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SUMMARY

The large-scale continuous GPS networks that have emerged in the last decade have documented
a wide-range of aseismic deformation transients that resulted from physical processes such as
aseismic fault slip and magma intrusion. In particular, a new class of (M ~7) slow earthquakes
with durations ranging from days to months have been observed with GPS arrays located above
the downdip portion of subduction zone thrust interfaces. Interpretation of the displacement
time-series resulting from these events is not straightforward owing to the contaminating effects
of multiple contributing signals such as fault-slip, local benchmark motion, seasonal effects,
and reference frame errors. We have developed a time-dependent inversion algorithm based
on the extended Kalman filter which can separate the various signals and allow the space—
time evolution of these slow-slip transients to be studied in detail. We applied the inversion
algorithm to the 1999 Cascadia slow earthquake. This event had two primary episodes of
moment-release separated by a two week period in which relatively little moment-release
occurred. The Cascadia event and other slow earthquakes share numerous similarities with
both ordinary earthquakes and afterslip transients suggesting that they may represent fault slip

under a conditionally stable regime.
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1 INTRODUCTION

Most subduction zones accommodate more than half of their fault-
slip aseismically (Pacheco et al. 1993). This large component of
plate-motion has been generally inferred to occur as steady-state
fault creep. However, as dense, continuous geodetic networks have
started to record data on the overriding plates of a number of
subduction zones it has become clear that much of the aseis-
mic deformation occurs during relatively brief periods. There are
now large-scale permanent GPS arrays above subduction zones in
Japan (GEONET) (Miyazaki et al. 1997; Mazzotti et al. 2000), the
Pacific Northwest (PANGA)(Miller et al. 2001), and elsewhere. The
episodes of rapid aseismic deformation observed by these arrays
are sometimes associated with earthquake afterslip (Kawasaki et al.
1995; Burgmann et al. 2001), but increasingly aseismic slip events
are being identified that are not associated with any seismic earth-
quake making them ‘silent earthquakes’ (Beroza & Jordan 1990).
Silent earthquakes have been observed by continuous GPS net-
works along numerous subduction zones including southwest Japan
(Hirose et al. 1999; Ozawa et al. 2001), Cascadia (Dragert et al.
2001), the middle America Trench (Lowry et al. 2001), and the
Aleutions (Freymueller et al. 2001). Prior to the advent of large scale
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GPS arrays, aseismic slip was documented on the San Andreas Fault
with strain and creep meters (Linde ez al. 1996). Aseismic deforma-
tion transients resulting from both fault-slip (Cervelli et al. 2002)
and dyke intrusion (Aoki ef al. 1999) have also been observed in
volcanic areas. Thus, with the advent of continuous geodetic net-
works a new class of deformation events has become available for
detailed study.

There are numerous important reasons for engaging in detailed
studies of these events which go beyond the initial documentation
stage. Aseismic slip can have a strong influence on the moment
budget of faults which needs to be quantified for accurate seismic
hazard estimates. Aseismic slip also redistributes stress in the crust
affecting the locations of future earthquakes. Transient deforma-
tions proceed some volcanic eruptions (e.g. Linde ef al. 1993; Owen
et al. 2000), and deep aseismic slip, similar to the recently observed
transients, preceded the largest subduction zone thrust earthquake
ever, the 1960 Chile Mw 9 earthquake (Kanamori & Cipar 1974;
Cifuentes & Silver 1989; Linde & Silver 1989). Finally, detailed
imaging of aseismic fault-slip transients may help constrain fault
zone constitutive laws.

There are major challenges in developing inverse methods that
can determine detailed information about the space—time variations
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in the aseismic slip-rate on faults from geodetic data. First, we do
not know a priori the nature of the time variations that we are try-
ing to detect. Secondly, space geodetic measurements contain spa-
tially and temporally correlated errors owing to atmospheric path
delays, and in the case of GPS multipath and random benchmark
motions (Wyatt 1989). This is a fundamentally different situation
than the earthquake seismology inverse problem where the only sig-
nificant contribution to the ground-displacement time-series is that
resulting from fault-slip. Thirdly, owing to the imperfect resolu-
tion of the data, any inversion procedure will involve some spatial
and temporal smoothing. It is very desirable that the amount of
smoothing be determined by some rigorous procedure, not simply
the analysts prejudice about what the slip-distribution should look
like.

