake-induced vertical component of the bedrock acceleration.
This acceleration, the slope of the valley bottom and the surface relief excite horizontal waves. For these waves, we assume in eq. (47) that
a(t) = a0t .

Perturbations of the sediment thickness (surface relief) may be described by the standard Fourier expansion. Let us assume for the
gradient of the thickness that

h1 = ∂h/∂x1 =
∑

i

Hi cos iπx1/L (i = 0, 1, 2, 3, . . . , I ). (170)

Following Galiev (1999, 2000a) and Galiev & Galiev (1998) we study first linear and then non-linear oscillations. We do not take into account
the influence of relief on the velocity a0.

5.1.1 Linear oscillations

Considering the linear waves we shall use the inviscid model of the material. Using eq. (78), gd = δcos ωt and a(t) = a0t ,

u1 = J + j + δ cos ωt
∑

i

Hi

(
ω2 − i2π 2a2

0 L−2
)−1

cos iπx1/L − g0

∑
i

Hi L2i−2π−2a−2
0 cos iπx1/L + 0.5x1k(J ′′′ − j ′′′) . (171)

The boundary condition (169) at x1 = 0 is satisfied if

J = F(r ) − ϕ∗ cos ωr + d∗, j = −F(s) − ϕ∗ cos ωs + d∗, (172)

where

ϕ∗ = 0.5δ
∑

i

Hi [ω
2 − (π ia0/L)2]−1, d∗ = 0.5g0 L2π−2a−2

0

∑
i

Hi i
−2. (173)

Now, using the boundary condition at x1 = L

F(r ) = δ sin ωa−1
0 r

2 sin ωLa−1
0 + kLω3a−3

0 cos ωLa−1
0

∑
i

Hi [(−1)i − cos ωLa−1
0 ]

[ω2 − (π ia0/L)2]−1
− 0.5d2 L−1r. (174)

Here d2 = g0 L2π−2a−2
0

∑
i [(−1)i − 1]Hi i−2. Thus, travelling horizontal waves are excited by the vertical excitation and the gradient (170).

The resonant frequencies of the layer are approximately �lN = �Nl + ω∗, where �Nl = Nπa0/L and ω∗ = ka0 L−3π3 N 3( − 1)N+1/2 (N =
1, 2, 3, . . .). If the dispersive coefficient k is very small, we obtain �lN = �Nl. Thus, the dispersion shifts the resonant frequencies.

According to eqs (171) and (173) at resonance, if i = N , the topographic term can increase considerably. Therefore, we should take into
account that the double integral in eq. (78) must be recalculated if ω2 = (π ia0/L)2 and i = N . As a result, instead of eq. (171), we have

u1 = J + j + δ cos ωt
∑

i(i �=N )

Hi (ω
2 − i2π2a2

0 L−2)−1 cos iπx1/L − 1

8
δω−1a−1

0 (s sin ωa−1
0 r + r sin ωa−1

0 s)

−g0

∑
i

Hi L2i−2π−2a−2
0 cos iπx1/L + 0.5x1k(J ′′′ − j ′′′).

(175)

The topographic term may be limited at the resonance and the boundary condition (169) at x1 = 0 is satisfied if J = F(r ) +
1
8 δω−1a−1

0 r sin ωa−1
0 r − ϕ∗ cos ωr + d∗, j = −F(s) + 1

8 δω−1a−1
0 s sin ωa−1

0 s − ϕ∗ cos ωs + d∗. These expressions are similar to eq. (172).
However, here the symbol

∑
i , in the expression for ϕ, eq. (175), must be replaced by

∑
i(i �=N ).

5.1.2 Non-linear analysis

Near the resonant frequencies, linear analysis is not valid. Let us consider resonant oscillations neglecting cubic terms and arbitrary functions
�2, ψ2, �3 and ψ3 in eq. (78). In this case, we assume d1 = 0, att ≈ 0 and

|F(r )|  ϕ∗ cos ωr − d∗, |F(s)|  ϕ∗ cos ωs − d∗. (176)
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320 Sh. U. Galiev

Then, using eqs (78), (172) and (176), we consider boundary condition (169) at x1 = L . The function F(s) is expanded in a Taylor’s series at
x1 = L:

F(s) = F[r + 2Nπa0/ω + 2ω−1 L(ω1 + ω∗)]
= F(r ) + 2ω−1 L(ω1 + ω∗)F ′(r ) + 2ω−2 L2(ω1 + ω∗)2 F ′′(r ) + 4ω−3 L3(ω1 + ω∗)3 F ′′′(r )/3 + · · · ,

where ω = �lN + ω1 and ω1 is a perturbation of a resonant frequency. It was assumed that F(r + 2Nπa0/ω) = F(r ). Then following Galiev
(1999) and Galiev & Galiev (1998), the boundary problem is reduced to the perturbed Burgers–Korteweg–de Vries equation written for the
travelling wave. This equation is

−L[2(ω1 + ω∗)ω−1 + a−2
0 Re]F ′ + L[a−1

0 µ + h−1ρ−1
0 a−1

0 µ f − 2(ω1 + ω∗)2 Lω−2]F ′′

+ L
[
ka−2

0 − 4
3 (ω1 + ω∗)3 L2ω−3

]
F ′′′ − 0.5βLa−2

0 (F ′)2 = l cos ωt − d L ,
(177)

where l = δ
∑

i Hi [ω2 − (π ia0/L)2]−1[cos ωLa−1
0 − (−1)i ]. According to Section 3 (see eq. 45) we approximated the boundary friction as a

function τ 31 = µ f u1,11t . At the exact resonance,
∑

i must be replaced by
∑

i(i �=N ) in the last expression. Far from the resonance, the acoustic
solution follows from eq. (177) (Galiev & Galiev 1998). Let µ∗ = µ + h−1ρ−1

0 µ f − 2a0ω
−2 L(ω1 + ω∗)2, k∗ = ka−2

0 − 4ω−3 L2(ω1 + ω∗)3/3.
Eq. (177) yields

( f − 2R∗π−1√ε)2 − µ∗ωa0β
−1 f ′ − 0.5k∗a0ω

2β−1 f ′′ = ε cos2 τ + 4επ−2 R2
∗. (178)

Here f = a0 F ′(τ ), ε = −4la4
0 (βL)−1, R∗ = −πa0[0.5Re + a2

0 (ω1 + ω∗)ω−1]/βε1/2 and d = l/L .
We introduced a modified time variable τ = ωt/2 and f ′ = ∂ F ′/∂τ , where F ′ = ∂ F/∂r . R∗ is a transresonant parameter. The resonant

band is between R∗ = 1 and −1 (Chester 1964; Galiev et al. 1970; Galiev 1972a, 1988). Linear terms in eq. (178) depend on the frequency of
excitation. For example, if µ = 2a0ω

−2 L(ω∗ + ω1)2 − h−1ρ−1
0 µ f , the viscous term disappears. Then eq. (178) transforms into the perturbed

Korteweg–de Vries-type equation written for the travelling wave, and cnoidal waves and solitary waves may be excited. If

ka−2
0 = 4ω−3 L2(ω∗ + ω1)3/3,

then eq. (178) transforms into the perturbed Burgers-type equation written for the travelling wave and describes continuous shock-like waves.
On the other hand, the dissipative effect increases, respectively, the dispersive effect if h → 0. Therefore, the evolution of the wave structure
and the amplitude may be very complex within the resonant band. Let us write that

f = a0 F ′(τ ) = √
ε[2R∗π−1 + �(τ )] cos τ. (179)

The equation for �(τ ) follows from eq. (178):

µ∗ωa0β
−1�′ + 0.5k∗a0ω

2β−1(�′′ − �) = −√
ε(1 − �2) cos τ. (180)

We assumed that sin τ ≈ 0 (Chester 1964) near the wave front.

5.2 Transresonant evolution of waves. Non-linear, dissipative and dispersive effects

According to eqs (37) and (77) the wave of the vertical displacement η ≈ −h(1 − u1,1)u1,1, where u1,1 = −F ′(r ) − F ′(s) + 3
4 {[F ′(r )]2 +

[F ′(s)]2} + 3
2 x1[F ′(r )F ′′(r ) − F ′(s)F ′′(s)].

5.2.1 Non-linear effects on the transresonant evolution

For a non-dispersive and inviscid medium, and at the exact resonance (R∗ = 0) eq. (178) becomes (a0 F ′)2 = ε cos 2ωt/2. The last equation
has two solutions. Using these solutions, the expression for periodic discontinuous resonant waves may be constructed. In the case where
R∗ �= 0, we have that

η ≈ −ha−1
0 ε1/2

{
2R∗π−1 + H [sin(ξ− − �∗)] cos ξ− + H [sin(ξ+ − �∗)] cos ξ+

}
, (181)

where H is the Heaviside function, which here determines the pair of waves travelling in opposing directions, since ξ± = 1
2 ωt ± 1

2 (ωa−1
0 x1 − π N )

and �∗ = arcsin R∗. N shock-like surface waves are excited according to eq. (181) if ω ≈ Nπa0/L . These waves travel back and forth in
the valley being repeatedly reflected from the edges. The patterns that these shock-like waves yield in the x1–t-plane are presented in Figs 2
and 3. At the same time, eq. (181) describes cnoidal-like waves if R∗ = ±1. These waves transform into shock-like waves when |R∗| < 1
(Chester 1964; Galiev et al. 1970). A finite-amplitude wave excited in a medium becomes stronger when the excitation frequency approaches
the resonance frequency (R∗ → 0).

5.2.2 The effect of frequency on wave structure

We seek a solution of eq. (180) as an asymptotic expansion:

� = �0 + �1 + · · · , (182)

where �0  �1. Here �0 takes into account the non-linear and dispersive (or dissipative) effects, �1 takes into account dissipative (or
dispersive) effects.
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Figure 2. Shock-like resonant seismic wave ε−0.5η travelling to and fro in a valley being repeatedly reflected from the sides (N = 1, the fundamental
resonance).

Figure 3. Interaction of the five shock-like resonant seismic waves ε−0.5η travelling to and fro in the valley. At the fifth resonance (N = 5) the five shock-like
waves are excited.

First, we consider the thin layer (k ≈ 0) and the frequencies when the dissipative (viscous) effect exceeds the dispersive effect [(ω1 + ω∗)3 ≈
3
4 ka−2

0 ω3 L−2 and k∗ ≈ 0]. In this case (Chester 1964), �0 = tanh[2
√

q(sin τ − R∗)] and

a0 F ′(a0t ± x1) ≈ 2ε1/2 R∗π−1 + ε1/2 tanh[2
√

q(sin ξ± − R∗)] cos ξ±.

The period of F ′ (a0t ± x1) is 4π if R∗ �= 0. However, the solution is most conveniently defined as a periodic function with the same period
as the earthquake-induced oscillations, namely 2π/ω in t. Therefore, we assume that

F ′(a0t ± x1) ≈ ε1/2a−1
0 {2R∗π−1 + tanh[2

√
q sin(ξ± − �∗)] cos ξ±}, (183)

where
√

q = −β
√

ε/2ωa0µ∗. According to eq. (183) the transresonant surface waves always have a shock structure in weakly viscous systems.
The discontinuous solutions are the limit of eq. (183) if µ∗ → 0. On the other hand, a finite-amplitude wave excited in a medium becomes
steeper when the excitation frequency approaches the exact resonance (Chester 1964). Using eqs (179)–(183) we find that near the wave front

a0 F ′(a0t ± x1) = 2ε1/2 R∗π−1 + ε1/2 tanh[2
√

q sin(ξ± − �∗)] cos ξ±

+ ε1/2q1{1 − tanh2[2
√

q sin(ξ± − �∗)]}{cos ξ± − 2 ln cosh[2
√

q sin(ξ± − �∗)]} cos ξ±,
(184)

where q1 = k∗βε1/2/2a0µ
2
∗ (Galiev & Galiev 1998). According to eq. (184) a soliton-like wave is generated in the shock structure due

to weak dispersion. The amplitude of the soliton depends on the competition of the dispersive and dissipative effects. If (ω1 + ω∗)2 ≈
1
2 (µ + h−1ρ−1

0 µ f )a−1
0 ω2 L−1 then this amplitude increases.

Let us consider the thick layer and frequencies when µ∗ωa0β
−1 f ′ � 0.5k∗a0ω

2β−1 f ′′ in eq. (178).
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322 Sh. U. Galiev

In this case we have from eqs (182), (180) and (179) the following approximate expression:

a0 F ′(a0t ± x1) = ε1/2{6q0γ
2 sech2[γ sin(ξ± − �∗)] + C1,2} cos2 ξ±

− 2ε1/2µ∗(k∗ω)−1{6q0γ tanh[γ sin(ξ± − �∗)] + C1,2 sin ξ±} cos ξ±, (185)

where q0 = −k∗a0ω
2/2βε1/2, γ 2 = 0.5(1 − C1,2/q0) and C1,2 = 4

3 (q0 ±
√

q2
0 + 3

4 ) (Galiev & Galiev 1998). This solution is valid if the
dispersive effect exceeds the dissipative (viscous) effect. The soliton-like waves can be generated within the transresonant band. According
to eq. (185) within the soliton structure the shock wave may be generated if µ∗ �= 0. Our calculations show that solutions (184) and (186)
qualitatively describe experimental (Chester & Bones 1968; Verhagen & Van Wijngaarden 1995) and numerical (Cox & Mortell 1986; Smith
1998) data.

5.2.3 Competition of viscous and dispersive effects. The transresonant evolution of surface waves

Let us consider the case when dissipative and dispersive effects are approximately equal (µ∗ωa0β
−1 f ′ ≈ 0.5k∗a0ω

2β−1 f ′ ′ in eq. 178). For
this case solutions of eq. (178) were constructed by Galiev (1999a). A few scenarios for the competition of the non-linear, dissipative and
dispersive effects were considered. Here we write solution (53) from Galiev (1999a):

a0 F ′(a0t ± x1) = 2ε1/2 R∗π−1 + A tanh(e sin M−1ξ± − eR∗) cos ξ± − B tanh2(e sin M−1ξ± − eR∗) cos2 ξ±

+ B1 sin2 ωk(ξ± − �∗) cos ξ± H (cos ξ± − R∗),
(186)

where A and B are determined by non-linear algebraic equations (Galiev 1999a) and B1 = [1 − (A − B)2 + q0(A − B)](A − B − 0.5q0)−1,
ω2

k = 0.5[(A − B)q−1
0 − 0.5]. Let us rewrite the solution using eq. (184) so as to determine constants A, B and e. As a result, we have near

the wave front

a0 F ′(a0t ± x1) = 2ε1/2 R∗π−1 + ε1/2 tanh[2
√

q sin(ξ± − �∗)] cos ξ± − 0.5ε1/2{tanh[2
√

q sin(ξ± − �∗)] + 1}
× {q1 tanh2[2

√
q sin(ξ± − �∗)] − B1 sin2 ωk(ξ± − �∗)} cos ξ±.