Segall & Matthews (1997) developed a recursive Kalman filter al-
gorithm for determining the space—time variation in fault slip-rates
from a set of geodetic time-series. This method, referred to as the
Network Inversion Filter (NIF), incorporates several features, such
as a stochastic description of local benchmark motion, that are ad-
vantageous when inverting geodetic data. The principal advantages
ofthe NIF over other methods include: a non-parametric description
of the slip rate as a function of time, and the fact that the filter oper-
ates on raw position time-series rather than derived quantities such
as average displacement rate. Subsequent improvements in the tech-
nique have included separating the spatial and temporal smoothing
of the slip-rate distribution (Segall et al. 2000) and estimation and
removal of reference frame errors in the GPS data (Miyazaki ef al.
2003). These studies have utilized linear descriptions of the under-
lying physical system and measurement process. The linear for-
mulation has lead to two primary limitations of the filter in its
application to real data sets. First, non-linear constraints on the
model, in particular enforcing slip-rate non-negativity, have not been
incorporated often leading to the need to over smooth the solu-
tions to avoid unphysical solutions (i.e. left-lateral slip on the San
Andreas Fault). Secondly, the hyper-parameters which control the
extent of spatial and temporal smoothing have had to be estimated
separately using a maximum likelihood procedure. Using a pre-
diction error decomposition, Segall & Matthews (1997) showed
that the likelihood could be computed using a recursive filter that
inverted the state-covariance matrix at each epoch. While rela-
tively fast, compared to inverting the full data covariance ma-
trix, this approach proved to be computationally burdensome—the
full data set needed to be run through a forward filter for every
choice of smoothing (hyper) parameters. Moreover, the maximum-
likelihood estimates of the smoothing hyper parameters were of-
ten disregarded in favour of a significantly oversmoothed solu-
tion as a means of enforcing slip-rate positivity. In this paper we
seek to correct these two related problems by employing a non-
linear system and measurement model. Our new formulation al-
lows the incorporation of non-negativity constraints through the
use of pseudo-data, and incorporates the hyper-parameters directly
into the state vector so that they are estimated by the filter simul-
taneously with the slip-rate. The new system and measurement
models are solved using an extended Kalman Filter. This non-
linear approach provides significantly improved spatial and tem-
poral resolution, lower computational cost, and is equivalent to the
maximum-likelihood estimate in high signal-to-noise ratio (SNR)
cases which include the larger aseismic transients observed in real
data.
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2 METHOD

We model GPS station positions as a function of time ¢, as

X(1) =Y H (t — togy) X
k

+ /Asp(é,t—to)GLq(X, §)n, (&) d A(E)

+FE(t) + L(x,t —to) + € 1)

where the first term on right hand side represents coseismic offsets
X<os®) at times 744, and H(?) is the Heavyside function. The second
term on the right hand side represents deformation due to transient
aseismic slip. We relate the time dependent site motions to slip on
faults in an elastic medium as a function of position £ and time,
sp(&, t—to) through Green’ functions G, (x, §). To date, Green’s
functions relating slip to surface displacement have been computed
using analytical expressions for dislocations in uniform half-spaces,
although there is no impediment to computing Green’s functions
in heterogeneous or layered media. In (1) p, ¢, 7 = 1, 2, 3, and
summation on repeated indexes is implied, n,(£) is the unit normal
to the fault surface A(&).

In (1) the fault slip includes both stead-state and transient compo-
nents. In some cases where modelling the steady-state deformation
field is not possible (at least to sufficient accuracy), we have found
it useful to separate the steady station velocities by adding a term
Vo -(t—10) to (1). In this case s, in (1) represents only the transient
component of fault slip. Given sufficient data it is possible to esti-
mate the secular velocity V. along with the transient fault slip. In
other cases we have estimated V.. separately and subtracted it from
the position time-series prior to filtering.

The remaining terms are related to measurement and reference
frame errors. The term F'f(¢) represent reference frame errors, where
F is a linearized Helmert transformation and f(¢) is a vector of
rigid body translations, rotations, and a scale factor (Miyazaki et al.
2003). The fourth term on the right hand side of (1), L(x, ¢ — ¢¢), rep-
resents random benchmark wobble, which we model as a Brownian
random walk with scale parameter T (units length time™!/?) (Wyatt
1989). While some studies have advocated a flicker noise model for
benchmark motion (Mao et al. 1999; Zhang et al. 1997), Langbein
& Johnson (1997) using over 10 yr of data show that a random
walk fits the data quite well. Without a long time-series it is very
difficult to distinguish between flicker noise (with a 1/f spectral de-
cay) and random walk (with a 1/ f? spectral decay). A key feature
of the Network Inversion Filter is that it can distinguish spatially
correlated transient signal from site specific coloured noise. The
reason for this is that elastic deformation causes a spatially coher-
ent signal, whereas the local benchmark motions are, by definition
spatially incoherent. The fact that the local benchmark motions are
spatially incoherent may be more important than the precise form
ofthe spectral decay. The final term, €, represents observation error,
which we take to be normally distributed with zero mean and co-
variance 62X 6?8, where 6P is the covariance matrix of the GPS
positions, and o2 is a scale factor to account for unmodelled errors
such as mulitpath, or azimuthally varying path delays.

To estimate the time-dependant quantities s,(&, t—,), f(¢), and
L(x,t — to) we incorporate (1) into a state—space model of the under-
lying system and measurement processes. The state—space system
is most generally specified by a non-linear measurement equation:
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dx = h(xx) + €k, €k ~ N(0, Ry) 2)
and a non-linear state-transition equation:

Xiq1 = (X)) + ki1, Sk ~ N(O, Quyr) 3)

where the & subscripts indicate observation epoch, dy is the data
vector at epoch k, xy is the state vector at epoch & which contains all
the quantities necessary to describe the system. The state transition
equation predicts the state of the system at time & + 1 given an
estimate of the state at time k. The measurement and process noise
are described by the covariance matrices R and Q respectively (see
Appendix A).

Following Segall & Matthews (1997) we model the local bench-
mark motion at the jth station as a random walk with scale
parameter T

Lj(?) = T/o dw (1) 4

where dw is formal white noise with unit variance. In this paper,
7 is assumed to have the same value for all sites, usually around
1-2 mm yr~'/? (Langbein & Johnson 1997). Similarly the slip-
rate of the ith subfault is modelled as a random walk with scale
parameter o

i) =« /0 , dw (), si@)= /0 t §i(Hdt'. (5)

Thus, the cumulative slip on any subfault is a integrated random
walk and the slip accelerations between observation epochs are mod-
elled as a white noise process. The hyper-parameter o controls the
temporal roughness of the slip-rate function (Segall & Matthews
1997).

2.1 Pseudo-data

There are two types of constraints we would like to enforce on the
solution. The first is that the slip-rate distribution be one-sided (i.e.
no left-lateral slip on the San Andreas fault). The second is that the
slip-rate distribution be spatially smoothed. Following Segall et al.
(2000) we incorporate these constraints into the state estimation
process through the use of pseudo-data

Vi =0+¢€, e~ N, y*I) (6)

$ = 0+kp, K~ N(O, p*1). ™)

Eq. (6) has been used successfully in previous implementations of
the NIF to enforce spatial smoothing (Segall ef al. 2000; Burgmann
et al. 2002; Miyazaki et al. 2003). Eq. (7) can be reformulated as
an equality constraint by introducing the dummy variable A% which
is estimated simultaneously with §} (see Hel-Or & Werman 1996)

-i i2
sk_)"k =O+7]k, nkNN(Os 102[) (8)

The hyper-parameters y and p control the extent to which the two
constraints are enforced in this stochastic formulation. Since one-
sidedness is a physical constraint we typically fix p at some very
small value (~1/1000 of the expected slip-rates) to strictly enforce
it. However, in cases where the secular velocity has been subtracted
from the data time-series we are actually solving for deviations in
slip-rate relative to ‘steady state’. In these cases, values as low as —1
times the plate motion rate are physically allowable as they would
be interpreted as a region that is normally fully uncoupled becoming
completely coupled. The hyper-parameter y which controls the ex-
tent of spatial smoothing applied at any epoch has been estimated in

previous NIF studies by maximum-likelihood using a prediction er-
ror decomposition (Segall & Matthews 1997). This method is ideal
in a low signal-noise-ratio case, but it is computationally expen-
sive. In this paper, y is estimated directly by the filter algorithm as
discussed below.

2.2 Direct estimation of hyper-parameters

In previous linear formulations of the NIF the hyper-parameters
which control spatial and temporal smoothing of the slip-rate dis-
tribution, y and «, have appeared in the covariance matrices of
the pseudo-data noise and the process noise respectively. Since
we will need to use a non-linear state—space model to incorpo-
rate the positivity constraint in (8) there is also the possibility of
directly estimating y and « in the filter. Hyper-parameters which
control the process noise, such as & and t can be incorporated into
the measurement equation by defining the associated random-walk
process as:

Wi = /0 dw (), Wit) = /0 Wit). )

with the slip and slip-rate amplitude given by s = aW and § = aW.
The contribution of slip on the ith subfault to displacement at the
jth station is Gys; (see appendix A). o, Wi, and W' are all included
in the state vector and estimated by the filter.

Hyper-parameters which specify the covariance matrices of the
data and pseudo-data, such as y, p, and o, can be directly incorpo-
rated in the observation equation by simply dividing equations like
(6) by the appropriate standard deviation

1
—V8k=0+¢€, € ~N(QOI (10)
14

Using these direct relationships between the hyper-parameters and
the data/pseudo-data the hyper-parameters can then be considered
part of the state-vector (see Appendix A). Augmenting the state-
vector with the unknown parameters of the system model and solving
them using a linearized (extended) filter is a common process in the
data assimilation literature referred to as adaptive estimation (see
Wunsch 1996, section 6.6.2).

2.3 Extended Kalman filter algorithm

The non-linear state—space system described by eqs (2) and (3) (and
detailed in appendix A) can be solved for estimates of the state vector
at each of the observation epochs using an algorithm known as the
extended Kalman filter (see Gelb 1974). The filter is initialized with
an a priori estimate of the state vector, Xojo and its covariance g
(where the subscripts x;; indicate the estimate of the state vector at
epoch k given data through epoch j). Typical values of these priors
will be discussed in the synthetic and data examples in subsequent
sections. The a priori estimates are then predicted forward one time
step (there is no requirement that subsequent time-steps be of the
same size). The predicted state is then compared with the data from
the first epoch and any residual is used to update the estimate of the
state at epoch 1. The prediction and update process are then iterated
through the entire data set.