(187)

We used the property that cos ξ± ≈ 1 (Chester 1964) near the wave front. The period of function (187) is 4π . I emphasize that solutions
(184)–(187) are valid for vertically or horizontally vibrated valleys (Galiev & Galiev 1998).

Let us compare the results of the theory with data from experiments with horizontally excited resonant water waves (Verhagen & Van
Wijngaarden 1965; Chester & Bones 1968) using solution (187). One period of the exciting oscillations will be considered. First we examine
the amplification of the vertical displacement during the reflection of the wave from the boundary (the wall of the resonator). In Fig. 4, results
of calculations according to solution (187) (continuous and dashed curves) are presented. We use the expression (37) for η. The dotted-dashed
curve is calculated according to eq. (183).

The dashed and dotted-dashed curves correspond to the experimental curve (measured at the wall) in Fig. 4 from Verhagen & Van
Wijngaarden (1965). Following their experiments, we assumed ω∗ = 0, L = 60 cm, l = 0.314 cm, h = 9 cm, N = 1 and R∗ = 0. Boundary
friction is simulated by taking h−1ρ−1

0 µ f = 82 cm2 s−1. It is seen that the dispersion (dashed curve) can strongly modify the effects of
non-linearity and viscosity (dotted-dashed curve). The continuous curve corresponds to the third experimental curve in Fig. 10 from Chester
& Bones (1968) (ω∗ = 0, h−1ρ−1

0 µ f = 30 cm2 s−1, L = 60 cm, l = 0.31 cm, h = 5 cm, N = 1 and R∗ = 0). Fig. 4 shows that solution (187)
describes the experimental data.
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Figure 4. Non-linear amplification of non-linear waves at the side and the shock-structure: dashed and solid lines illustrate the dispersion effect (formation
of the soliton-like wave), dot–dash wave illustrates the dissipative effect (formation of the shock-like wave).
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Figure 5 Transresonant transformation of profiles of surface waves and the effect of dispersion (layer thickness) on this transformation calculated for:
(a) h = 1.25 cm and R∗ = −0.56 (dot–dash), −0.07 (dashed) and 0.5 (solid); (b) h = 2.5 cm and R∗ = −0.62 (dot–dash), −0.3 (dashed), 0.23 (solid) and 0.64
(asterisks); (c) h = 5 cm and R∗ = −0.39 (dot–dash), 0 (dashed), 0.53 (solid) and 0.6 (asterisks).
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Figure 6. The transresonant evolution of profiles of surface waves from the dark soliton (R∗ = 0.3) to the bright soliton (R∗ = 0.8) calculated according to
eq. (187) for N = 1, h = 5 cm, L = 60 cm, µ f /hρ0 = 35 cm2 s−1, l = 0.155 cm.
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Figure 7. The transresonant evolution of profiles of surface waves from an oscillating shock-like wave (R∗ = −0.7) to a harmonic wave (R∗ = 0.7). The
evolution was calculated according to eq. (187) for N = 1, h = 20 m, L = 250 m, µ f /hρ0 = 105 cm2 s−1, l = 0.1 cm.

Let us study the transresonant wave evolution using the experimental data of Chester & Bones (1968) and solution (187). The results of these
calculations are presented in Figs 5 and 6. Fig. 5(a) corresponds to Fig. 5 (h = 1.25 cm, l = 0.31 cm), Fig. 5(b) corresponds to Fig. 7 (h =
2.5 cm, l = 0.165 cm), Figs 5(c) and 6 correspond to Fig. 9 (h = 5 cm, l = 0.165 cm) of Chester & Bones (1968), respectively. Figs 5(a) and
(b) demonstrates a variety of oscillating profiles of the shock-like waves. The unloading wave occurs at (Fig. 5a) or in front of (Fig. 5b) the
jump. Figs 5(c) and 6 show the transformation of a two-wave configuration (R∗ = −0.39) into a bright soliton (R∗ = 0.53) which instantly
annihilates if R∗ ≈ 0.77.

It follows from Figs 5 and 6 that increasing the layer thickness amplifies the surface waves. The oscillating shock wave (Figs 5a and b) is
transformed into a two-wave configuration (dark soliton) and then into soliton-like excitation (Figs 5c and 6). There is a strong amplification
of the waves at the wall because of dispersion. This result is quite different from the result predicted by linear acoustics. The analogous
amplification is well known for bubbly liquids (Nigmatulin 1991).

Consideration of Figs 5 and 6 suggests that increasing the thickness also intensifies the transresonant effect. It is important that maximal
oscillations can be generated when R∗ → 1 (see Figs 5c and 6). The dispersion forms oscillating shock-like waves. We also note that soliton-like
unloading waves and oscillating shock waves reminiscent of the waves presented in Figs 5 and 6 have been observed in bubbly liquids and
granular materials (Van der Grinten et al. 1987; Nakoryakov et al. 1989, 1996; Nigmatulin 1991; Britan et al. 1997).

Thus, there is agreement between the theory and the experiments. The agreement is better than might be expected. In fact, eq. (45) and
the solution (77) were obtained only for weakly non-linear waves, and small dispersive and dissipative effects. In particular, the boundary
friction was approximated as τ 31 = µ f u1,11t instead of the integral form considered by Chester & Bones (1968) and Cox & Mortell (1986).
We used the approximate solution (187), which was derived for very small dispersion. However, in experiments, strongly non-linear waves
were excited (their amplitude was sometimes close to h), and the influence of dispersion was not small.

Resonant water waves called seiches have been observed in lakes in various parts of the world. The amplitude of these waves can be
up to 2 m (the lake at Geneva in Switzerland) and more (up to 3 m, Lake Michigan) (Stoker 1957, p. 423). These waves can be excited by
earthquakes. Tides are amplified (up to 15 m) at the top of the Bay of Fundy (Nova Scotia, Canada) due to the resonance.
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Many cities are built on sedimentary basins. When there are sharp changes of mechanical properties between sedimentary material and
the bedrock, seismic waves transmitted into the resonator may be trapped. The frequency of the reverberations of the trapped waves may vary,
for example, because of a slope of the boundaries. As a result, the transresonant process can occur.

Consider a sedimentary basin with L = 250 m, h = 20 m and shear wave speed 250 m s−1. Assume that the frequency of excitation of
the bedrock equals the natural horizontal resonance of the basin, and l = 0.1 cm. The non-linear parameter β corresponds to the fluidized
state of the sediments. Solution (187) was used.

In Fig. 7 the transresonant waves are presented calculated for the viscous parameter h−1ρ−1
0 µ f = 105 cm2 s−1 and various R∗. The

amplitude of the surface waves may be as much as 100 times greater than the amplitude of the bedrock oscillations. We found that the waveform
is varied from an oscillating shock-like wave to a smooth wave within the transresonant band. Dissipation can strongly modify the amplitude
of the excited waves. The amplitude is reduced by about three times when h−1ρ−1

0 µ f = 5 × 105 cm2 s−1.

5.3 Charles Darwin’s seismic evidence and the 1-D resonance of the island

On 1835 February 20 a violent earthquake affected the coastal area (about 1000 km) of Chile parallel to the Andes. This earthquake was
one of the largest for several centuries and was observed by Charles Darwin, who gave an interesting description of the earthquake (Darwin
1839). The coincidence of the earthquake with the eruption of volcanoes in the Andes led Darwin to conclude that the volcanic activity and
earthquakes were related. This description has been quoted in the literature (Yeats et al. 1997). However, we know of no attempt at mathematical
simulation of the reported events except Galiev (1999a, 2000b). Charles Darwin described catastrophic waves and very complex, anomalous
seismic phenomena. In this section we consider earthquake-induced oscillations of the small island of Quiriquina.

Quiriquina is considered as an elongated natural resonator located on the continental shelf. Darwin (1839, p. 370) noted the following
results of the earthquake on this small island ‘. . .The ground was fissured in many parts, in north and south lines; which direction perhaps was
caused by the yielding of the parallel and steep sides of the narrow island. Some of the fissures near the cliffs were a yard wide. . .’. The fissures
were a result of earthquake-induced vibrations. Very long seismic waves shook the shelf and vibrated the base of the island. It is known that
earthquakes can generate large vertical displacements of the coast [the 1835 Chilian earthquake lifted the island of Santa Maria by up to 3 m
(Darwin 1839, p. 375); the Alaska 1899 earthquake lifted the coast of Haenke Island from 5.1 to 5.7 m and the west coast of Disenchantment
Bay up to 14.5 m (Davison 1936, p. 167)]. Because of the slope of the shelf a horizontal component of the disturbing acceleration is generated
in the topography (Galiev & Galiev 1998; Galiev 1999a). As a result, surface waves are excited in the island. We suggest that the frequency
of excitation was close to some natural frequency of the horizontal oscillations of the island and resonant ground waves were induced. These
waves may be reminiscent of vertically excited resonant surface waves in water or granular layers (Galiev 1999a). Since the shelf slope is
perpendicular to the long axis of the island, a strong directional resonance, and surface waves and fissures, oriented approximately parallel to
the long axis of the island, might be excited.

As a result of the shape of the island (width approximately 500 m, length 4000 m; the island has ‘the parallel and steep sides’ Darwin
1839), we can use the 1-D theory of Section 3.

Let us consider boundary conditions for the island. Quiriquina is located near the coast of Chile, where the water depth is less than 50
m. The velocity of water waves for this depth is approximately 20 m s−1 (see the Airy-type equation 46). As a result of the sharp impedance
contrast between the island material and the water, an earthquake-induced wave loses only a small part of its energy because of reflections
from the cliffs. Thus, the reflection from the cliffs is reminiscent of the reflection of waves from free boundaries. In the last case the cliffs are
free from stress (18) and u1,1 = 0 if x1 = 0 or L, where L is the width of the island. Therefore, we assume that the coefficient of the energy
loss b∗ is very small and write the following boundary conditions at the cliffs

u1,1 = b∗u1,t (x1 = 0 and L). (188)

Here b∗ is the second-order value (b∗ � 1).
First, the linear oscillations will be considered. Assume that d = 0 and the relief yields that h1 = ∑

i Hi sin iπx1/L in eq. (78). The
linearized boundary conditions (188) (see also eq. 191) are used. According to Section 5.1 the linearized boundary condition (191) at x1 = 0
implies that

J ′ = F ′(r ) + ϕ∗ cos ωa−1r − d∗, j ′ = F ′(s) − ϕ∗ cos ωa−1s + d∗, (189)

where ϕ∗ = 0.5δπ L−1
∑

i i Hi [ω2 − (π ia0/L)2]−1, d∗ = 0.5g0 Lπ−1a−2
0

∑
i i−1 Hi (see also eq. 175). Function F ′(a0t ± x1) in eq. (189) is

determined from the boundary condition (188) at x1 = L:

F ′(a0t ± x1) = 0.5δπ L−1 sin ωa−1
0 (a0t ± x1)

sin ωLa−1
0

∑
i

i Hi [cos ωLa−1
0 − (−1)i ]

[ω2 − (π ia0/L)2]
−0.5g0π

−1a−2
0 (a0t ± x1)

∑
i

Hi i
−1[1 − (−1)i ], (190)

neglecting dissipative and dispersive effects. From eq. (190) the resonant horizontal natural frequencies of the island are given by �N =
Nπa0/L(N = 1, 2, 3, . . .). At the exact resonance the expression for ϕ∗ in eq. (189) is not valid and the double integral in eq. (178) must be
recalculated. It has been found (see eq. 194) that the topographic effect is limited at the exact resonance.

It follows from consideration of the linear problem that the topographic effect on the island oscillations is complex. This effect is
determined by the shelf slope, the relief of the island and the frequency of excitation.
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5.3.1 Resonant cubic basic equation

Here, we assume that the effects of dissipation and dispersion are negligible. From eqs (78) and (188) neglecting terms of fourth and fifth
order, we have if Re = d = d1 = 0,

j ′ − J ′ − � ′
2 + ψ ′

2 − � ′
3 + ψ ′

3 − 1

4
βa−2

0 [(J ′)2 + ( j ′)2 − 2x1(J ′ J ′′ − j ′ j ′′) − 2J ′ j ′ + J ′′ j + J j ′′]

− 1

4
a−2

0

[∫ ∫
g(hs − hr ) drds

]
1

+ 1

32
β2a−4

0 (J ′′ j2 + j ′′ J 2 − 2J J ′ j ′ − 2 j j ′ J ′)1

− 1

4
(β1a−2

0 − 5β2a−4
0 /8)[ j(J ′)2 + J ( j ′)2]1 + 1

4
(β1a−2

0 − 0.5β2a−4
0 )

[
j ′

∫
(J ′)2 dr+J ′

∫
( j ′)2ds

]
1

+ (β1a−2
0 /6 − β2a−4

0 /16)[(J ′)3 − ( j ′)3] − (β1a−2
0 /2 − 7β2a−4

0 /16)x1[(J ′)2 J ′′ + ( j ′)2 j ′′]

+ 1

8
β2a−4

0 [J j ′ j ′′ − j J ′ J ′′ − 0.5J ′( j ′)2 + 0.5 j ′(J ′)2]

+ 1

8
β2a−4

0 x1[J ( j ′′)2 − 2J ′ j ′ j ′′ + J j ′ j ′′′ − 2 j ′ J ′ J ′′ + j(J ′′)2 + j J ′ J ′′′ + 0.5J ′′( j ′)2 + 0.5 j ′′(J ′)2]

− 1

8
β2a−4

0 x2
1 [J ′′′(J ′)2 − j ′′′( j ′)2 + 2J ′(J ′′)2 − 2 j ′( j ′′)2] − 1

2
βa−2

0 [ψ ′
2 j ′ + � ′

2 J ′ + x1(ψ ′
2 j ′ + � ′

2 J ′)1]

= b∗a0[ j ′ + J ′ + � ′
2 + ψ ′

2 − 1

4
βa−2

0 (2x1 J ′ J ′′ + 2x1 j ′ j ′′ − 2J ′ j ′ + j J ′′ + J j ′′)].
(191)

The boundary condition (191) is satisfied at x1 = 0 if

J ′ = F ′(r ),

� ′
2 = −1

4
βa−2

0 J J ′′ − b∗a0 J ′ + ϕ∗ cos ωa−1r − d∗ + d2r,

� ′
3 = −b∗βa−1

0 [(J ′)2 − J J ′′] − 0.5βa−2
0 J ′� ′

2;

(192)

j ′ = F ′(s), ψ ′
2 = 1

4
βa−2

0 j j ′′ + b∗a0 j ′ − ϕ∗ cos ωa−1s + d∗ + d2s,

ψ ′
3 = b∗βa−1

0 [( j ′)2 − j j ′′] + 0.5βa−2
0 j ′ψ ′

2,

(193)

where d2 is an arbitrary constant. The expression for the topographic terms in eqs (191)–(193) depends on the frequency of excitation ω. At
the exact resonance, if i = N , we have from eq. (191) that

� ′
2 = −1

4
βa−2

0 J J ′′ − b∗a0 J ′ + 1

8
δπ−1a−2

0 L N−1 HN (cos ωa−1
0 r + r Nπ L−1 sin ωa−1

0 r ) + ϕ∗ cos ωa−1
0 r − d∗ + d2r, (194)

where ϕ∗ = 0.5δπ L−1
∑

i(i �=N ) i Hi [ω2 − (π ia0/L)2]−1. The expression for ψ2
′ is similar to the above expression for �2

′.
Now, assume that F(a0t − L + 2Nπa0ω

−1) = F(a0t − L) and consider the boundary condition at x1 = L . First, function F (s) is
expanded in a Taylor’s series at x1 = L:

F(a0t + L) = F(a0t − L) + �F ′(a0t − L) + 0.5�2 F ′′(a0t − L) + · · · , (195)

where � = 2ω−1 Lω1 and ω1 is a perturbation of the resonant frequency. The boundary condition (188) at x1 = L may be reduced, using eqs
(191) and (195), to the following equation:

�F ′′ − (β1a−2
0 − 7β2a−4

0 /8)L(F ′)2 F ′′ + 4b∗βLa−1
0 F ′ F ′′ − b∗a0�F ′ + 1

8
β2 La−4

0 F(F ′ F ′′)′ − βLa−2
0 (� ′

2 F ′)′

= δπ L−1
∑

i

i Hi
cos ωLa−1

0 − (−1)i

ω2 − i2π 2a2
0 L−2

cos ωt + g0π
−1 La−2

0

∑
i

i−1 Hi [(−1)i − 1] − 2L d2.