2.3.1 Prediction step
X1k = tXi) + St Sk ~ N(O, Qpepr) (11)

ik = T Zigie * Th + Qi (12)
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2.3.2 Update step

Xt 1kl = Xkt + Kicrr * [digr — h(Xig110)] (13)
Tttt = [ — Kipr Hip1 1 241k (14)
T T -1
Kt = Sy [Hic Sy + Ric ] (15)

where
ot oh
 ORPALC [ CL CY (16)
) S x|y,

After reaching the last observation epoch we have estimates of the
state vector at each epoch given data up to that epoch, xyx. To obtain
estimates of the state vector at each epoch given all the data, xyn
(where N is the number of observation epochs), it is necessary to
run a similar recursive procedure backward in time. This algorithm
is known as smoothing (see Rauch ef al. 1965; Segall & Matthews
1997).

3 SIMULATION

In this section we present the results of inverting a data set for a
simulated aseismic slip transient on a dipping thrust fault recorded
by an array of GPS receivers on the overriding plate (see Fig. 1).
The transient begins near the southern downdip corner of the fault
and propagates both updip and along strike with a rupture velocity
of 3 km d™! and a rise-time at any one point of 17 d. The total du-
ration of the event is about 45 days. Data time-series are computed
for the East and North components for the 42 sites shown in Fig. 1.
Each data time-series is the sum of the signal resulting from the
fault-slip, the contribution from local benchmark motion, and the
contribution from measurement error (assumed to be a white noise
process). While the absolute scale of the slip and resultant displace-
ments (mm, cm, etc.) is arbitrary, we have chosen the relative size
of the fault-slip, benchmark motion, and measurement error to be
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Figure 1. Map of the station distribution (asterisk) and fault grid (coloured
rectangles) for our synthetic tests. The shading indicates the final slip dis-
tribution. The fault strikes North-South and dips 15° to the East. The upper
(Western) edge is at 10 km depth and the lower (Eastern) edge is at 30 km
depth.
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Figure 2. Maps of the true slip-rate distribution every 4 d from the start of
the transient to its end. The event nucleates near the southern downdip edge
of the fault and propagates updip and to the North.
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Figure 3. The top panel shows the East component data (blue asterisks)
for the station located at (—5 km, 15 km) in Fig. 1 which is the sum of the
fault-slip contribution (middle panel), the benchmark wobble contribution
(bottom panel), and white noise measurement error. The black lines in each
panel show the fit from running the extended filter on the entire data set.

representative of the best recorded transients (e.g. Miyazaki et al.
2003). The measurement errors are normally distributed with a scale
of 1, the benchmark motion is a random walk with a scale param-
eter of 5 yr~!/2, and the maximum surface displacement from fault
slip is 29. An example of a data time-series and its contributions
from fault-slip and benchmark motion is shown in Fig. 3. The fol-
lowing sections discuss the inversion of this data set with positivity
constraints using both the original maximum likelihood algorithm
of Segall & Matthews (1997) and the new algorithm which esti-
mates the hyper-parameters directly by including them in the state
vector.

3.1 Maximum likelihood estimation of hyper-parameters

In previous implementations of the Network Inversion Filter, the
hyper parameters which control the spatial and temporal smoothing
of the slip-rate distribution, y and «, have been estimated before

Zz0z Aenige4 90 uo 1senb Aq ¢1£629/8.2/€/GG |/e1o1e/B/woo dno-ojwapeoe//:sdiy wolj papeojumoq



782  J J. McGuire and P. Segall

35F

©
T
I

8.2e4

Temporal Smoothing Parameter, Log(alpha)
- N
o S o
T T T
| | |

o

3
T
L

0 I I I I I I I I I
-1 -0.5 0 0.5 1 1.5 2 25 3 3.5

Spatial Smoothing Parameter, Log(gamma)

Figure 4. Likelihood surface (—2L) as a function of y and o. Asterisk
marks the minimum, corresponding to the maximum likelihood estimate.
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Figure 5. Maps of the estimated slip-rate using maximum-likelihood esti-
mates of the hyper-parameters, similar to Fig. 2.

running the filter using maximum likelihood (Segall & Matthews
1997). The best estimates of the hyper parameters are found by
maximizing the log likelihood L over the set of hyperparameters
® = [0, o, y]. Maximizing L for the simulated data set results in
an estimate of « = 1.9¢4 and y = 4.8 (see Fig. 4).