(196)

Let b∗a0�F ′ ≈ 0, 1
8 β2 La−4

0 F(F ′ F ′′) ≈ 0, βLa−2
0 (� ′

2 F ′)′ ≈ 0 and d2 = 1
2 g0π

−1a−2
0

∑
i i−1 Hi [(−1)i − 1]. Then, after some algebra, eq.

(196) yields

(l∗ F ′)3 + r∗(l∗ F ′)2 + 3Rl∗ F ′/22/3 + sin ωt + C = 0. (197)

Here l∗ = [− 1
3 Ll−1

1 (β1a−2
0 − 7β2a−4

0 /8)]1/3, r∗ = 2b∗βl−1
1 a−1

0 l−2
∗ L , R = 22/3�l−1

1 l−1
∗ /3 [R is a transresonant parameter (Galiev 1999)],

l1 = δπa0ω
−1 L−1

∑
i i Hi

(−1)i −cos ωLa−1
0

ω2−i2π2a2
0 L−2 and C is a constant of integration. If i = N , then

∑
i must be replaced by

∑
i(i �=N ). Eq. (197) may be

transformed to the cubic eq. (199). Let us introduce a new function F ′
∗:

l∗ F ′
∗ = l∗ F ′ + r∗/3. (198)

As a result, eq. (197) yields

(l∗ F ′
∗)3 + (3R/22/3 − r 2

∗/3)l∗ F ′
∗ + 2r 3

∗/27 − r∗ R/22/3 + sin ωt + C = 0. (199)

In Sections 5.3.2 and 5.3.3 special cases of eq. (199) will be considered.
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5.3.2 Resonant solutions and waves

Let us consider the cliffs as free surfaces. In this case b∗ = 0 (r∗ = 0) in eq. (198) and we have F ′
∗ = F ′. Let C = 0. Then eq. (199) yields

(l∗ F ′)3 + (3R/22/3)l∗ F ′ + sin ωt = 0. (200)

It is necessary to distinguish four cases.

(1) Let R = 0, then eq. (200) is satisfied if

l∗ F ′ = (− sin ξ±)1/3. (201)

Here and below ξ± = ωa−1
0 (a0t ± x1).

(2) Let R > 0, then the function F ′ is unique, single-valued and continuous

l∗ F ′ = −2D sinh

[
1

3
arcsin h(|R|−1.5 sin ξ±)

]
, (202)

where D = (sign sin ωt)(|R|2−2/3)1/2.
(3) Let R < 0 and 0.25[R3 + sin 2ωa−1

0 (a0t ± x1)] ≤ 0. In this case there is no continuous single-valued solution and a solution with
discontinuities was constructed (Sibgatullin 1972; Galiev 1999a). However, Nature often manifests multi-valued solutions (for example,
breaking waves and turbulence). Indeed, non-linear systems often exhibit two or more dynamic equilibrium states for the same values of
parameters. Some states may be chaotic, while others are periodic. Here we will construct regular multi-valued solutions with the help of the
following smooth single-valued solutions:

l∗ F ′
i = −2D cos

[
1

3
arccos(|R|−1.5 sin ξ±) + 2iπ/3

]
, (203)

where i = 0, 1, 2.
(4) If R < 0 and 0.25[R3 + sin 2ωa−1

0 (a0t ± x1)] > 0, we have one real and two complex solutions:

l∗ F ′ = −2D cosh

[
1

3
arccos h(|R|−1.5 sin ξ±)

]
, (204)

l∗ F ′
± = D cosh

[
1

3
arccos h(|R|−1.5 sin ξ±)

]
± √−3D sinh

[
1

3
arcsin h(|R|−1.5 sin ξ±)

]
. (205)

Thus, we have obtained a set of solutions (201)–(205), which describe waves on the island surface generated within and near the
transresonant band.

Some results of calculations of dimensionless vertical displacement η/h = −u1,1 and wave patterns in the x1–t plane are given in
Fig. 8. The dimensionless coordinate (x1/L) is used. We assumed that N = 3 (Figs 8a–c), a0 = 249 m s−1 and used solution (203) for i = 2,
R =−0.001 (Fig. 8a) and R =−0.999 999 91 (Fig. 8c). Fig. 8(b) was calculated for i = 2 or 0 in eq. (203) and R =−0.999 9999. One can see the
transformation of the step-like waves (Fig. 8a) into pyramid-like waves (Fig. 8c). Fig. 8(d) is calculated for N = 1 (i = 2 or 0) and R = −0.999
9999. It is interesting that strictly localized jet-like waves can be excited on the island surface in the case R =−0.999 9999 (Figs 8b and d). These
waves are reminiscent of the jet-like waves that were observed in water and granular layers (Longuet-Higgins 1983; Goodridge et al. 1996;
Umbanhowar et al. 1996; Jiang et al. 1998; Zeff et al. 2000; Lohse 2003; James et al. 2003). Indeed, eq. (45) and the solutions (201)–(205)
are valid for these layers. The step-like surface waves (Fig. 8a) were observed by Lioubashevski et al. (1999). The vertically excited pyramid-like
waves
(Fig. 8c) on a liquid surface were observed by Longuet-Higgins (1983). Let C = 1 in eq. (199). Then we have

(l∗ F ′)3 + (3R/22/3)l∗ F ′ + 2 cos2 1

2
(ωt − π/2) = 0. (206)

Solutions for this case may be written according to eqs (201)–(205), where sin ωt must be replaced by 2 cos2 1
2 (ωt − π/2). Taking this

into account we considered the transresonant evolution of solutions of eq. (206) (Fig. 9). Patterns corresponding to R = −0.9 (Fig. 9a) and
R = −1.587 (Fig. 9b) are calculated according to eq. (203), where i = 1. Patterns corresponding to R = −1.5875 (Fig. 9c) are calculated
according to eq. (204). One can see the transformation of the shock-like waves into cnoidal-like waves. The latter were observed recently on
the surface of deep and thin granular layers (Wassgren et al. 1996; Cerda et al. 1997).

5.3.3 Free oscillations

A sole seismic shock can be trapped by the island and free oscillations may be generated (Galiev 1999a). In this case, if C = 0 in eq. (199),
we have (l∗ F ′)2 = −3R/22/3. At resonance, R = 0 and F ′ = 0. If R < 0, then we have l∗ F ′

± = ±(−3R/22/3)1/2. Using this solution we can
construct a step-like periodic function. This function determines the free resonant shock waves reverberating in the island. The stress near the
island surface is proportional to

(−3R/22/3)1/2{H [sin(ωt − ωa−1
0 x1)] − H [sin(ωt + ωa−1

0 x1)]}. (207)
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Figure 8. Resonant wave patterns generated in the x1−t plane by the equation (l∗ F ′)3 + (3R/22/3)l∗ F ′ + sin ωt = 0, eq. (200) and calculated for N = 3
(a)–(c) and N = 1 (d). The evolution of shock-like waves (R = −0.001, case a) into jet- and pyramid–like waves (≈ −0.999 9999, cases b–d).

Thus, 2N shock waves appear travelling back and forth along the width of the island within the resonant band with number N (N = 1,
2, 3, . . .). Expression (207) qualitatively describes the waves presented in Figs 8(a) and 9(a).

The amplitude of the free waves (207) is determined only by the properties of the material and by the frequency of reverberation of the
waves from the cliffs. These shock-like waves are reinforced along lines parallel to the long sides. As a result, on these lines the stress changes
instantly from maximal compression to maximal tension. We suggest that the ground fissures were generated along these lines.

5.4 Scenarios of transresonant evolution and comparisons with experiments

Figs 8 and 9 show anomalous surface wave phenomena that occur near certain critical values of R (R ≈ 0 and −1 (Fig. 8) or R ≈ −0.9
and −0.5π (Fig. 9)). These phenomena are associated with single-valued solutions. However, multi-valued waves may be excited within the
transresonant band.

Figs 10 and 11 show discontinuous curves calculated according to solutions (203) (Figs 10a and 11a) and (204) (Figs 10b and 11b).
These solutions form continuous multi-valued periodic figures in Figs 10(c) and 11(c). According to these figures mushroom-like waves can
form on the surface under intense vertical excitation (Wright et al. 2000; Galiev & Galiev 2001). Thus, near R ≈ −1 there is a tendency for
drops (jets) to form on the surface. It is known that similar mushroom-like waves may be formed in the Earth’s mantle (Davies 1999) and
magma chambers (Couch et al. 2001). On the other hand, the closed loops in Figs 10(c) and 11(c) may be treated as vortices (Galiev & Galiev
2001, see also Sections 5.4.1, 7.1.1 and 7.2). It is possible to construct a few scenarios for the transresonant evolution of the waves with the
help of the figures.

Here we consider some scenarios for the transresonant evolution of waves F ′, which are qualitatively supported by experiments. Four
scenarios, calculated according to solutions (203)–(205), are presented in Fig. 12. Scenarios B, D, E correspond to C = 0 in eq. (199). Scenario
F corresponds to C = 1 in eq. (199). It is seen from Fig. 12(B) that periodic shock- and saw-like waves may be generated on the surface (see
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Non-linear transresonant wave phenomena 329

Figure 9 Resonant wave patterns generated in the x1–t plane by the equation (l∗ F ′)3 + (3R/22/3)l∗ F ′ + 2 cos2 1
2 (ωt − π/2) = 0, eq. (200) and calculated

for N = 3. The evolution of shock-like waves (R = −0.9, case a) into jet-like (R = −1.587, case b) and cnoidal-like (R = −1.5875, case c) waves.

also Figs 8a, c, 10c and 11c). Near the critical value of the resonant excitation, when R ≈ −1, jets are ejected from the surface (see also Figs 8b,
d and 11c). This result is quite different from the predictions of the linear theory (harmonic curves in Figs 10 and 11). According to scenarios
D and E, stripe-like, stable breaking-like and mushroom-like travelling waves may be excited. Indeed, stable breaking stripe-like waves were
observed recently on liquid (Kataoka & Troian 1999). The steepening of the breaking waves, when R reduces, is displayed in Fig. 12(D).
These anomalous travelling waves were observed (Fineberg 1996; Lioubashevski et al. 1996; Lioubashevski et al. 1999). The mushroom-like
waves are often formed due to the instability of rods (see Figs 48–51 from Love 1944), shells (Karagiozova & Jones 2001), thin jets of viscous
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330 Sh. U. Galiev

Figure 10. Multi-valued continuous mushroom-like waves (d) determined by solutions of the equation (l∗ F ′)3 + (3R/22/3)l∗ F ′ + sin ωt = 0 (200), calculated
for R = −0.5. The waves are constructed from the multi-valued solution (203) (a) and the discontinuous solution (204) (b). The harmonic wave (b) is determined
by the linearized eq. (200) calculated for R = −0.5.

Figure 11. Waves and curves similar to those presented in Fig. 10 calculated for R = −0.9.

fluid (Taylor 1969) and gas (Suplee 1999). If R ≈ −1, then the solutions separate and surfaces 1, 2 and 3 form (see Fig. 12E). It is possible
to give different interpretations of the last result. Here we note only that these surfaces may qualitatively describe the generation of fissures
parallel to the surface or the generation of foam and surface cavitation (Goodridge et al. 1996). Fountain- and step-like waves are presented
in Fig. 12(F). These waves can have a crater on the top. This crater was recently observed on step-like waves in a vertically vibrated colloidal
suspension (Lioubashevski et al. 1999). On the other hand, Fig. 12(F) can be interpreted as a picture of the generation and transresonant
evolution of particles (drops) on the crest of the waves. Vertically excited waves with a drop on the crest are also known (Longuet-Higgins
1983; Goodridge et al. 1997, see also Fig. 20).

Because of the vertical excitation the wave velocity a0 and R can vary according to a periodic law. We consider the case when in (200)
R = 22/3�l−1

1 γ −1
∗ /3 + δ∗ cos kωt/K , where k and K are integers, and δ∗ is constant. Here the term δ∗ cos kωt/K may be very small. At

the same time, this term is important near the critical value R: R ≈ −1. Results of calculations for varying R are shown in Fig. 13. Fig.
13(D) is calculated for 22/3� l−1

1 γ −1
∗ /3 = −0.978, Figs 13(B) and (E) are calculated for 22/3� l−1

1 γ −1
∗ /3 = −1. We also assumed that k =

5, K = 5 and δ∗ = −0.05. These figures show the process of formation of stable breakers (Fig. 13D), jet-like (Fig. 13B) and mushroom-like
(Fig. 13E) waves, when R ≈ −1. In Fig. 13(D) the harmonic curve corresponds to the acoustic solution. According to these calculations,
sawtooth waves are generated, if R < −1. These waves transform into harmonic waves if R < −1.1.