Running the synthetic data through a version of the filter which
used hyper-parameters fixed to the maximum likelihood values and
incorporated positivity constraints, produced the slip-rate estimates
shown in Fig. 5. In general the estimated slip and slip-rate distri-
butions are similar to, but somewhat more smoothed than, the true
distribution. We measured the accuracy of the inversion result in
terms of the summed squared residual between the true slip and
slip-rate distributions and the recovered distributions:

X Y6y Sy

Ty Y an
i Jj o
(s — S
= L2y — 8y %_(;_ S_Q_S”) (18)
i JjCij

where s and § are the true distributions and § and § are the esti-
mated ones. Thus the quantities r; and r, are analagous to a vari-

ance reduction. For the maximum likelihood inversion r; = .24
and r, = .04 (a value of 0 indicates perfect recovery of the true
distribution).

3.2 Direct estimation of hyper-parameters

As described in Section 2.2 and Appendix A, an alternate approach
to [maximum-likelihood] estimation of y and « is to directly in-
corporate them into the state vector so that they are determined as
part of the estimation process. This is useful because the filter need
only be run once rather than once for each combination of hyperpa-
rameters, ©;, to be tested. The key additional piece of information
that is necessary to include the hyper-parameters in the state vector
is an a priori estimate, x¢ and it’s covariance, X. We assign a
priori values of o and y that would result in a very smooth slip-rate
distribution, but also assign very large variances so that the a pri-
ori information will contribute little to the final estimate. We also
assume that the hyper parameters do not vary as a function of time
during the observation period, i.e. there is no process noise for these
state vector elements and that there is no a priori covariance be-
tween them. Thus the best estimate of the hyperparameters comes
from the state vector at the final epoch, xnx. A similar approach is
taken with the prior information for the slip-rate which is set to an
a priori value of zero with a large variance. The hyper-parameters
which control the benchmark motion, 7, and the scale parameter
for the GPS covariance matrix, o, are assumed known (say based
on an analysis of a quiet portion of the time-series), and fixed to
their correct values in these simulations as was also done in the
maximum-likelihood simulation above. In principle there may be
sufficient information in a long time-series to estimate the values of
these parameters as well, but we have not experimented with this.

For the synthetic data set we first ran the filter with an a priori
values of @ = 1 £ 1000 and y = 1 £ 1000, this produced estimates
of @ =2.2e3 and y = 116 indicating that our prior variance on o was
too small. So the filter was rerun with an a priori values for o and y
of 1e3 and le2, and a priori variances of 1e6 and 1e6 respectively.
This resulted in estimates of @« = 1.3e4 £ 402 and y = 780 + 2¢€3.
(runs with higher a priori values of @ and y did not result in sig-
nificantly different final estimates). These results are similar to the
maximum likelihood estimate in that & estimates are similar and that
y is poorly constrained (see Fig. 4). The estimates of the slip-rate
distribution from the extended filter are shown in Fig. 6. The slip-
rate estimates from this filter provide a better recovery of the true
slip-rate values (r; = .14, r, = .07) than the maximum-likelihood
filter as evidenced by the higher peak slip-rates in Fig. 6 than in
Fig. 5. The datafits for one station are shown in Fig. 3. Although
the input signal was purely thurst slip, we inverted for both the
thrust and strike-slip components of motion on each subfault. The
estimated erroneous amount of strike-slip motion estimated by
the filter corresponds to only about 3 per cent of the total slip indicat-
ing that by using both horizontal components of GPS displacement,
we are able to effectively resolve the azimuth of slip. In general, the
filter can separate the spatial coherent signal due to fault-slip from
the spatially incoherent signal resulting from benchmark-motion.
Thus, the extended filter provides nearly optimal estimates of the
slip-rate distribution in the high signal-to-noise ratio case without
the computational cost of the maximum likelihood filter.

3.3 Low signal-to-noise ratio example

The previous simulation incorporated a transient with a high sig-
nal to noise ratio which is representative of the largest aseismic
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Figure 6. Maps of the estimated slip-rate using estimates of the hyper-
parameters determined by the filter, similar to Fig. 2.
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Figure 7. Data time-series for the low signal-to-noise ratio simulation.

transients. In this section we address the problem of detecting a
transient in a noisy data set where the fault-slip signal is not un-
ambiguously present in the GPS time-series by eye. We applied the
filter to a case where the other time-dependent contributions to the
GPS time-series are larger than the fault-slip contribution. The am-
plitudes of the fault-slip and benchmark wobble terms were chosen
to have approximately equal maximum amplitude contributions to
the GPS time-series. The duration of the slip-transient was also in-
creased in this episode to increase its similarity to the bench-mark
wobble signals. The resulting data is shown in Fig. 7. The transient
is contained between days 50 and 100 and is visible in the trench
perpendicular component of some of the most sensitive stations, but
numerous stations exist where the net displacement over the 150 d
time period is of the opposite sign than what would be expected
from fault slip owing to the contribution from the benchmark wob-
ble term. In this low signal to noise ratio case, the filter is more
unstable than the previous case in that using very large a priori un-
certainties on « and y can result in (unphysical) negative values of
these hyper-parameters. Thus it was necessary to start with a smooth
prior for @ and y with low uncertainty. This resulted in an estimate
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Figure 8. Input slip-rate distribution for the low SNR simulation.
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Figure 9. Recovered slip-rate distribution for the low SNR simulation.