It follows from the theory that non-linear resonant effects are important for earthquake hazard analysis. Natural resonators can trap
seismic waves. The frequency of the reverberations of the trapped waves can slowly reduce or increase. According to the theory, the amplitude
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Non-linear transresonant wave phenomena 331

Figure 12. Different scenarios for the transresonant evolution of seismic waves calculated according to the equations (l∗ F ′)3 + (3R/22/3)l∗ F ′ + sin ωt = 0
(200) (cases B, E, D) and (l∗ F ′)3 + (3R/22/3)l∗ F ′ + 2 cos2 1

2 (ωt − π/2) = 0, eq. (206) (case F): generation of jets (B), generation of breaker (D), generation
of mushroom-, saw- and cnoidal-like waves (E), generation and evolution of particles (drops) on the crest of the waves (F).

Figure 13. Transresonant effects calculated according to solutions (203)–(205) for R disturbed near the critical value of −1. Transition of sawtooth waves
into breaker (D), jet- and mushroom-like waves (B, E).
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332 Sh. U. Galiev

Figure 14. Quadratic non-linearity effect studied using equation (l∗ F ′)3 + r∗(l∗ F ′)2 + 3Rl∗ F ′/22/3 + sin ωt = 0, eq. (197). Evolution of mushroom-like
waves (a) into particles (drops) above the wave crests (b, c) or bubbles below the wave troughs (f).

of the trapped waves is greatly increased if this frequency passes through a resonance. In particular, collapse of buildings on the resonator
surface may occur after the initial seismic waves have passed.

5.4.1 The effect of ocean water and quadratic non-linearity

We have considered the cliffs as the free surface. Let us take into account the influence of ocean water. In this case b∗ �= 0 in eq. (188) and a
quadratic term is kept in eq. (197). Using eq. (198) and solutions (201)–(205) we studied the influence of b∗ on the transresonant evolution
of surface waves. Some results of the calculations are presented in Figs 14 and 15. These figures show a dependence of the wave shape on
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Non-linear transresonant wave phenomena 333

Figure 15. Quadratic non-linearity effect: the transresonant evolution of mushroom-like waves into particles (drops) (a, b, d) or bubble-like structures (c) if
R > −1, and harmonic waves if R < −1.

r∗ (or b∗) and R. The value of r∗ is varied from –0.3 (Fig. 14f) and 0 (Fig. 11c) to r∗ = 0.75 (Fig. 14c) (the dimension of r∗ is time/length).
This variation transforms mushroom-like waves (Fig. 11c) into drop- and bubble-like structures (Figs 14b, c and f), cnoidal-like waves
(Fig. 14d) and harmonic waves (Fig. 14e). The shape of the drop-like structures depends on R. These structures transform into pairs of
cnoidal-like waves if R reduces from −0.9 to −1.123. The linear solution (harmonic wave) follows when R = −2 (Fig. 14e).

The evolution of the shock-like waves into mushroom-like waves, and the drop-, bubble- and vortex-like structures in the transresonant
band is shown in Fig. 15. The parameter R is varied from −0.3 to −1.4. If R < −1 then harmonic waves can be generated on the surface. It is
seen that the transresonant evolution of the waves depends upon the quadratic non-linearity. In particular, for r∗ = 0.1 we have one drop-like
structure, but for r∗ = 0.4 four drop-like structures are generated during the transresonant evolution of the ripples. We emphasize that the
results were obtained with the aid of the analytic solutions (201)–(204) of the cubic equation (199).

It is possible to give different interpretations of the results presented in Figs 14 and 15. They qualitatively simulate generation of drops
(Longuet-Higgins 1983; Goodridge et al. 1996; Goodridge et al. 1997; Jiang et al. 1998; Zeff et al. 2000; Lohse 2003; James et al. 2003)
and bubbles (Taylor 1953) at water wave crests, or the ejection of particles above a granular layer (Umbanhowar et al. 1996) under resonant
excitation. In particular, according to Fig. 15 the analytic solutions can describe the drop formation process which has previously been studied
using numerical methods (Wright et al. 2000). The solutions also describe bubbles that can be formed in liquid (Zeff et al. 2000) and granular
(Pak & Behringer 1994) vertically vibrated layers. Some structures (closed loops) may also be considered as vortices. Therefore, Figs 14 and
15 simulate qualitatively the generation of vortices by non-linear waves. This ill-understand phenomenon has only lately begun to be studied
(Bühler & Jacobson 2001; Dunn et al. 2001; Galiev & Galiev 2001; Galiev 2002).

The drop-like structures generated above the free surface were studied by Galiev & Galiev (2001) using fourth- or fifth-order non-linear
algebraic equations. Here they were studied using the cubic equation (197). Thus, under the simple vertical harmonic excitation, surface waves
can manifest complex development of harmonic waves into shock-like waves, jets, cnoidal- and mushroom-like waves, drops, bubbles and
vortices (see also Sections 7.1.1 and 7.2).

6 E X A M I N AT I O N O F E A RT H Q UA K E – V O L C A N O I N T E R A C T I O N S N O T E D B Y
C H A R L E S DA RW I N A N D S T RO N G LY N O N L I N E A R WAV E P H E N O M E N A

In this section we study strongly non-linear earthquake-induced phenomena. In particular, the dynamics of volcano craters, ridges and volcano
eruptions will be considered.
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334 Sh. U. Galiev

Figure 16. Jet generated by the interaction of a converged water surface (the rim at the tube wall and the trough at the centre) with an underwater shock wave.

6.1 Earthquake-induced resonant surface waves and column in a volcano crater

Charles Darwin (1839, p. 380) reported that, after the 1835 Chilean earthquake ‘. . . a train of volcanoes situated in the Andes. . .instantaneously
spouted out a dark column. . .’ and ‘. . . in the immediate neighbourhood, these eruptions entirely relieve the trembling ground. . .’. These notes
suggest that there was a common mechanism creating the eruptions of the volcanoes separated by the long distances. Here I propose that the
mechanism is the interaction of the volcano craters with an upward shock wave generated by the rapid vertical displacement (up to a few feet
Darwin 1839) of the volcano bases.

The volcano shape is a cone truncated by a crater (funnel). The crater surface is formed of weakly cohesive media (snow, ice, granular
materials, sediments, water and magma). The crater is connected to the base of the volcano by a conduit containing bubbly liquid-like magma
(see Fig. 19 in Section 6.2). For example, the Soufriere Hills volcano in Montserrat, West Indies, has a 30 m diameter conduit, a 300 m
diameter and a 100 m deep crater, and a vent fill (estimated as 20 m thick). Axisymmetric topography surrounds the vent (∼22◦ slope) (Clarke
et al. 2002). Thus, the volcano can be visualized as a conduit truncated by a funnel.

The generation of a vertical column of matter in such a system may be demonstrated with the help of a tube filled by water. When the
tube falls from a height of 10–20 cm and the bottom receives shock loading, the centre of the water surface ejects a thin vertical column
(see Fig. 16, taken from Lavrentev & Shabat 1977). This is a result of the interaction of the concave surface of the water with the upward
wave of the acceleration. The height of the ejected column can be more than 1 m. The deformation of the concave surface and the formation
of the column during the experiment are shown for six points in time (from 0 to 0.009 s and for 0.16 s) in Fig. 108 which may be found in
Lavrentev & Shabat (1977). The form of the funnel (crater) can be important. Under a high-pressure shock wave the walls of the funnel are
caused to collapse so that the surface material is forced to concentrate on the axis giving rise to the jet (see Plate 48 from Johnson 1972).
The experiments are described qualitatively by calculations (fig. 107 of Lavrentev & Shabat 1977 and fig. 5.47 of Frohn & Roth 2000). These
calculations also simulate the dynamics of the water surface cavity and the generation of the central jet from the cavity (Worthington 1908;
Kientzler et al. 1954).

Two distinct phenomena can take place during the interaction of the upward seismic wave with the crater surface. First, interaction of
the wave with the free surface generates the vertical velocity (Cole 1948; Johnson 1972; Lavrentev & Shabat 1977; Galiev 1988; Bourne &
Field 1992). Material near the centre of the crater rises perpendicular to the shock front, and moves more rapidly, and for a longer time than
material near the rim. As a result, because of surface tension, the material collapses and transforms into a liquified state. The plume is then
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generated. The motion of this plume is described by hydrodynamic laws. Experiments with water surface cavities have shown (Bourne &
Field 1992) that the plume velocity increases with the surface curvature and/or the intensity of the shock.

Secondly, due to the topographic effect, the radial force directed from the crater rim to the centre is generated and a radial surface wave
is formed. This wave focuses and forms a vertical jet of fragmented material in the centre of the crater at the same time or a little later than
the vertical plume formed. Surface waves in cavities were studied by Bourne & Field (1992). The waves originate at the edges of the cavity
and move to the centre.

To study this phenomenon we use eq. (126). This equation contains a topographic term which can describe the rim effect. Let us consider
a circular crater of radius R12 and use the polar radial coordinate r 1. In this case, we have

ηt t − a2
∗∇2η = −g∗b−1

0 ∇2h + b0β
∗∇2η2. (208)

Here ∇2η = ∂2η/∂r 2
1 + r−1

1 ∂η/∂r1. We employed the quadratic non-linear theory and neglected some small terms in eq. (126). It is assumed
that the approximate solution of eq. (208) is a sum of oppositely travelling localized waves:

η = A1(r1)[J (r ) + j(s)], (209)

where r = a∗ t − r 1 + R12 and s = a∗ t + r 1 − R12. As a result, the left-hand side of eq. (208) yields

(∂2 A1/∂r 2
1 + r−1

1 ∂ A1/∂r1)(J + j) = (2∂ A1/∂r1 + r−1
1 A1)(J ′ − j ′). (210)

This equation has two approximate solutions: A1(r 1) = (Cr 1)−0.5 and A1(r 1) = ln (Cr 1) (Landau & Lifshitz 1987), where C is an arbitrary
constant. The first expression is valid far from the crater centre. For a large enough crater, near the rim C−0.5r−2.5

1 a2
∗(J + j) ≈ 0. Then from

eqs (208) and (209) the resonant algebraic equation follows:

η2 = g∗b−2
0 (h − h0)/β∗. (211)

Here g∗ includes both the static and dynamic parts of the vertical acceleration. We shall consider only the dynamic part. Let us assume that

g∗ = g12 sech4α12t and h − h0 = h12(Cr1)−1 sech4γ12(r1 − R12). (212)

Here g12, α12 and h12 and γ 12 are constants related to the earthquake-induced impulse and the shape of the rim. Using eq. (212) we have from
eqs (209) and (211)

J (r ) + j(s) = 1

2
[(β∗)−1b−2

0 g12h12]1/2[cosh(α12t + γ12r1 − γ12 R12) + cosh(α12t − γ12r1 + γ12 R12)]−2. (213)

We consider the localized waves interacting only if r 1 ≈ R12. Therefore, eq. (213) yields

J (r ) ≈ 1

2
[(β∗)−1b−2

0 g12h12]1/2 sech2γ12(a∗t − r1 + R12), (214)

where we assume that a∗ = α12/γ 12. The expression for j(s) is similar to eq. (214). Now we can write the following formula for the
earthquake-induced vertical displacement of the crater surface:

η = 1

2
[(β∗)−1b−2

0 g12h12]1/2r−0.5
1 [sech2γ12(a∗t − r1 + R12) + sech2γ12(a∗t + r1 − R12)] + F(r1). (215)

The first term in eq. (215) describes localized converging and diverging radial waves propagating from the crater rim and the jet. The second
term describes the volcano top. Calculations of η eq. (215) are presented in Fig. 17. Wave patterns for three points in time are shown.

It is important for the theory presented that Fig. 17 qualitatively describes the experimental observations of the water rim collapse, the
generation and evolution of the water plume and the water column from the centre of the surface crater (Worthington 1908; Kientzler et al.
1954, see also the discussion in Section 6.3). The realization presented in Fig. 17 is also reminiscent of oscillon oscillations excited on the
surface of a layer of vertically vibrated brass balls (Umbanhowar et al. 1996). The oscillon may be started by touching the surface of brass
balls with a pencil (Mukerjee 1996). After formation of the surface crater, the oscillon begins to bounce up and down while the material
around stays in place. During one cycle of the excitation, it is a peak; on the next cycle it is a crater (Umbanhowar et al. 1996). Oscillons do
not occur only in granular media. They have also been observed in water and suspension layers (Lioubashevski et al. 1999). Galiev (1999a)
has shown that localized, oscillon-like waves may be excited during earthquakes on the top of some hills.

A rough approximation of the height of the earthquake-induced column can be deduced using Longuet-Higgins’ experiments (1983). In
these experiments, a small vertical harmonic excitation (amplitude 0.5 mm) of a beaker ultimately produced a surface water jet rising to a
height of over 1.7 m. For volcanoes this effect may be amplified by the crater form. Thus, if we assume that the shock vertical displacement
of the volcano base was of the order of 1 m, then the jet (column) height could reach the order of 1–2 km (see also Section 6.3).

The mathematical model and the experiments discussed have demonstrated that the reported phenomena can occur if there is a strong
enough vertical excitation. As a result of the earthquake-induced vertical shock, the surface material of the craters is transformed into a
liquified state. Then, according to the hydrodynamic theories and the experiments, the liquified matter can be ejected from the volcano craters.
Thus, the earthquake-induced volcanoes separated by very long distances could eject instantaneously the ‘dark columns of matter’. The surface
non-linear wave processes in the craters generate this ejection. The fluidization of the crater surface and the fountain-like eruption absorb
considerable seismic energy. Therefore, immediately after the eruption, surface oscillations near the volcano are reduced.
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336 Sh. U. Galiev

Figure 17. 2-D simulation of results of the interaction of an upward seismic shock wave and a volcano crater. Evolution of the plume, generation of the
converging and diverging radial waves (a, b), and the eruption (c) from the centre.

6.2 Earthquake-induced non-linear wave phenomena in cone volcanoes

Large earthquakes can stimulate large-scale volcano eruptions. The cause of a naturally triggered earthquake is not clear, although a few
interesting mechanisms are proposed (see short reviews by Sturtevant et al. 1996; Linde & Sacks 1998; Hill et al. 2002). In particular, it has been
proposed that seismic waves may have caused the triggering (Nakamura 1975). Apparently, it is impossible to explain all documented events
through a single mechanism. In the section below, attention is focused on the documented simultaneous eruptions from four volcanoes during
the 1835 Chilean earthquake (Brodsky et al. 1998; Linde & Sacks 1998). Darwin (1839, p. 380) reports that ‘. . . several of the great chimneys
in the Cordillera of central Chile commenced a fresh period of activity’. Let us consider these eruptions using the results of Section 6.1 and
taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida 2404 m, Cerro Yanteles 2050 m and Peteroa
3603 m) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed
of a cone with gently sloping sides. The above volcanoes are not very active. The last large eruption of Minchinmavida, Cerro Yanteles and
Robinson Crusoe was in 1835. Peteroa also erupted in 1837 and 1937. Now it has a small crater lake. Thus, all of these volcanoes are conical.
We may surmise that their vents had a large sealing plug (vent fill) in 1835. These common features are important for our triggering model
which will be discussed below. Darwin (1839, p. 276) reports that the craters of Minchinmavida and Yanteles were covered by snow.