of « that was larger than 20 above the prior, so the filter was rerun
a few times gradually increasing the apriori estimate of « and it’s
uncertainty. The final run, when the estimate of « was within 1o of
the a priori values, was initiated with prior values for « and y of
4000 and 100 with associated uncertainties of 1e3. The final esti-
mates of the hyper parameters were o« = 4466 4 320 and y = 226
=+ 549.

The true and estimated slip-rate distributions resulting from the
low SNR test are shown in Figs 8 and 9. The estimated slip-rate
distribution is qualitatively quite similar to the true distribution
although the peak slip-rates are not quite recovered (r; = .71,
ry = .69). The estimated moment-rate distribution captures the
duration and even some of the internal structure of the transient
(Fig. 10), but a small amount of the benchmark wobble and mea-
surement noise is mapped into the fault-slip components of the state
vector when no transient is present. Again, the input signal was
purely thrust slip erroneous amount of strike-slip motion estimated
by the filter remained small (about 10 per cent of the total slip).
Thus even in the case with a SNR less than 1 for the overall data
set, the filter is capable of pulling out an accurate and useful de-
scription of the transient’s spatial extent, duration, sense of slip, and
propagation.
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Figure 10. Input (dashed) and recovered (solid) source-time functions for
the low SNR simulation.

4 APPLICATION TO THE 1999
CASCADIA SLOW EARTHQUAKE

In 1999 a cluster of continuous GPS stations run by the Gelogi-
cal Survey of Canada and the Pacific Northwest Geodetic Array
(PANGA, (Miller et al. 2001)) network recorded a 40 day period
of anomalous displacements, on the order of a few mm, resulting
from slow-slip on the deep portion of the Cascadia thrust interface
(Dragert et al. 2001). The stations which showed the anomalous
displacements are contained within a ~200 km by ~200 km region
extending from Seattle to the central portion of Vancouver Island
(see Figs 11 and 12). Dragert ef al. (2001) matched the anomalous
displacements with a forward model consisting of a uniform zone
of 2.1 cm of slip between about the 30 and 40 km depth contours
of the thrust interface with slip tapering to zero by about ~25 km
depth. This model did not attempt to fit the time dependence of
the signal beyond breaking the slip-event into three time-periods

AWILL

52°

48°

-128° -124° -120°

Figure 11. Map showing the station distribution (black triangles and 4
letter labels) and fault-geometry (rectangles) for the 1999 Cascadia slow
earthquake.

which showed general northward propagation consistent with the
observed delay in the arrival of the event at the northern stations
(Dragert et al. 2001). Here we present the results of applying the
version of the NWIF that includes both positivity constraints and
direct estimation of the hyper-parameters to the Cascadia data set.

We model the daily station positions (see Fig. 12) determined by
(Dragert et al. 2001) as the sum of the contributions from transient
fault slip, reference frame error, secular velocity, benchmark wob-
ble, and measurement error. Secular velocities at these stations vary
on the time-scales of years (Dragert e al. 2001) so to avoid map-
ping any of this variability into our slip-rate estimates we inverted
data from a relatively short time period centered on the transient,
1999.5 to 1999.85, in which the secular-rate could be considered
constant. The secular velocities were determined ahead of time us-
ing a Kalman filter that estimated the velocity, reference frame error,
and benchmark wobble components of the time-series in the period
between 1999.2 and 1999.6. The contribution from secular velocity
only was then extrapolated and subtracted from the data time-series.

We used a 3-D fault geometry derived from the model of the Cas-
cadia thrust interface published by Flueck et al. (1997) (see Fig. 11).
Rectangular fault segments were fit to a set of points specifying the
thrust interface at approximately 5 km depth intervals between 20
and 50 km depth. The location and dip of the interface are spec-
ified in a manner that best approximates an elastic half-space by
accounting for topography and preserves the dip-angle of the thrust
interface (Flueck ef al. 1997). There were 72 subfaults with aver-
age lengths of about 25 km and widths of about 15 km. Green’s
functions were then calculated for the subfaults assuming a homo-
geneous isotropic half-space (Okada 1985). To account for station
DRAO being held fixed in the GPS processing (Dragert e al. 2001),
the Green’s function for this station was subtracted from those of
other stations. Despite station DRAO being held fixed in the GPS
processing, short term random translations of the network are still
present in the time-series (Dragert ef al. 2001). To account for these
errors, we estimated the translations of the GPS reference frame,
but owing to the relatively small scale of the network, we did not
solve for rotations or scale. Additional process noise was introduced
in the benchmark wobble terms at a number of epochs to account
for known antenna/hardware changes (Dragert, personal communi-
cation). The temporal smoothing parameter, o was initialized at a
value of 50 & 50 and had a final estimate of 63 £ 30. Larger values
of the a priori variance of « led to unstable hyper parameters, so
the a priori estimate and its uncertainty were gradually increased
until the final estimate was within 1o of the a priori value, similar
to the low SNR simulation. The spatial smoothing parameter was
initialized with a value of .1 & 1000 and had a final estimate of
0.8 &+ 72. The other hyper-parameters, t, o, p, were fixed at 2 mm
yr=1/2,10, and le-4 (m yr)~2 respectively.