It is known (Kolsky 1953) that when a compression wave is propagated along a cone from the bottom, the wave amplitude and the form
change. In particular, the amplitude increases strongly. At the same time, a tension tail develops along the axis behind the compression region
and the length of the compression becomes shorter and shorter as the tip is approached. At the same time, the tensional stress increases. As
a result, the tip may break and fly off at high velocity (see Plate III from Kolsky 1953). Experiments with wedge-shaped plates explosively
loaded along and at the centre of the base agree with Kolsky’s experimental data. For different triangular plates the fractures were localized
near the angles and along the height (see Plates 8 and 9 from Johnson 1972).

Thus, the experiments showed that the fractures group near the tip and the axis of the cone. In particular, the axis fractures recall cavitation
bubbles in a liquid.

Fractures can also occur in earthquake-induced conic volcanoes having large vents. The vent fill material usually has a very low tensional
strength and can easily be fragmented by tension waves. When a compressional vertical wave is reflected from the vent surface then a large
number of fractures (‘bubbles’) occur. As a result, the material is transformed into a gas-fluidized state. This process recalls the generation of
transient cavitation during the reflection of an underwater shock wave from a water surface (see Fig. 18, taken from Galiev 1988). A similar
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Figure 18. Interaction of an underwater explosion with a free water surface: the spherical wave generated by the explosion (a), and the propagation of the
reflected tension wave and the transient cavitation from the free surface (b, c).

phenomenon can be also generated on the surface of metal, glass, polymethymethacrylate, concrete and rock-like materials (Kolsky 1953;
Rinehart 1960; Johnson 1972). Johnson (1972, Plate 3) shows a section of a mild steel plate after surface detonation. A large surface bubble
is formed by a thin layer of the metal which separated from the mass of the plate. Once the shallow surface cavity has formed, the remainder
of the incident compressive impulse is reflected from a fresh free surface. As a results, new fractures and bubble-like voids localized near the
axis are generated.

We emphasize that the vertical motion and the surface fractures just discussed are not limited to small phenomena. Localization of
fractures in a cone-type mountain was observed following a 1.7 kiloton underground nuclear blast (Rinehart 1960). Near the top the stress
wave produced three slabs of equal thicknesses (≈35 m). The slabs moved upward with initial velocities, approximately, 2.4, 1.5 and 0.7 m
s−1, respectively. The surface slab of consolidated tuff, situated about 230 m above the blast, rose to a height of 22.5 cm. The converging
seismic waves can explain the violent crest amplification, which was observed in Quiriquina. Charles Darwin (1839, p. 370) reports about this
amplification ‘. . . The effect of the vibration on the hard primary slate, which composes the foundation of the island, was still more curious:
the superficial parts of some narrow ridges were as completely shivered, as if they had been blasted by gunpowder. This effect . . . , be confined
to near the surface . .’.

The reflection of the upward wave from the volcano slope may produce tensional stresses which are sufficiently large to cause fractures
and bubbles within the volcano (Fig. 19a). The conduit magma is held at high pressure by the weight and the strength of the vent fill. This fill
may collapse (Fig. 19b) and fly off (Fig. 19c) when the upward wave is reflected from the volcano crater. After this the pressure on the magma
surface drops to atmospheric Pa and a decompression front begins to move downward (Fig. 19c). In particular, large gas bubbles can begin
to form in the magma within the conduit. The resulting bubble growth provides the driving force at the beginning of the eruption (Anilkumar
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Figure 19 Dynamics of the interaction of a conical volcano truncated by a crater with an upward seismic shock wave. The volcano scheme (mountain, crater,
vent fill, conduit and magma chamber) and the tension waves reflected from the lateral surface (a). The tension waves reflected from the crater surface, the
beginning of vent fill collapse and the growth of bubbles in magma due to the tension (b). The failure of the vent fill, the growth of the magma bubbles and the
beginning of the larger-scale eruption (c).

et al. 1993; Alidibirov & Dingwell 1996; Mader 1998; Morrissey & Mastin 2000). Thus, the earthquake-induced non-linear wave phenomena
can qualitatively explain the spectacular simultaneity of large eruptions after large earthquakes. The model will be discussed further in
Section 6.3.

The amplitude of the decompression wave is of the order of Pa. This wave is reflected by the high-pressure magma chamber as a
compression wave with amplitude close to P0 (Fig. 19c). As a result, the pressure difference between a region of low pressure (atmosphere)
and the magma chamber can cause a large-scale eruption (Fig. 19c). The beginning and the process of the eruption depend on many
circumstances. In particular, due to reverberations and transformations of the wave in the conduit the eruption can become pulsatory (Dobran
et al. 1993). For example, if the chamber is located at depth and P0 is large then explosion-like phenomena can occur during the reflection
of the compression wave from the vent. According to Clarke et al. (2002) the initial conduit gas pressure can be of the order of 10 MPa. Let
us estimate the period of the pulsations. The conduit magma contains a lot of gas, therefore the wave speed Cm can vary from a few m s−1

(Kieffer 1977) to several tens of m s−1 (Puzyrev & Kulikov 1980; Galiev & Galiev 1994; Galiev & Panova 1995; Morrissey & Mastin 2000).
Indeed, according to eqs (21) and (22) we have
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Figure 19. (Continued.)

C2
m = dp

dρ
= {(1 − φ0)[1 − λ(p − p0)] + φ0 p0/p}2

ρ0[(1 − φ0)λ + φ0 p0 p−2]
. (216)

Thus, the sound velocity Cm is a complex function of φ0, p0 and p. It follows from Galiev & Galiev (1994) that Cm can depend strongly
on the gas content. In particular, if φ0 increases from 0 then Cm can drop from 2000 to 10 m s−1. If φ0 decreases from 1 then Cm drops from
the velocity of sound (300 m s−1) to 10 m s−1. When the conduit length is of the order of 10 km, then the period of the pulsatory explosions
can lie in the range from minutes to hours. Resonant shock waves similar to shock waves in tubes containing bubbly liquid or gas (Chester
1964; Galiev et al. 1970; Galiev 1988; Galiev & Galiev 1994; Ilgamov et al. 1996) may be generated in a conduit.

Remark. We have illustrated the model using the experimental data for short waves (Figs 18 and 19). These figures illustrate wave
reflection and generation of the tension waves in thick vent fills and in the conduit magma. However, for thin vent fills it is better to describe
them as a thin plate closing the conduit (Galiev 1981; Galiev 1988).

6.3 Discussion of the models of Sections 6.1 and 6.2

The theory of Section 6.1 describes the dynamics of a crater on the surface of liquified material. There is an analogy between these dynamics
and the evolution of a crater generated by a bubble bursting at a free water surface (Kientzler et al. 1954) or the collision of a liquid drop
with the surface of a deep liquid (Worthington 1908). The experimental data were obtained by high-speed photography. The photographs and
calculations (Hobbs & Kezweeny 1967) show the behaviour of the free surface through the following sequence of events: (1) the crater and a
rim (crown) are formed; (2) the height of the rim reduces and liquid rushes to the crater centre; (3) the rush forms a jet in the crater centre.
It can be seen from Fig. 20 (Fig. 20a taken from Worthington 1908, 20(b, f) taken from Hobbs & Kezweeny 1967) that the height of the
jet (column) can reach 2.5 R12. The radial rush of liquid is reminiscent of the plume and converging wave in the volcano crater. Indeed, the
photographed liquid column (Fig. 20a) is similar to the column of matter calculated for the volcano crater (Fig. 17). Using this analogy we
can estimate the height of the ejected column. Let R12 = 200 m. Then according to Fig. 20(a), this height can reach 500 m. If R12 = 500 m,
then the height is 1250 m. On the whole, these values agree with the result of Section 6.1 (height 1–2 km).

Linde & Sacks (1998) indicated clearly that a great earthquake can be a trigger mechanism for large eruptions. In particular, it was
shown that there is a sharp peak in the number of eruptions on the same day as an earthquake. We have constructed a model that explains this
peak. The model takes into account the amplification of the upward seismic wave near the top of a conical volcano and the interaction of this
wave with the crater surface. The elements of the model are fragmentation of the vent fill, connection of the atmosphere and the high-pressure
conduit, growth of bubbles (cavitation) and the beginning of the eruption (generation of the column of ejected matter).

The results presented in Sections 6.1 and 6.2 are reminiscent of data from underwater explosions (Cole 1948). Indeed, the water layer
between the free surface and the gaseous products of the explosion can be considered as an analogue of the vent fill. The shock wave generated
by the explosion is the analogue of the upward compressional seismic wave. The interaction of the shock wave and the water surface forms
the surface cavitation funnel (see Fig. 18). This funnel is the analogue of the volcano crater. The high-pressure product of the explosion is the
analogue of the conduit magma.

C© 2003 RAS, GJI, 154, 300–354

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/154/2/300/608218 by guest on 06 February 2022



340 Sh. U. Galiev

Figure 20. Jet formed by the liquid inrush focusing in the crater centre. [Similar to Worthington 1908 (a) and Hobbs & Kezweeny 1967 (b, f)].

In the case of a deep explosion the cavitation funnel does not propagate up to the gaseous product. A jet is generated on the funnel axis
(see Plate XI from Cole 1948) due to the rush of the surface water. This process (see Figs 17 and 18) recalls the formation of the column
of ejecta in the crater described in Section 6.1. In the case of a shallow explosion the cavitation funnel can be so deep that it connects the
gaseous products with the atmosphere. As a result, these products, together with the water jet form a vertical column (see Plate XI from Cole
1948 and Fig. 109 from Lavrentev & Shabat 1977). The height of the column may be 600 m or more. This process recalls the dynamics of the
large-scale eruption modelled in Section 6.2. Of course, the analogy between crater evolution (see Figs 17 and 19) and water surface dynamics
occurs only for sufficiently large charges.

We considered how earthquake/volcano interaction explains Darwin’s evidence in Sections 6.1 and 6.2. However, the models developed
may be valid for other large earthquake-triggered eruptions. Indeed, all 20 of the single-day earthquake/eruption pairs listed by Linde & Sacks
(1998) took place for cone-like volcanoes and large (magnitude ≥ 7) or very large (magnitude ≥ 8) earthquakes. Following Section 6.1, a
column may be instantaneously generated in the craters of the conical volcanoes excited by the large earthquake. Of course, the effect depends
on the form of the crater and the initial state of the volcano. For example at Ruapehu (Tongariro National Park, New Zealand), the boundary in
magnitude of volcanic earthquakes, between those that accompany eruptions and those that do not, varies between about magnitude 2 under
‘open-vent’ conditions, and magnitude 3.4 under ‘closed’ conditions (Latter 1981). I think that the shape and the state of the four volcanoes
during the 1835 Chilean earthquake were such that the vent fills were fragmented and the large-scale eruptions took place. The earthquake
opened the conduits and the magma chambers and magma begun to erupt similarly to champagne from a bottle. The effect of the interaction
of volcanoes (conduits) could take place and remind one of the tuning of resonant pipes in an organ.

It is interesting that the majority of the volcanoes presented in the list of earthquake-triggered eruption pairs (Linde & Sacks 1998) are
truncated by large calderas. This observation agrees with Darwin’s note (1839, p. 380) about ‘great chimneys’.

6.4 Resonant capture of seismic waves by a ridge

Topographic relief can modify the velocity and path of a seismic wave. In particular, a ridge can form a waveguide. We consider this effect
using the theory of Section 4.4.1. First, the expression for the velocity a∗, eq. (114) is treated. The velocity depends on the coordinates of the
ridge and on time. The time dependence is determined by the vertical acceleration, so we have approximately Z = Z (t), eq. (121). In this
case, the expression for a2

∗, eq. (114) can be written as

a2
∗ = Z∗(x1, x2)/Z (t), (217)

where Z ∗(x1, x2) = [h + 2E1G∗ + 4bh(1 − h−1
0 E1G∗)G∗/3]. For simplicity we ignore the weak dependence of Z ∗ on t. A ridge located on a

shallow valley will be treated.
We assume that

Z ∗(x1, x2) = H0 + Am sech2[em(x1 + x2)], (218)

where H0 = h0 + 2E1G∗ + 4b(h0 − E1G∗)G∗/3. The function Am sech2[em(x1 + x2)] describes the ridge, and the constants Am and em

determine the height and form of the ridge. Now the resonance condition (166) yields

Z (t)k2
12a2

t = {H0 + Am sech2[em(x1 + x2)]}[(k1,1 + K12,1)2 + (k2,2 + K12,2)2]. (219)

Let us assume in eq. (219) that

a2
t = Z−1(t), k12 = 1, k1 = ξ∗x1, k2 = 0, K12 = am tanh[em(x1 + x2)], (220)
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Non-linear transresonant wave phenomena 341

Figure 21. 2-D simulation of the capture of seismic waves by a ridge: the undisturbed surface of the valley (a), the resonant wave pattern calculated for the flat
surface (b), the resonant wave patterns calculated for a(t) = 0.5 (c) and a(t) = 1.3 (d).

where ξ ∗ and am are constants. Expressions (220) are substituted into (219). We assumed that sech2[em(x1 + x2)] tanh2[em(x1 + x2)] ≈ 0.
Then, equating to zero the constants and terms containing sech2[em(x1 + x2)], we obtain two algebraic equations:

ξ 2
∗ = H−1

0 , (221)

a2
m + ξ∗e−1

m am + 0.5Amξ 2
∗ e−2

m (Am + H0)−1 = 0. (222)

Eq. (222) yields

a±
m = 0.5{−ξ∗e−1

m ± [ξ 2
∗ e−2

m − 2Amξ 2
∗ e−2

m (Am + H0)−1]1/2}. (223)

Now using eqs (220), (221) and (223), we have found expressions for r and s, eq. (160). Since ϕrs ≈ 0, we have for ϕ that

ϕ = J {a(t) − H−0.5
0 x1 − am tanh[em(x1 + x2)]}

+ J {a(t) + H−0.5
0 x1 + am tanh[em(x1 + x2)]}.