The results of the filter are shown in Figs (12 and 13). The slip
transients begins at depths of 30-35 km just south of station ALBH.
It then expanded to the south before propagating both updip and
along-strike to the north. The peak slip was about 8 cm in the region
just south and updip of ALBH, while the peak slip-rates were about
1 m yr~! (though this value trades off with grid-size). We estimated
both the thrust and strike-slip component of slip on each subfault, the
magnitude and direction of the final slip is shown in Fig. 14. On most
faults the direction of slip is resloved to be roughly parallel to plate
motion direction, but for the deepest row of subfaults, resolution of
the azimuth (and amplitude) of slip is poorer. The moment-release
distribution was not smooth in time. There are two peak periods
of high slip-rates centered around day 240 and 270 separated by
a roughly a 15-20 d period between about julian day 250 and 265
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Figure 12. East-component time-series (asterisks) for the time-period used in the filter estimation. The contributions from secular velocity, reference frame
error, and benchmark wobble have been removed. The solid-lines show the fit to the data from the estimated slip distribution.

where slip-rates temporarily decreased below the 0.5 m yr~! level on
all subfaults (roughly 1999.71 in Fig. 13). The inferred late moment
release results from the late changes at stations UCLU and NANO
(Fig. 12). The total moment-release is equivalent to about an M, 6.9
event and the average stress-drop was approximately .01 MPa. The
duration of the period of high slip-rate on any one subfault ranged
from about 5-30 d.

S DISCUSSION

The algorithm described in the previous sections has several advan-
tages for interpreting continuous geodetic data and may be suited
for real-time fault monitoring. In particular, the inclusion of a posi-
tivity constraint on slip-rate increases the spatial resolution of slip-
rate anomalies over previous versions of the NIF. This feature can
be accommodated with either direct or maximum-likelihood es-
timation of the filter hyper-parameters. The incorporation of the
hyper-parameters into the state-vector may become quite useful
in real-time applications with high sample-rate data when the
maximum-likelihood algorithm is too expensive to implement. In-
cluding the hyper-parameters may also suggest an event detection
algorithm, as they are only forced away from the smooth a priori
values during periods of anomalous slip.

The slip-rate anomalies shown in Fig. 13 show several character-
istics that are analogous to slip in ordinary earthquakes, but with
longer time-scales. The slip-rate on a portion of the fault takes a
finite amount of time, from a few to ~20 d, to reach its peak. This
property is much more similar to unstable earthquake slip than the

© 2003 RAS, GJI, 155, 778-788

exponential decay that is usually observed in stable earthquake af-
terslip. The 1999 Cascadia slow-event also shows something like
slip-pulse propagation where the southern portion of the fault had
finished slipping before the northern portion began. The key differ-
ences between the Cascadia event and a normal earthquake are: (1)
the longer time-scales, both for the total event and local rise-time
and associated the lower propagation and slip velocities. (2) The
much lower average stress drop resulting from the relatively small
amount of slip over a large area. However, these two characteristics
are very similar to typical afterslip distributions. Thus if earthquakes
represent fault-slip governed by unstable velocity-weakening fric-
tion and afterslip is an example of fault-slip governed by stable
velocity-strengthening friction, then silent earthquakes appear to
have behaviour somewhat in-between, sharing important character-
istics with both.

The aseismic slip transients that have been observed recently at
numerous subduction zones Miyazaki et al. (2003), Dragert et al.
(2001), Lowry et al. (2001), Freymueller ef al. (2001) have several
features in common. Primarily that they all rupture the portion of
a subduction zone thrust interface immediately below the ‘locked’
zone, and that while the fault slip-rate clearly accelerates over a pe-
riod of time, there is a limit to the acceleration and the slip does not
becoming unstable. This portion of the thrust interface is predicted
to be ‘conditionally stable’ in the rate-state friction formulation ow-
ing to the temperature approaching the onset of plasticity in feldspar
at about 450°C (Scholz 1998). The conditionally stable regime of
rate-state friction has been well characterized analytically and in
single degree of freedom numerical simulations (Rice & Gu 1983).
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Figure 13. Maps of the estimated slip-rate as a function of time and station distribution (black triangles).
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Figure 14. Final slip distribution. Arrows denote magnitude and direction
of slip on each fault segment for which the slip was larger than 1.0 cm. Faults
with less slip than this are considered unresolved. In general the slip vectors
are closely aligned with the plate-motion vector except for the deepest row of
subfaults, which are poorly resolved. Grey triangles show station locations.

Under steady-state loading, faults in the conditionally-stable regime
slip aseismically unless there is a sudden perturbation to the sys-
tem. If the perturbation is large, the fault can be pushed over a
stability boundary causing it to become unstable and slip seismi-
cally. However, if the perturbation is such that the fault approaches
but does not cross the stability boundary, a period of stable sliding
with increased velocity will follow as the fault evolves back to its
steady-state behaviour. This type of behaviour represents one poten-
tial mechanism for explaining slow earthquakes. However the types
of triggering events that could lead to a perturbation in the state of
the fault, primarily the shear and normal stress, are hard to constrain
for slow events. There were no nearby large earthquakes to trigger
either the Cascadia slow event, and there is no clear connection be-
tween the 1996, M, 6.7, Hyuganada earthquakes and the 1997-1998
Bungo-Channel slow earthquake (Miyazaki et al. 2003). However,
stress-state changes that initiate the slow event could result from
a number of other mechanisms that are difficult to observe from
the surface, such as changes in pore fluid pressure. There is also a
portion of the conditionally stable rate-state parameter space where
oscillatory behaviour between stable sliding and locked behaviour
is observed in 1-D simulations. This has been proposed as a poten-
tial explanation for the creeping section of the San Andreas fault
(Scholz 1998) where repeated creep events have been observed. If
the deep slow-slip transients on subduction zones are roughly peri-
odic events as has been suggested for Cascadia (Miller ez al. 2002),
and the 1-D simulations can be extrapolated to real faults this may
provide a mechanism that doesn’t require a triggering event. Addi-
tionally, recent simulations of rate-state friction on a 2-D subduction

© 2003 RAS, GJI, 155, 778-788
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interface have generated slow earthquakes confined to the condi-
tionally stable region below the seismogenic zone (Shibazaki & lio
2002).
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APPENDIX A: STATE VECTOR SYSTEM

This appendix details the non-linear state—space system used
in the extended Kalman filter inversion algorithm for the case where
the secular velocity term has been subtracted from the data prior
to running the filter. The system is described by the observation
equation,

dx = h(xx) +€x, €k ~ N(0, Ry) (Al)

and the state-transition equation:

Skt1 ~ N(O, Q). (A2)

The state vector, X, contains all the parameters necessary to de-
scribe the state of the system, i.e. the terms on the right-hand side of
eq. (1). The state-vector has elements corresponding to four types
of model-parameters, fault-slip (W/, W/, A]), benchmark motion
(BY), reference frame (f), and hyper-parameters (z, o, @, ¥, p),

Xip1 = t(X) + Skr1,
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xe = [(WL WL ALY, (WM WM M)

,B,},...,,B,?’,fkl,...,kar,a,a,y,p]. (A3)

There are three types of ‘data’ in the vector dy = [d$™S, d), d], the
GPS observations at epoch k, the spatial smoothing pseudo-data,
and the positivity pseudo-data. The observation equation for each
type of data can be written as:

1 1 ; 1 . 1 .

_dGPS — _Gi' w] - i —Ff(t 17 ~N 07 EGPS

S di G k+0t,8k—|—(I )+ €, e (0, =)
(A4)

v 1_, .

d; =0= ;V aWg + ¢, €~ N(0,1) (AS)

+ 1 A 1 i2

d; =0= ;aWk — ;Ak + €, €~ N(0,D), (A6)

where 1 and j indicate the station and subfault index respectively as
in Section 2. Thus, the covariance matrix of the concatenated data
vector is,

N6 0 0
Re=| 0 1 0f. (A7)
0 01

The extended Kalman filter algorithm uses the full non-linear h(xy),
i.e. eqs (A4)—(A6), to calculate the residual at each epoch. The
update step uses the partial derivatives of eqs (A4)—(A6) with respect
to the elements of the state-vector to form the matrix H.

The state transition equation is specified by the stochastic models
assumed for each process, which are discussed in the main text. In
our case, it is actually linear, Xy = Txx + Sx.1, Where

I At 0
0 1 0] O
0 0 1 0 0 0
T = 0 (AB)
0 lAt 0 0
0 0 0 0
0 0 0
AP AP0
IA® At 0 0
0 0 iVA 0 0 0
0= 0 (A9)
0 lAt 0 0
0 0 =, 0
0 0 0 0

The upper-left submatricies result from the random-walk and in-
tegrated random-walk models assumed for § and S respectively.
The values for the elements of Q corresponding to the positivity
dummy variable A were determined from numerical simulations of
random-walk time-series. The hyper-parameters are assumed to be
time-invariant, and X ; is the time-independent covariance assumed
for the reference frame errors (Miyazaki et al. 2003).
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