(224)

Here J is an arbitrary function. Consider the resonant oscillations of the valley, when the driving frequency ω = Nπa∗/L . The resonant
waves are determined by the expression (Galiev 1998, 1999; Galiev & Galiev 2001),

J (r ) = Ai sech2(ei sin Nπ L−1 H 1/2
0 r ) cos2 Nπ L−1 H 1/2

0 r, (225)

where Ai and ei are constants. These constants are determined by the non-linear and dissipative–dispersive characteristics of the system.
Now, using eqs (224) and (225), we can calculate the vertical displacement, since η is proportional to ∇2ϕ. Assuming that a(t) = 0.5 the

1-D wave resonant pattern calculated for the flat (without the ridge) surface of the valley is shown in Fig. 21(b). The influence of the ridge
is shown in Fig. 21(c) (a(t) = 0.5) and Fig. 21(d) (a(t) = 1.3). The ridge traps the seismic waves. The 2-D patterns in Figs 21(c) and (d)
demonstrate qualitatively the waveguide-like properties of the ridge.
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Figure 22. Amplification of seismic waves propagating in the sediment layer at the layer edge and within the slope of the ridge. From Pedersen et al. (1994).
Used with permission.

7 S I T E R E S O N A N C E A N D S T RO N G LY N O N L I N E A R S E I S M I C P H E N O M E N A

The amplification of seismic waves due to resonant and topographic effects is a complex process, which is connected with site geology and the
liquefaction. In particular, although earthquake-related damage tends to be more intense on ridge tops some observations suggest that the
damage can concentrate on one side of a ridge. During the 1994 Northridge earthquake Ashford & Sitar (1997) observed damage to be
concentrated on one slope of a coastal bluff in the Pacific Palisades, perpendicular to the wave travel path. The damage and the coastal
amplification of seismic waves may be very strong (Davison 1936; Kramer 1996; O’Rourke & Pease 1997). Darwin (1839, p. 375), describing
the 1835 Chilean earthquake, wrote that ‘. . . the island of S. Maria. . . . raised to nearly three times the altitude of any other part of the coast’.
This type of amplification depends on the 3-D geology of the surface (O’Rourke & Pease 1997; Pease & O’Rourke 1997). A clear example
of the influence of geology on seismic waves in a layer and site effects was found by Pedersen et al. (1994). A number of seismometers were
placed across a 300 m high linear ridge in France (see Fig. 22 which was taken from Pedersen et al. 1994). Two of the stations (S2 and S3)
were established on hard limestone, whereas the remaining three stations were placed on unconsolidated sediments. The greatest amplification
took place at S5, near, but not very close to, the edge of the sediment layer. At this point there can be both amplification of waves travelling up
slope and attenuation of waves travelling down slope. Thus, the concentration of seismic energy depends on the slope angle and occurs near
the edge of the layer.

This amplification depends on the layer thickness variation, the spatial variation of motion (the horizontal motion transforms partly into
vertical motion) and the impedance contrast between the downlying material and the sediments. Consider non-linear waves in a layer of marine
deposits. Because of the earthquake-induced vibrations, the shear stress drops to zero and the layer material is practically transformed into a
liquid. As a result, a strong analogy may be the amplification of earthquake-induced sediment waves and water waves (tsunami) at the coast
line. For example, the Alaska 1899 earthquake raised the coast on Disenchantment Bay up to 14.5 m (Davison 1936). There were over 50
shocks on September 10. The first earthquake lasted 90 s. The main earthquake that caused great topographic changes occurred at 21:41 UTC
(see http://neic.usgs.gov/neis/eqlists/USA/1899 09 10.html). I think they are a result of the resonance of seismic waves in a liquified coastal
layer. It is known that the shear wave velocity can drop from 160 m s−1 to less than 10 m s−1 (up to 2–5 m s−1) over a 16 s period as a result
of earthquake-induced vibrations (Pease & O’Rourke 1997).

In this section we study the seismic wave evolution near the edge of the sediment layer and within the resonant band.

7.1 A new equation for edge waves

We shall describe 1-D seismic waves on a gentle slope using the equations of Section 2. In particular, for 1-D waves eq. (29) yields

(u1,t t − X )(1 + u1,1) + (2n + 1)−1ηt tη1 + g(n + 1)−1(η1 − η+
1 ) + gη−

1 = −ρ−1 P1

+ 2

3
ρ−1G∗[(2u1,11 − h−1η1) − h−1(η+

1 − η−
1 ) + 2u1,1u1,11 + 2(2n + 1)−1η1η11]

− 2

3
h−2ρ−1n2(2n − 1)−1G∗ηη1 + ρ−1

0 s11,1 + ρ−1h−1τ31. (226)

Thus, we have four equations (226), (23), (28) and (32), for four unknown values: u1, P , ρ and η. Now, following Section 3, we can
reduce this set of the equations to

u1,t t − a2
0u1,11 + (2n + 1)−1(1 − a−1

1 η)η1

[
ηt t − 4

3
ρ−1

0 G∗(1 + h−1η + a−1
1 η)η11

]

= g[(n + 1)−1η+
1 − η−

1 ](1 − u1,1) + 2

3
h−1ρ−1

0 G∗(η+
1 − η−

1 )(1 + h−1a1u1,1) − X − gh1

+ (βu1,1 + β1u2
1,1)u1,11 + µu1,11t − A∗

1h(n + 2)−1(u1,11t t − ρ−1
0 G∗u1,1111) + ρ−1

0 s11,1 + ρ−1
0 h−1τ31, (227)
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where η = A∗
1u1,1 + A∗

2u2
1,1 + A∗

3u3
1,1 and

a2
0 = 2ρ−1

0 G∗ + 2A∗
4

(
1 − 2

3
bG∗

)
(gh + ρ−1

0 G∗), (228)

β = −ρ−1
0 {(χgρ0 + 2h−1G∗)[2A∗

2 + h−1(A∗
1)2] + gρ0(n + 1)−1(2A∗

2 − A∗
1)−2

3
G∗[2 − n2(2n − 1)−1(A∗

1)2h−2 + 3h−1 A∗
1]}, (229)

β1 = −ρ−1
0

{(
χgρ0 + 4

3
h−1G∗

)
[3A∗

3 + h−1(A∗
1)2 − 2h−1 A∗

1 A∗
2] + gρ0(n + 1)−1(3A∗

3 − 2A∗
2 + A∗

1)

+ 2

3
h−1G∗(3A∗

3 − 2A∗
2 − 2A∗

1 + 3h−1 A∗
1 A∗

2) + 2

3
n2(2n − 1)−1h−2G∗[3A∗

1 A∗
2 + h−1(A∗

1)3]

}
, (230)

χ = (2n + 1)/(n + 1), (231)

A∗
1 = −h

(
1 − 2

3
bG∗

)
A∗

4, A∗
2 = h[1 + A∗

5(b + φ0 P−2
0 A∗

5)]A∗
4, (232)

A∗
3 = h

[
A∗

2

(
χgρ0 + 4

3
h−1G∗

)
(2φ0 P−2

0 A∗
5 + b) − 1 − φ0 P−3

0 (A∗
5)2(1 − A∗

5) − bA∗
5

]
A∗

4, (233)

A∗
4 = 1

/[
1 + bh

(
χgρ0 + 4

3
h−1G∗

)]
, A∗

5 = −2

3
G∗ +

(
χgρ0 + 4

3
h−1G∗

)
A∗

1. (234)

Eq. (227) corrects eq. (45) as it takes into account more accurately the vertical acceleration and the compressibility. As a result of this
correction the wave velocity a0 begins to depend on n. We recall that n determines the variation of the vertical displacement along the layer
thickness, eq. (25). If h → ∞ we have

a2
0 = 2

3
ρ−1

0 ν(1 − αsφ0)[2 − (2n + 1)−1] + 2(n + 1)(2n + 1)−1ρ−1
0 [λ(1 − φ0) + φ0 P−1

0 ]−1. (235)

It is seen that the effect of the vertical displacement may be important. If λ → ∞ and φ0 = 0 in eq. (235), then a2
0 = 2

3 ρ−1
0 ν[2−(2n+1)−1].

In this case, if n = 0.2, we have the velocity of Rayleigh waves (Sheriff et al. 1995):

a0 ≈ 0.92(ρ−1
0 ν)1/2. (236)

If n = 0.5, we have the velocity of shear waves a0 = (ρ−1
0 ν)1/2.

According to eq. (227) perturbations having different speeds can be generated in the layer. The first speed is a0, while the second speed

is
√

4ρ−1
0 ν(1 − αsφ0)/3. This result is valid only for weakly cohesive materials. Let us consider the vertical acceleration effect for liquified

layers where λ → 0. For simplicity we assume that ν ≈ 0 and φ0 = 0. In this case a2
0 = 2gh, η ≈ −hu1,1, β = −6gh, β1 = 12gh and

eq. (227) yields

u1,t t − 2ghu1,11 − h(2n + 1)−1u1,11ηt t = g(n + 1)−1η+
1 − X − gh1

− 6gh(u1,1 − 2u2
1,1)u1,11 + µu1,11t + h2(n + 2)−1u1,11t t + ρ−1

0 h−1
0 τ31,

(237)

where some small terms were neglected. It is seen that terms 2ghu1,11 and 6gh(u1,1 − 2u2
1,1)u1,11 are different from the analogous terms in

eqs (45) and (46). There is a term h(2n + 1)−1u1,11ηt t in eq. (237) that is absent in eq. (45). These differences are a result of the influence of
vertical acceleration. Thus, although some terms of eq. (237) are similar to terms of eqs (45) and (46), we have derived here a new approximate
equation for coastal waves. The terms of eq. (237) modify the linear, quadratic and cubic terms in Airy’s equation (Airy 1845). Indeed, Airy
(see eq. 46) did not consider coastal waves and had concluded a2

0 = gh. However, it is known (Peregrine 1983) that near a beach the wave
velocity a0 is not well determined. The non-linear wave shape is usually unsteady and each point on the wave such as the highest point or
point of maximum slope has a different, time-varying velocity. According to Peregrine (1983) it is realistic to expect a change of water wave
velocity from gh to 2gh near a beach. The vertical component of the surface acceleration usually increases when the layer thickness reduces.
For water waves this effect is seen well near the ocean coast. Thus, according to Airy’s theory and eq. (237), when the water depth is reduced
the water wave velocity varies from a0 = (gh)1/2 (far from the coast, Airy’s model) to a0 = (2gh)1/2 (near the coast). Of course, this result is
purely qualitative since near the coast assumptions (16), (26) and (27) should be corrected. However, eqs (227) and (237) properly describe the
tendency for change in wave velocity. Indeed, according to Peregrine (1983) vertical accelerations greater than 5g can occur in natural breaking
waves. Assume that the vertical acceleration ηt t in eq. (237) is 5g. In this case, we have for water waves a2

0 = 2gh + 5gh/(n + 1). If n = 1 in
this expression (the linear law of the variation of the vertical acceleration along the layer thickness, eq. 25), then a0 = (3.666gh)1/2 ≈ 2

√
gh.

If n = 0.75 (non-linear law of the variation of the vertical acceleration along the layer thickness, eq. 25), then a0 = 2
√

gh. These results agree
well with Peregrine’s prediction (1983, p. 158). Thus, the speed of non-linear waves in liquified layers is strongly dependent on the vertical
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acceleration near the layer edge. The influence of non-linearity on the wave velocity can be approximated by the formula a0 = 2
√

g(h + η)
(Debnath 1994; Remoissenet 1996).

Of course, the preceding results are applicable only to large-amplitude surface waves. For moderate seismic waves in liquified layers we
can use the expression a0 = √

gh. Let us consider, for example, a wave propagating in a layer with a thickness of 4.5 m. For this wave we
have a0 ≈ 6.5 m s−1 in agreement with field data (Pease & O’Rourke 1997).

7.1.1 The transresonant evolution of the edge waves

Up to this point, we have not taken into account dispersive effects on wave velocity. This effect can be important for sufficiently thick layers.
Let us consider a wave u1 = cos ωc−1

0 (c0t + x1) propagating in a thick layer. In this case, eq. (39) yields

c2
0 = a2

0 − 0.333A∗h2(1 − 0.666bG∗)ω2(1 − ρ−1
0 G∗a−2

0 ). (238)

In eq. (238) the most important terms for the analysis were preserved. It follows from eq. (238) that due to dispersion, waves of different
wavelengths travel at different phase velocities c0. According to eq. (238) the dispersion can change sign within the resonant band and
every new Fourier component generated by non-linear modification of the initial wave shape has a different velocity. This effect prevents the
formation of breaking or tsunami-like seismic waves on the surface of a thick layer.

If h → 0 then the dispersive effect is reduced, the velocity of the wave c0 → a0, eq. (238), and resonance occurs. Consider this
resonance and the transresonant evolution of waves travelling along the layer slope (Fig. 22) using the results of Section 3.5. Eq. (87) yields
k J ′′′ + (c2

0 − a2
0 )J ′ − 1

3 β1(J ′)3 + 0.5gη+ = 0. We assumed β ≈ β2 ≈ β3 ≈ 0, X = 0, h − h0 ≈ 0 and C1 = 0 in eq. (87). The preceding
equation is rewritten so that

η3 + 1.5h2 Rη/22/3 + �(c0t + x1) = K∗η′′, (239)

where η = h J ′, R = 25/3β−1
1 (a2

0 − c2
0), K∗ = 3kh2β−1

1 and � (c0t + x1) = −1.5gh3β−1
1 η+. If h → 0 then the difference a2

0 − c2
0 is small

and depends on dispersion, non-linearity and vertical acceleration. We assume that the transresonant parameter R can vary near the layer
edge from a positive to a negative value. Thus, the problem is reduced to the solution of equation (239). Using the analytical solutions of this
equation we studied the non-linear transresonant evolution of harmonic (Figs 23 and 24) and solitary-type (Fig. 25E) waves near and at the
edge of the layer (Fig. 22). Thin curves in Figs 23 and 24 show the variation of R.

First, we considered the case �(c0t + x) = Ah2 sin 0.5(c0t + x1). Solutions of eq. (239) were constructed by the iterative method. We
assumed approximately that K∗ ≈ 0. As a result algebraic solutions similar to (201)–(205) were found. Then the algebraic solution for the
case i = 2 [see solutions (203)] was corrected. It was suggested that within the resonant band the dispersion is a function of the transresonant
parameter R and K∗ = 0.024R + 0.1R2. The temporal and spatial evolution of the harmonic wave near the layer edge is shown in Fig. 23 for
L = 20 m. R = h/h0 + 2(Ah0/h) sech[Lπ−1(0.88h − 2A)] cos[0.5(c0t + x)]. c0 = (gh0)0.5h0 = 1 m, h varying from 1 m to 0, and A = 0.1
m. It is seen that the generation and evolution of the breaking wave are described by the analytical solution of eq. (239).

Reduction of the slope of the lower surface of the layer complicates the picture of coastal wave evolution (Fig. 24). The calculations were
repeated for L = 50 m. Two breaking waves are shown in Fig. 24. Particles, voids and vortices can be generated due to the overturning of
sediment (water) waves.

The transresonant evolution of the solitary-type wave near the layer edge is shown in Fig. 25. The case β = −3gh0 was considered. The
bottom slope s = 1

15 (Figs 25A and C) or 1
100 (Figs 25B, D and E). The initial waves are shown in Fig. 25(A)–(D) by dotted curves. Fig. 25

also simulates the coastal water waves. In particular, the profiles (A)–(D) show the evolution of solitary water waves on sloping plane beaches
which was studied by Smith (1998). The quadratic non-linearity effect is taken into account. In this case eq. (87) yields that

(J ′)2 + 0.666R J ′ − 0.333h−1η+ = 0, (240)

where η+ = l sech2αr, r = c0t − x1, R = 1 − gh/(gh + gη+) and

R ≈ η+/h ≈ lh−1 sech2αr. (241)

The profiles A, B (Fig. 25) were calculated according to eq. (240). Taking into account eq. (241) we approximately assume that R varies
near the front of the wave so that R = −6.5(h0 − h)3 sech{5(h0 − h)[α(r + h0 − h)]} and α = 0.5. It is seen that the simple algebraic
equation (240) describes qualitatively the wave evolution and results of numerical calculations (Smith 1998; Figs 7 and 8). Then effects of
weak dissipation and weak dispersion on the wave evolution were studied. Using eq. (87) we derive the following equation for c2

0 = a2
0:

2khβ−1η′′ + 2µ∗hc0β
−1η′ − η2 = glh2β−1 sech2αr. (242)

Following Sections 5.1 and 5.2 we construct an approximate solution of eq. (242),

η = √
ε{tanh[−β

√
ε(µ∗c0hα)−1 arctan(exp αr − C) + C1] + �1} sech(αr ), (243)

where ε = −glh2/β,

�1 = kβ
√

ε(µ2
∗c2

0h)−1 exp(αr )[1 + exp(2αr )]−1 sech2[−β
√

ε(µ∗c0hα)−1arctan(exp αr − C) + C1]. (244)
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Figure 23. Dynamics of the intense periodic transresonant waves near the layer edge: the beginning of the overturning and the overturning of the breaker.

Profiles C and D (Fig. 25) were calculated according to solution (243) for C1 = 0, C = 1 − h/h0. Boundary friction was taken into account,
therefore in eq. (242) µ∗ = µ f /h0ρ0 = 1.15 m2 s−1. We assume that the dispersive coefficient k depends on the slope and changes the sign at
the resonance. Profiles C were calculated for l = 0.3h0, α = 0.5 m−1, k = −gh3

0 and profiles D for l = 0.2h0, α = 0.25 m−1, k = −1.38gh3
0.

It is seen that the dissipative and dispersive effects are important for edge wave evolution. In particular, profiles C and D describe the data of
Smith (1998, Figs 7 and 8) better than profiles A and B.

The transresonant evolution of the solitary wave into tsunami-like wave is shown in Fig. 25(E). Eq. (239) was used. We assumed that K∗ =
0, �(c0t + x1) = −10h2 sech20.002(c0 t + x1 − L/2), L = 5000 m, R = −1.5 + 0.002x1, c0 = 15.5 m s−1, h0 = 25 m and h varies from 50 to
0 m. The step in the vertical displacement is formed in front of the wave. The level of the ground surface is depressed ahead of this jump (t =
175 s). As this reduction becomes deeper, a depression wave is formed near the edge of the layer (t = 200 s). At the same time the amplitude
of the step increases. The solitary wave (t = 0 and 75 s) is transformed into a shock-like wave having ahead of it a deep depression (trough)
(t = 200 s). According to the calculations the solitary wave can be amplified up to four to five times as a result of this transresonant
evolution.

The results presented in Figs 23–25 qualitatively describe the wide range of phenomena which can take place due to the focusing of
wave energy. In particular, Figs 23 and 24 qualitatively simulate the breaking of water waves on a beach. Thus, water breakers and coastal
wave evolution, which are amongst the most common and most striking phenomena in Nature, are the result of a transresonant process. There
is also an analogy between the focusing of seismic energy at the edge of a layer and acceleration of the end of the whip.

It is known that breakers can be excited in layers of weakly cohesive material (Jaeger et al. 1996). Sometimes shock-like waves having a
deep depression ahead have been excited in granular layers under strong vertical excitation (Clément et al. 1996). Therefore, breaking waves
might be expected to occur during large earthquakes. They rotate the ground surface in the x1–x3 plane. Indeed, Darwin (1839, p. 376) reports
that ‘. . . Some square ornaments on the coping of these same walls were moved by the earthquake into a diagonal position. . .’ and ‘. . . the
displacement at first appears to be owing to a vorticose movement. . . ’. Our calculations show that this ‘vorticose movement’ can be generated
by earthquake-induced breaking waves propagating in liquified surface soil.

Darwin (1839, p. 377) also wrote that ‘. . . the whole body of the sea retires from the coast, and then returns in great waves of overwhelming
force. . .’. Now this type of wave is called a tsunami. The tsunami may run ashore as a breaking wave, a wall of water or a tide-like flood. It is
seen that the note qualitatively agrees with Fig. 25(E) where the appearance of the ebb and the formation of a non-linear wall of sediment are
shown.

The evolution of surface waves near a coastline (transformation of the initially smooth waves into shock-like waves, breakers and vortices)
is a long-standing problem. Here it has been shown that the problem can sometimes be simplified and solved analytically using the recently
developed theory of transresonant wave processes (Galiev 1999a; 2000, 2003; Galiev & Galiev 2001). According to the analysis presented,
amplification and the breaking of the seismic waves are possible in the liquified sediment layer if h → 0. Perhaps, these effects explain the
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Figure 24. Dynamics of the intense periodic transresonant waves in the shallow layer edge: the growth and the curl of the waves and the breaking of the waves.

Alaska 1899 earthquake elevation of the coast up to 14.5 m (Davison 1936), the experimental data of Pedersen et al. (1994, see also Fig. 22)
and the concentration of damage in marine deposits (O’Rourke & Pease 1997; Pease & O’Rourke 1997).

Thus the coastal evolution of waves is a site transresonant phenomenon (Mei & Liu 1993). A similar evolution can take place for any
non-linear wave process if R is varied near R = 0.

7.2 Amplification, attenuation and evolution of transresonant waves

The width of the resonant frequency band depends on the amplitude of the excitation. For example, the width is determined by the equality
|R∗| = 1 (see Section 5.1.2), therefore we have (−4la2

0/βL)1/2 = −πa3
0 (ω1 + ω∗)/βLω2, which yields

ω1 + ω∗ = −2βπ−1ω2a−2
0 L(−4l/βL)1/2. (245)

It follows from eq. (245) that ω1 + ω∗ → 0 if l → 0. As a result of the narrowing of the resonant band, weak waves cannot be amplified.
Apparently, the wave is amplified in the resonators only if its amplitude exceeds some critical level. According to Beresnev & Wen (1996)
this level for vertical earthquake-induced waves of acceleration may be near 0.1g0.

Let us consider the strong motion. We shall use eq. (87) assuming that −µat J ′ ′′ + gh1 − X = 0, β2 = β3 = 0, 0.5gη+
1 = −A cos ωa−1

t r
and a2

t − a2
0 = −2−2/3 Rβ1. As a result, eq. (87) yields

kβ−1
1 J ′′′′ + [R/22/3 − ββ−1

1 J ′ + (J ′)2]J ′′ − Aβ−1
1 cos ωa−1

t r = 0. (246)

First, the non-linear and dispersive effects are considered. The dispersive effect was connected with the transresonant parameter R. It
was assumed that kβ−1

1 = K ∗ R2, where K ∗ is constant. Using the iterations (see Section 7.1) we constructed approximate analytical solutions
of eq. (246) for the case β = 0. Results of these solutions are presented in Fig. 26 cases K ∗ = 0 (a) K ∗ = 1 (b) and K ∗ = 5 (c). The
transresonant mushroom-like waves in Fig. 26 are reminiscent of waves generated due to instability of sinusoidal perturbations (Holmes et
al. 1999; Sarpkaya 2002). Then the non-linear effect was treated.

If A = β = k = 0 equation (246) has solutions J ′ = constant and J ′ = ±( − R)0.5/21/3 (see also eq. 86). The earthquake-induced wave
A cos ωa−1

t r changes these solutions. Let

R/22/3 − ββ−1
1 J ′ + (J ′)2 �= 0. (247)

In this case, eq. (246) describes shock- or mushroom-like waves. According to eqs (246) and (239) seismic waves of moderate amplitude
can be amplified very strongly in natural resonators, while seismic waves of greater amplitude are weakly amplified. If the dimensionless
amplitude of the driving oscillations is 0.001, then eq. (246) predicts the wave amplitude to be of the order of (0.001)1/2 (if β1 = k = 0,
see also Sections 5.1 and 5.2) or 0.1 (β = k = 0, see also Section 5.3). This result agrees qualitatively with data from the 1985 September
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Figure 25. Generation, propagation, amplification and transformation of non-linear resonant edge waves. Profiles A and C simulate data of Smith (1998,
Fig. 7) for the moderate slope of the layer bottom, profiles B and D simulate data of Smith (1998, Fig. 8) for the weak slope of the layer bottom. Profiles E show
the evolution of a tsunami-like wave.

19 Michoacan earthquake and the Northridge 1994 Southern California earthquake, and other observations (Singh et al. 1988; Reiter 1990;
Spudich et al. 1996; Su et al. 1998). At the same time, if the dimensionless amplitude of the seismic wave is greater than 1, then the amplitude
of this wave is reduced by the resonator. Indeed, resonators that contain a clear fundamental resonance for moderate motion can exhibit a
conspicuous absence of the peak in the strong motion (Field et al. 1997, 1998).

Let us additionally consider the vortex generation. We might expect that singularities of eq. (246) can transform the waves into vortices
(Galiev & Galiev 2001; Galiev 2003). The singularities occur when

J ′ = 0.5[ββ−1
1 +

√
β2β−2

1 − 4R/22/3], (248)

J ′ = 0.5[ββ−1
1 −

√
β2β−2

1 − 4R/22/3]. (249)

For simplicity the case β = 0 will be considered. We expand eq. (246) for small displacements around eqs (248) and (249). In particular, let

J ′ = g ∓
√

−2−2/3 R, r = r0 + z, (250)

where r 0 is some value of r in the neighbourhood of which we want to study the equation. Following Galiev (2003) a bilinear equation is
found

g′ = [±az + (b ∓ D)g]/g, (251)

where a = 2−4/3ωa−1
0 A(−R)1/2 cos ωa−1

0 r0, b = −2−4/3ωβ1a−3
0 r0 AR cos ωa−1

0 r0, D ≈ 2−4/3(−R)−0.5 R′(r0) and r 0 ≈ Nπa0ω
−1(N = 1, 2,

3, . . .). The solution is determined by eigenvalues λ,

λ−
1,2 = 0.5[(b − D) ±

√
(b − D)2 + 4a], (252)

λ+
1,2 = 0.5[(b + D) ±

√
(b + D)2 − 4a]. (253)

We emphasize that eigenvalues λ−
1,2, eq. (252), correspond to the singular line, eq. (248), and λ+

1,2 eq. (253), correspond to the singular line
(249). The behaviour and the stability of solution curves in the J ′–r plane depend on λ∓

1,2 and may be studied following Cunningham (1958).
According to the theory the wave shape becomes distorted (R ≈ 0) and triple-valued (R < 0).
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Figure 26. Transresonant evolution of the disturbances into mushroom-like waves. Non-linearity begins to form the mushroom when R ≈ 0. Profiles (a) and
(c) were calculated taking into account the dispersive effect [K ∗ = 1 (b) and K ∗ = 5(c)]. Due to this effect our analytic solutions describe qualitatively data
generated by numerical calculations (Holmes et al. 1999; Sarpkaya 2002).

Unstable nodes and saddles are formed if both roots
√

(b − D)2 ± 4a are real. When the roots become imaginary the unstable nodes can
be transformed into spirals (focuses). These spirals are transformed into vortices if R reduces and b − D → 0 (see fig. 4 from Galiev 2003).
This evolution is determined by R and A (Galiev 2003). Thus, according to eq. (246) the transresonant amplification of seismic waves may be
limited by the generation of vortices and the turbulent-like motion of the waves. It is known that in resonators, vortices and wave turbulence
may be generated if an excitation is sufficiently strong (Merkli & Thomann 1975; Galiev & Galiev 2001; Galiev 2003).

8 D I S C U S S I O N

Today, many scientists consider non-linear science as the most important frontier for gaining a fundamental understanding of Nature. Close
to their critical point, greatly different systems exhibit strongly similar non-linear dynamics. Similar non-linear waves can be generated in
various fields ranging from fluids, plasmas and the Bose–Einstein condensate to solid-state, chemical, biological, astrophysical and geological
systems. Investigations of these waves over the last two centuries have been devoted to cnoidal, shock and soliton-like waves (Whitham 1974;
Sagdeev et al. 1988; Debnath 1994; Jackson 1994; Scott 1999). Anomalous surface waves have been observed in recent decades (Chester &
Bones 1968; Longuet-Higgins 1983; Lioubashevski et al. 1996, 1999; Umbanhowar et al. 1996; Cerda et al. 1997; Jiang et al. 1998; Zeff
et al. 2000). It was found that these waves can be generated in different systems if relevant critical (resonant) conditions occur (Galiev 1997b,
1998, 1999, 2000a, 2003; Galiev & Galiev 1998a, 2001; Bhattacharyya et al. 2002). Near and at the resonance, various wave properties are
determined by global parameters, such as non-linearity and diffusion (Sagdeev et al. 1988; Prigogine 1997).

In particular, there is a growing recognition of the importance of non-linear phenomena in many branches of geophysics, although linear
models continue to be powerful tools for studying various geophysical processes. Non-linear amplification of seismic waves at sediment
sites appears to be more pervasive than seismologists used to think (Aki 1993). Here we have considered non-linear seismic surface waves.
Consideration of these waves is a complex problem that requires the derivation of new equations and the development of mathematical
techniques. It is a new problem, although there are analogues between surface waves in liquified and water layers. We note that non-linear
water waves have been studied over the last two centuries, but there are still unsolved problems in this field. The theory developed allows us
to consider some of them.

There are two main goals of this research. The first is to develop the theory of non-linear transresonant waves and to study seismic surface
waves in layers of soft, weakly cohesive and liquified materials. The second is to examine Charles Darwin’s earthquake reports. Darwin himself
did not personally observe all the phenomena which occurred over very large distances and have not been repeated since the 1835 Chilean
earthquake. Therefore, I conclude that mathematical methods and recent experimental data allow us to appreciate the accuracy of Charles
Darwin’s evidence.

In this paper I have discussed in detail the most important aspects of the research. Here I want to consider additionally only issues which
were discussed earlier in many papers and books so as to show more clearly some original aspects of the theory.

8.1 Some remarks on models of Sections 2–4

Our theory can, of course, be reduced to the elastic theory of classical linear seismology. Consider the linearized eqs (20), (23), (29), (30) and
(32). In this case eqs (29) and (30) yield
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u1,t t = −ρ−1 P1 + ρ−1G∗

(
∇2u1 + 1

3
∂�/∂x1

)
−

[
2

3
ρ−1h−1G∗ + g(n + 1)−1

]
η1 + X + X∗, (254)

u2,t t = −ρ−1 P2 + ρ−1G∗

(
∇2u2 + 1

3
∂�/∂x2

)
−

[
2

3
ρ−1h−1G∗ + g(n + 1)−1

]
η2 + Y + Y∗, (255)

where X∗ = ρ−1h−1τ31 − g(n + 1)−1η+
1 − gη−

1 , Y∗ = ρ−1h−1τ32 − g(n + 1)−1η+
2 − gη−

2 and the dilatation � = u1,1 + u2,2. According to
eqs (254) and (255) the influence of the vertical displacement can be important for thin layers (h → 0). Then we find from the equation of
state (23) and the equation of continuity (32) that

∇2 P = −b−1∇2(� + η/h). (256)

This relation and expression (28) give the following:

∇2η = −
[

gρ0(2n + 1)/(n + 1) + 4

3
h−1G∗ + b−1h−1

]−1(
gρ0∇2h − 2

3
G∗∇2� + b−1∇2�

)
. (257)

Now using eqs (254)–(257), after some algebra, we derive the equation for �

∂2�/∂t2 − a2
0∇2� = g∗∇2h + ∂(X + X∗)/∂x1 + ∂(Y + Y∗)/∂x2, (258)

where

a2
0 = ρ−1

0

(
b−1 + 4

3
G∗

)
+ g∗ρ−1

0

(
b−1 − 2

3
G∗

)
,

g∗ = gρ0

[
g(n + 1)−1 + 2

3
h−1ρ−1

0 G∗ − b−1h−1ρ−1
0

]/[
gρ0(2n + 1)(n + 1)−1 + 4

3
h−1G∗ + b−1h−1

]
.

(259)

According to eq. (259) the speed of waves a0 depends on the thickness, n and φ0 since b = λ (1 − φ0) + φ0 P−1
0 (see Section 3). If h → ∞ we

have the expression for the speed of elastic longitudinal body waves (see eq. 235). If additionally λ = 0, φ0 = 0 and n ≈ 0.2, then a0 coincides
with the velocity of Rayleigh waves, eq. (236). If g = 0 then we have the expression for the velocity of longitudinal waves in plates, eq. (128).

The velocity of shear waves does not depend on the thickness. Indeed, eqs (254) and (255) yield

∂2(u1,2 − u2,1)/∂t2 − ρ−1
0 G∗∇2(u1,2 − u2,1) = ∂(X + X1)/∂x2 − ∂(Y + Y2)/∂x1. (260)

Thus, it follows from eqs (258) and (260) that in the various cases the equations of Section 2 describe the propagation of the different waves:
P-type waves, Rayleigh waves, the long longitudinal waves in plates and SH waves. These waves have a vertical component of the displacement
(see eqs 257 and 25). Therefore, they also propagate 3-D shear and rotational motions.

In considering 2-D surface waves we assumed eq. (90). As a result, the rotation in the x1–x2 plane was eliminated. However, due to the
vertical displacement the equations of Section 4 take into account the rotation in the x1–x3 and x2–x3 planes. In particular, according to eqs
(19), (25) and (90) we have s∗

13 ≈ −xn
3h−nη1 and s∗

23 ≈ xn
3h−nη2. For the 1-D theory of Section 3 only s∗

13 is conserved.
We have the classical equations for 2-D body waves in elastic media if η = 0, φ = 0 and h → ∞ in eq. (256). The main novelty of the

linearized equations of Section 2 is determined by assumption (25). This assumption reminds us of Love’s assumption (1906, p. 551), which
improves the elementary theory of the longitudinal wave propagating in this bar. Love included in his consideration the lateral displacement
(strain) of the bar −νu1,1 (here ν is Poisson’s ratio). We used assumption (25) to consider weakly cohesive media and the influence of the
vertical displacement on the horizontal waves.

8.2 Transresonant evolution of a non-linear wave equation

We have shown that near some critical points the disturbed wave equations (45) and (113) transform into the non-linear diffusion equations
(see eqs 138,163 and 164 and Sections 3.3, 3.4, 4.3 and 4.4.1). Let us consider this transformation for an arbitrary non-linear wave equation.

First, we consider Newton’s second law for a mass m: mutt = F . If F = ma2
∗u11 we have the d’Alembert equation (1-D wave equation or

string equation). If F = ma2
∗(x1, x2, t)∇2u + mF∗(u) + mS(x1, x2, t), then Newton’s second law yields

utt − a2
∗∇2u = F∗(u) + S(x1, x2, t), (261)

where F∗ is a non-linear function of u. It is emphasized that eqs (45) and (113) may be transformed into eq. (261). It is important that all
equations noted contain a term utt. This term determines the motion of the wave far from a resonance.

Let us consider resonant bands where utt ≈ a2
∗∇2u. For simplicity the 1-D version of eq. (261) is treated, where S(x1, t) = F−(ait −

x1). We consider the resonance connected with the site effect (see Sections 6 and 7) and resonators located at x1 = xi
1, i = 1, 2, 3, . . . .

If utt = a2
∗u11 at points x1 = xi

1, singular solutions of the wave equations may be generated there (see Section 4.4). Near these points we
assume a∗ = ai + a1i (x1) + · · ·. Here ai is a constant, ai  a1i (x1) and a1i (x1) is a slowly varying function. We shall consider the wave
u = J [ait − ai f (x1)], where f (x1) = ∫ x1

0 a−1
∗ dx1 ≈ a−1

i x1 − a−2
i

∫ x1

0 a1i dx1. In this case near the critical points J may be expanded in a
Taylor’s series: J [ai t − ai f (x1)] = J − fi J ′ + · · ·, where J = J (r ) = J (ai t − x1), fi = −a−1

i

∫ x1

0 a1i dx1. As a result, near the resonators
eq. (261) approximately yields

a2
i fi,11 J ′ + (2a2

1i − a2
i fi fi,11)J ′′ = F∗(J ) + F−(ai t − x1). (262)
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Eq. (262) is an analogue of a following non-linear diffusion-type equation:

ai fi,11ut + (2a2
1i − a2

i fi fi,11)u11 = F∗(J ) + F−(ai t − x1), (263)

because u ≈ J (ait − x1). In contrast with eq. (261), eq. (263) contains a term ut (instead utt). This term appears within the resonant bands
and its generation lies beyond Newton’s and d’Alembert’s conception of the wave motion (Prigogine 1997). Thus, the wave diffusion may
be generated near resonance independently on initial dissipation and dispersion (for example, even if µ∗ = k∗ = 0 in eqs 45 and 113). In
particular, the wave diffusion effect may be very important when resonators are located near to each other and the resonant bands intersect
(Sagdeev et al. 1988).

Sometimes diffusive (parabolic) equations are used in water wave theory (Zakharov 1968; Mei & Liu 1993; Debnath 1994). In particular,
the non-linear Schrödinger equation describes surface water waves. Equations for electromagnetic waves may also be approximated by the
Schrödinger equation (Galiev & Galiev 2001).

Eqs (87), (181), (196) and (262) recall non-linear pendulum-type equations. However, in contrast with the pendulum equation, there
are terms (· · ·)′′ not connected with inertia in the Galilei and Newton conception of motion. These equations can have a chaotic solution
(Grimshaw & Tian 1994; Soliman 1997; Thompson 1997; Nayfeh 2000). Thus resonances can destroy predictability. On the other hand, the
chaotic dynamics may be determined by the wave diffusion and intersections of the resonant bands (Prigogine 1997; Sagdeev et al. 1988).
According to eq. (262) non-linear resonant normal modes (eigenfunctions) do not depend on boundaries.

If a1i = 0 (exact resonance) then eq. (262) can yield the algebraic equation (see Sections 3–5).
Eq. (262) has variable coefficients. The solutions presented in Sections 5–7 are valid for eq. (262) in the case of slowly varying coefficients.

It is known that the non-linear diffusion equations can determine spiral waves. In particular, waves described by eq. (262) may be similar to
non-linear diffusive curved waves (spiral waves) observed in different physical, chemical and biological systems (Cross & Hohenberg 1993;
Scott 1999; Lin et al. 2000).

Thus the original non-linear wave equations can evolve within resonant bands into the non-linear diffusive equations (near the exact
resonance) and then into algebraic equations (exact resonance). It is a result of the singular nature of the resonant problems. The bifurcation
of the solutions, the secular terms in eqs (66) and (147) and the generation of new diffusion terms show that earthquake-induced wave motion
may be not only predictable but also irregular and unpredictable. Any small differences in the parameters of non-linear problems could lead
to great disparities at future times (usually initial conditions and the earthquake-educed excitation are not precisely known). Therefore, it is
impossible to predict (Evans 1997; Geller 1997) with any degree of assurance the results of earthquake for natural resonators.

8.3 Conclusion

Non-linear, resonant and topographic effects are very important for vertically excited surface waves in granular layers (Pak & Behringer 1993;
Jaeger et al. 1996; Umbanhowar et al. 1996). These effects may also be important for strong ground motions (see Bull. Seism. Soc. Am. 86,
No 1B, 1996 and 88, No 6, 1998). A number of factors complicate the problem. First, since the amplitudes of seismic waves are usually
small, non-linear effects are often also small. Thus, even strong earthquakes are studied in terms of linear elasticity. Secondly, topographic,
resonant and non-linear effects are usually localized near the ground surface and depend on the orientation relative to the earthquake source.
The shaking at any given site due to earthquakes may vary even when the intensities and the distances to the earthquake sources are similar.
For trapped waves, this variation depends on the geometric and mechanical properties of the resonator, the frequency of excitation and the
orientation of the earthquake-induced seismic wave. Thus, a moderate earthquake can generate in topography a more intensive shaking than a
strong earthquake if the orientation and the natural frequency of the topography are favourable for the resonance. Thirdly, some geomaterials
(for instance, those having a high water content) demonstrate linear behaviour up to very high strains (for example, Mexico City clay, Singh
et al. 1988). Fourthly, it is difficult to simulate earthquake events with the help of experiments. Because of the above and other complexities
(Evans 1997; Geller 1997, see also the paper), a non-linear theory of seismology valid for all situations has not been constructed.

In this paper I have considered non-linear surface waves propagating in weakly cohesive media where the non-linearity of the stress–strain
relationships is small with respect to the non-linearity of the equations of deformable media and state, and the non-linearity of the boundary
conditions. New approximate wave solutions of the equations of deformable media have been constructed by the perturbation method. A
procedure is derived for the elimination of the secular terms in expressions for the displacement (66) and the displacement potential (147).
Transresonant evolution of the perturbed wave equations are studied. At resonance, utt ≈ a2

0∇2u and these equations transform into non-linear
diffusion equations, either to basic highly non-linear ordinary differential equation or to the basic algebraic equation for travelling waves.
According to the theory presented mathematical singularities (resonances) reflect the generation of new strongly non-linear wave structures
in natural and artificial systems which are needed for the new mathematical formulation of problems. Then the resonant conditions and
the site resonance are considered. During an earthquake, travelling seismic waves may be trapped by topography. The non-linear theory
predicts that unfamiliar resonant seismic waves of anomalous shape and steep fronts may be generated by topography. The evolution, form and
amplitudes of these waves depend on competition between non-linear, dissipative, dispersive and spatial effects within resonant bands. At exact
resonance, the first-order linear terms in the equations are eliminated and the problem is strictly non-linear. During the transresonant evolution,
terrestrial moderate-amplitude waves can be transformed into shock-, jet- and breaking-like waves. Vortex-like structures may be generated.
Strong ground motion is attenuated within the resonant band. Localized standing waves may be generated on the surface of the natural
resonators.
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The speed of waves in a layer of the weakly cohesive materials depends on the mechanical properties of the material, the geometry of
the layer, and the vertical acceleration. In particular, the speed of some waves can be

√
2gh, and the breaker velocity can be up to 2

√
gh. At

the same time the speed of waves can depend on complex effects within the resonant band.
The non-linear theory presented herein qualitatively explains some reports of Charles Darwin (1839) regarding Quiriquina, the island of

S. Maria and volcanoes, and supports his opinion that elevation of the land, fissures and columns of matter were parts of a single phenomenon.
In particular, the theory explains qualitatively the same-day earthquake/large eruption events described by Darwin.

Following Galiev & Galiev (2001) I develop a theory of non-linear transresonant surface waves and study the evolution of singular wave
phenomena within the resonant bands. It is shown that within the bands the equations of deformable media may be strictly simplified up to
the basic non-linear algebraic equations for the travelling waves. It allows us to consider the wide spectrum of non-linear seismic problems
for natural resonators.

The theory of non-linear transresonant waves was developed. Profile points of these waves occupy various positions within the resonant
band. In other words, the wave profile is a function of the transresonant parameter R. On the other hand, the wave profile can depend strongly on
non-linearity, the excitation, geometry of resonators and so on (Galiev 1999a, 2000a). Threrfore, an variety of unfamiliar transresonant waves
may be excited within the resonant bands and the evolution of singular wave phenomena may be complex. When two or more resonances
are simultaneously present in a system, they may result in the appearance of widespread chaotic wave phenomena (Sagdeev et al. 1988).
Apparently, multi-resonant wave phenomena are the problem for the future.

It is possible to give a different interpretation of the paper results. I connected most of them with the seismic problems. However, the
transition from the smooth waves to shock-, jet-, or mushroom-like waves and vortex-like structures have been observed in many natural and
artificial (for example, the Bose–Einstein condensate) systems. The generation of wave turbulence may be connected with this transition. I have
shown that this transition is determined by the strongly non-linear transresonant process. Usually, wave fields in classical and quantum systems
are described with the help of the Fourier expansion. However, this expansion cannot simulate the formation of multi-valued wave fronts and
the generation of particles, drops and bubbles in the wave front. The methods, which were used in this paper (Galiev & Galiyev 2001; Galiev
2003), allow us to study these complex transresonant wave phenomena. These phenomena may be described by ordinary differential equations
or non-linear algebraic equations. Since these equations simulate the properties of many perturbed wave equations within the transresonant
band, we think that similar evolution can take place in systems ranging from microresonators to the early Universe (Galiev & Galiyev 2001;
Galiev 2003).
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